Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Feb;63(2):324–327. doi: 10.1104/pp.63.2.324

Shifting the Phase of the Circadian Rhythm in Bioluminescence in Gonyaulax with Vanillic Acid 1

Richard S Kiessig a, Jeffrey M Herz a, Beatrice M Sweeney a
PMCID: PMC542823  PMID: 16660722

Abstract

Exposure for 4 hours to vanillic acid (4-hydroxy 3-methoxy benzoic acid) caused large delay phase shifts (5 to 6 hours) in the circadian rhythm of bioluminescence in Gonyaulax polyedra, when assayed at either 10 to 14 circadian time or 22 to 02 circadian time in constant light and temperature, provided that the pH of the medium was 7.1 or lower. Corresponding changes in the pH with acetic acid did not shift phase. Vanillic acid caused detectable depolarization of the membranes of Gonyaulax, as demonstrated with the cyanine dye fluorescence technique.

Full text

PDF
324

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamich M., Laris P. C., Sweeney B. M. In vivo evidence for a circadian rhythm in membranes of Gonyaulax. Nature. 1976 Jun 17;261(5561):583–585. doi: 10.1038/261583a0. [DOI] [PubMed] [Google Scholar]
  2. GUILLARD R. R., RYTHER J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962 Apr;8:229–239. doi: 10.1139/m62-029. [DOI] [PubMed] [Google Scholar]
  3. Glass A. D. Influence of Phenolic Acids on Ion Uptake: IV. Depolarization of Membrane Potentials. Plant Physiol. 1974 Dec;54(6):855–858. doi: 10.1104/pp.54.6.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HASTINGS J. W. Biochemical aspects of rhythms: phase shifting by chemicals. Cold Spring Harb Symp Quant Biol. 1960;25:131–143. doi: 10.1101/sqb.1960.025.01.012. [DOI] [PubMed] [Google Scholar]
  5. Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J Physiol. 1974 Jun;239(3):519–552. doi: 10.1113/jphysiol.1974.sp010581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Njus D., Gooch V. D., Mergenhagen D., Sulzman F., Hastings J. W. Membranes and molecules in circadian systems. Fed Proc. 1976 Oct;35(12):2353–2357. [PubMed] [Google Scholar]
  7. Njus D., Sulzman F. M., Hastings J. W. Membrane model for the circadian clock. Nature. 1974 Mar 8;248(5444):116–120. doi: 10.1038/248116a0. [DOI] [PubMed] [Google Scholar]
  8. Pavlidis T. A model for circadian clocks. Bull Math Biophys. 1967 Dec;29(4):781–791. doi: 10.1007/BF02476928. [DOI] [PubMed] [Google Scholar]
  9. Sweeney B. M. A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. Int J Chronobiol. 1974;2(1):25–33. [PubMed] [Google Scholar]
  10. Sweeney B. M. The Potassium Content of Gonyaulax polyedra and Phase Changes in the Circadian Rhythm of Stimulated Bioluminescence by Short Exposures to Ethanol and Valinomycin. Plant Physiol. 1974 Mar;53(3):337–342. doi: 10.1104/pp.53.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES