Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(13):5153–5157. doi: 10.1073/pnas.87.13.5153

Generation of transgenic mice with elevated blood pressure by introduction of the rat renin and angiotensinogen genes.

H Ohkubo 1, H Kawakami 1, Y Kakehi 1, T Takumi 1, H Arai 1, Y Yokota 1, M Iwai 1, Y Tanabe 1, M Masu 1, J Hata 1, et al.
PMCID: PMC54280  PMID: 2195550

Abstract

The role of the renin-angiotensin system in blood pressure control and in the development of hypertension was investigated by generating transgenic mice carrying the rat renin or angiotensinogen gene or both genes under the control of the mouse metallothionein I promoter. The systolic blood pressure was significantly elevated in transgenic mice carrying both transgenes but was maintained normally in those bearing either of the transgenes. The transgene was effectively and properly transcribed to form the mature mRNA in the transgenic mice. The production of rat renin and angiotensinogen in the transgenic mice carrying the corresponding transgene was also verified by immunoanalyses of these proteins. Furthermore, the specific angiotensin-converting enzyme inhibitor captopril was effective in reducing the elevated blood pressure of the hypertensive transgenic mice. These results indicate that the combined action of the exogenous rat renin and angiotensinogen is responsible and necessary for elevation of blood pressure in the hypertensive transgenic mice.

Full text

PDF
5153

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAHL L. K., HEINE M., TASSINARI L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature. 1962 May 5;194:480–482. doi: 10.1038/194480b0. [DOI] [PubMed] [Google Scholar]
  2. Durnam D. M., Palmiter R. D. Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem. 1981 Jun 10;256(11):5712–5716. [PubMed] [Google Scholar]
  3. Fujimoto J., Hata J., Ishii E., Tanaka S., Kannagi R., Ueyama Y., Tamaoki N. Differentiation antigens defined by mouse monoclonal antibodies against human germ cell tumors. Lab Invest. 1987 Oct;57(4):350–358. [PubMed] [Google Scholar]
  4. Fukamizu A., Nishi K., Cho T., Saitoh M., Nakayama K., Ohkubo H., Nakanishi S., Murakami K. Structure of the rat renin gene. J Mol Biol. 1988 May 20;201(2):443–450. doi: 10.1016/0022-2836(88)90151-9. [DOI] [PubMed] [Google Scholar]
  5. Gordon J. W., Scangos G. A., Plotkin D. J., Barbosa J. A., Ruddle F. H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7380–7384. doi: 10.1073/pnas.77.12.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Itoh N., Matsuda T., Ohtani R., Okamoto H. Angiotensinogen production by rat hepatoma cells is stimulated by B cell stimulatory factor 2/interleukin-6. FEBS Lett. 1989 Feb 13;244(1):6–10. doi: 10.1016/0014-5793(89)81150-0. [DOI] [PubMed] [Google Scholar]
  7. Kageyama R., Ohkubo H., Nakanishi S. Induction of rat liver angiotensinogen mRNA following acute inflammation. Biochem Biophys Res Commun. 1985 Jun 28;129(3):826–832. doi: 10.1016/0006-291x(85)91966-7. [DOI] [PubMed] [Google Scholar]
  8. OKAMOTO K., AOKI K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963 Mar;27:282–293. doi: 10.1253/jcj.27.282. [DOI] [PubMed] [Google Scholar]
  9. Ohkubo H., Kageyama R., Ujihara M., Hirose T., Inayama S., Nakanishi S. Cloning and sequence analysis of cDNA for rat angiotensinogen. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2196–2200. doi: 10.1073/pnas.80.8.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohkubo H., Nakayama K., Tanaka T., Nakanishi S. Tissue distribution of rat angiotensinogen mRNA and structural analysis of its heterogeneity. J Biol Chem. 1986 Jan 5;261(1):319–323. [PubMed] [Google Scholar]
  11. Oliver W. J., Gross F. Unique specificity of mouse angiotensinogen to homologous renin. Proc Soc Exp Biol Med. 1966 Jul;122(3):923–926. doi: 10.3181/00379727-122-31291. [DOI] [PubMed] [Google Scholar]
  12. Ondetti M. A., Cushman D. W. Enzymes of the renin-angiotensin system and their inhibitors. Annu Rev Biochem. 1982;51:283–308. doi: 10.1146/annurev.bi.51.070182.001435. [DOI] [PubMed] [Google Scholar]
  13. Palmiter R. D., Brinster R. L., Hammer R. E., Trumbauer M. E., Rosenfeld M. G., Birnberg N. C., Evans R. M. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982 Dec 16;300(5893):611–615. doi: 10.1038/300611a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schlager G. Selection for blood pressure levels in mice. Genetics. 1974 Mar;76(3):537–549. doi: 10.1093/genetics/76.3.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suga J., Saijo N., Shinkai T., Eguchi K., Sasaki Y., Sakurai M., Sano T., Tamura T., Hoshi A. Phase II study of mitoxantrone in patients with non-small cell lung cancer. Jpn J Clin Oncol. 1986 Jun;16(2):147–151. doi: 10.1093/oxfordjournals.jjco.a039131. [DOI] [PubMed] [Google Scholar]
  16. Tanaka T., Ohkubo H., Nakanishi S. Common structural organization of the angiotensinogen and the alpha 1-antitrypsin genes. J Biol Chem. 1984 Jul 10;259(13):8063–8065. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES