Abstract
Free and bound abscisic acid (ABA) in the pod, seed coat, and embryo were determined separately throughout seed development of Phaseolus vulgaris L. cv. `Taylor's Horticultural.' An internal standard method of gas-liquid chromatography was used for ABA quantification. In the embryo, two peaks of free ABA occurred at days 22 (1.18 micrograms per gram or 5.5 micromolar) and 28 (1.74 micrograms per gram or 12 micromolar); and a single peak of bound ABA at day 30. In the seed coat, there was one peak of free ABA at day 22 and only small amounts of bound ABA. Very small amounts of ABA were detected in the pod at any stage of development. In cv. PI 226895, in which seed development is more rapid than in `Taylor's Horticultural,' the embryo ABA peaks occur on days 20 and 26. The timing of the ABA peak in the embryo, and the concentration attained, are consistent with previous reports on the natural pattern of RNA synthesis and with ABA inhibition of RNA synthesis in developing bean fruit.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coombe B. G., Hale C. R. The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol. 1973 Apr;51(4):629–634. doi: 10.1104/pp.51.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis L. A., Addicott F. T. Abscisic Acid: correlations with abscission and with development in the cotton fruit. Plant Physiol. 1972 Apr;49(4):644–648. doi: 10.1104/pp.49.4.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillard D. F., Walton D. C. Abscisic Acid Metabolism by a Cell-free Preparation from Echinocystis lobata Liquid Endoserum. Plant Physiol. 1976 Dec;58(6):790–795. doi: 10.1104/pp.58.6.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho D. T. Response of barley aleurone layers to abscisic Acid. Plant Physiol. 1976 Feb;57(2):175–178. doi: 10.1104/pp.57.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quebedeaux B., Sweetser P. B., Rowell J. C. Abscisic Acid Levels in Soybean Reproductive Structures during Development. Plant Physiol. 1976 Sep;58(3):363–366. doi: 10.1104/pp.58.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walbot V., Brady T., Clutter M., Sussex I. Macromolecular synthesis during plant embryogeny: rates of RNA synthesis in Phaseolus coccineus embryos and suspensors. Dev Biol. 1972 Sep;29(1):104–111. doi: 10.1016/0012-1606(72)90047-4. [DOI] [PubMed] [Google Scholar]
- Walbot V., Clutter M., Sussex I. Effects of abscisic Acid on growth, RNA metabolism, and respiration in germinating bean axes. Plant Physiol. 1975 Nov;56(5):570–574. doi: 10.1104/pp.56.5.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walbot V. RNA metabolism during embryo development and germination of Phaseolus vulgaris. Dev Biol. 1971 Nov;26(3):369–379. doi: 10.1016/0012-1606(71)90069-8. [DOI] [PubMed] [Google Scholar]
- Zabadal T. J. A water potential threshold for the increase of abscisic Acid in leaves. Plant Physiol. 1974 Jan;53(1):125–127. doi: 10.1104/pp.53.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]