Abstract
Organelles were isolated from dark-grown Euglena gracilis Klebs by sucrose density gradient centrifugation. Plastids, identified by triosephosphate isomerase and NADP glyoxylate reductase were present at an equilibrium density of 1.24 grams per cubic centimeter clearly separated from mitochondria at an equilibrium density of 1.22 grams per cubic centimeter. Assay for choline phosphotransferase and glucose-6-phosphatase showed that endoplasmic reticulum membranes were present at a density of 1.12 grams per cubic centimeter. The plastid fraction contained phosphofructokinase, pyruvate kinase, triosephosphate isomerase and aldolase indicating the operation of a glycolytic pathway. During regreening pyruvate kinase and phosphofructokinase in the developing proplastid decreased, neither enzyme being present in the mature chloroplast. However, plastids were present in the photosynthetic cell as shown by a peak of glycolysis enzymes at an equilibrium density of 1.24 grams per cubic centimeter.
The integrity of isolated plastids was demonstrated by their capacity for protein synthesis. Plastids isolated from dark-grown cells rapidly incorporated [35S]methionine into protein with an absolute dependence on added ATP. The large subunit of ribulose diphosphate carboxylase was the major polypeptide synthesized by these isolated plastids.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkinson A., Gatenby A. D., Lowe A. G. The determination of inorganic orthophosphate in biological systems. Biochim Biophys Acta. 1973 Aug 17;320(1):195–204. doi: 10.1016/0304-4165(73)90178-5. [DOI] [PubMed] [Google Scholar]
- Avadhani N. G., Buetow D. E. Isolation of active polyribosomes from the cytoplasm, mitochondria and chloroplasts of Euglena gracilis. Biochem J. 1972 Jun;128(2):353–365. doi: 10.1042/bj1280353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bovarnick J. G., Chang S. W., Schiff J. A., Schwartzbach S. D. Events surrounding the early development of Euglena chloroplasts: experiments with streptomycin in non-dividing cells. J Gen Microbiol. 1974 Jul;83(0):51–62. doi: 10.1099/00221287-83-1-51. [DOI] [PubMed] [Google Scholar]
- Bowden L., Lord J. M. Development of phospholipid synthesizing enzymes in castor bean endosperm. FEBS Lett. 1975 Jan 1;49(3):369–371. doi: 10.1016/0014-5793(75)80787-3. [DOI] [PubMed] [Google Scholar]
- Brown R. H., Armitage T. L., Merrett M. J. Ribulose Diphosphate Carboxylase Synthesis in Euglena: III. Serological Relationships of the Intact Enzyme and its Subunits. Plant Physiol. 1976 Dec;58(6):773–776. doi: 10.1104/pp.58.6.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. H., Lord J. M., Merrett M. J. Fractionation of the proteins of plant microbodies. Biochem J. 1974 Dec;144(3):559–566. doi: 10.1042/bj1440559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins N., Merrett M. J. Microbody-marker Enzymes during Transition from Phototrophic to Organotrophic Growth in Euglena. Plant Physiol. 1975 Jun;55(6):1018–1022. doi: 10.1104/pp.55.6.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins N., Merrett M. J. The localization of glycollate-pathway enzymes in Euglena. Biochem J. 1975 May;148(2):321–328. doi: 10.1042/bj1480321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis D. T., Green T. R. Soluble and particulate glycolysis in developing castor bean endosperm. Biochem Biophys Res Commun. 1975 Jan 2;64(3):970–975. doi: 10.1016/0006-291x(75)90142-4. [DOI] [PubMed] [Google Scholar]
- Dockerty A., Lord J. M., Merrett M. J. Development of ribulose-1,5-diphosphate carboxylase in castor bean cotyledons. Plant Physiol. 1977 Jun;59(6):1125–1127. doi: 10.1104/pp.59.6.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guha A. Fructose-diphosphate aldolase from lobster muscle. Methods Enzymol. 1975;42:223–228. doi: 10.1016/0076-6879(75)42118-8. [DOI] [PubMed] [Google Scholar]
- Hirvonen A. P., Price C. A. Chloroplast ribosomes in the proplastids of Euglena gracilis. Biochim Biophys Acta. 1971 Apr 8;232(4):696–704. doi: 10.1016/0005-2787(71)90761-1. [DOI] [PubMed] [Google Scholar]
- Knight G. J., Price C. A. Measurements of s-p coordinates during the development of Euglena chloroplasts. Biochim Biophys Acta. 1968 May;158(2):283–285. doi: 10.1016/0304-4165(68)90142-6. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lord J. M., Merrett M. J. Ribulose diphosphate carboxylase synthesis in euglena: increased enzyme activity after transferring regreening cells to darkness. Plant Physiol. 1975 May;55(5):890–892. doi: 10.1104/pp.55.5.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ophir I., Ben-Shaul Y. Separation and Ultrastructure of Proplastids from Dark-grown Euglena Cells. Plant Physiol. 1973 Jun;51(6):1109–1116. doi: 10.1104/pp.51.6.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmond C. B., Akazawa T., Beevers H. Localization and properties of ribulose diphosphate carboxylase from castor bean endosperm. Plant Physiol. 1975 Feb;55(2):226–230. doi: 10.1104/pp.55.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salvador G., Lefort-Tran M., Nigon V., Jourdan F. Structure et evolution du corps prolamellaire dans les proplastes d'Euglena gracilis. Exp Cell Res. 1971 Feb;64(2):457–462. doi: 10.1016/0014-4827(71)90100-5. [DOI] [PubMed] [Google Scholar]
- Schiff J. A. The development, inheritance, and origin of the plastid in Euglena. Adv Morphog. 1973;10:265–312. doi: 10.1016/b978-0-12-028610-2.50010-1. [DOI] [PubMed] [Google Scholar]
- Schnarrenberger C., Oeser A., Tolbert N. E. Isolation of Plastids from Sunflower Cotyledons during Germination. Plant Physiol. 1972 Jul;50(1):55–59. doi: 10.1104/pp.50.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddell S. G., Ellis R. J. Protein synthesis in chloroplasts. Characteristics and products of protein synthesis in vitro in etioplasts and developing chloroplasts from pea leaves. Biochem J. 1975 Mar;146(3):675–685. doi: 10.1042/bj1460675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simcox P. D., Reid E. E., Canvin D. T., Dennis D. T. Enzymes of the Glycolytic and Pentose Phosphate Pathways in Proplastids from the Developing Endosperm of Ricinus communis L. Plant Physiol. 1977 Jun;59(6):1128–1132. doi: 10.1104/pp.59.6.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern A. I., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development. Plant Physiol. 1964 Mar;39(2):220–226. doi: 10.1104/pp.39.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolbert N. E., Yamazaki R. K., Oeser A. Localization and properties of hydroxypyruvate and glyoxylate reductases in spinach leaf particles. J Biol Chem. 1970 Oct 10;245(19):5129–5136. [PubMed] [Google Scholar]
