Abstract
An analysis of the kinetics of simultaneous photosynthesis and photorespiration at the end of a diffusion path is applied to observed net photosynthetic rate as a function of O2 and CO2 concentrations. The data of Ku and Edwards (Plant Physiol. 59: 991-999, 1977) from wheat (Triticum aestivum L.) are analyzed in detail. Ku and Edwards, using an analysis that ignored diffusion resistance between the intercellular air space and fixation site, the competitive effect of CO2 on photorespiration, and the actual concentrations of gases at the fixation site, concluded that: (a) the affinity coefficient of the leaf for CO2 was approximately 3.5 to 5 micromolar; (b) this affinity coefficient is independent of temperature between 25 and 35 C; (c) the effect of O2 was independent of temperature over this range; and (d) competition between CO2 and O2 is responsible for the major share of CO2 loss from photosynthesis due to photorespiration. They suggest that using gas concentrations calculated as equilibium values in the liquid phase is very important in reaching these conclusions. By applying a more complete analysis to their data which includes diffusion in the cell, it is concluded that: (a) the affinity coefficient of the leaf for CO2 is 0.1 to 1.1 micromolar; (b) the temperature dependence of this affinity coefficient cannot be determined from existing data, but there is no evidence to refute independent temperature effect on the two functions of ribulose-1,5-bisphosphate carboxylase-oxygenase being important in the regulation of whole leaf net photosynthesis; and (c) the competitive interplay of CO2 and O2 at ribulose-1,5-bisphosphate carboxylase may under certain conditions lead to a stimulation of fixation by the Calvin cycle because of photorespiration. These conclusions are reached whether CO2 and O2 are expressed as dissolved concentrations or as gas concentrations in the intercellular air space. The relative merits of these two expressions of concentration are discussed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Badger M. R., Andrews T. J. Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun. 1974 Sep 9;60(1):204–210. doi: 10.1016/0006-291x(74)90192-2. [DOI] [PubMed] [Google Scholar]
- Bowes G., Ogren W. L., Hageman R. H. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun. 1971 Nov 5;45(3):716–722. doi: 10.1016/0006-291x(71)90475-x. [DOI] [PubMed] [Google Scholar]
- Jones H. G., Slatyer R. O. Estimation of the transport and carboxylation components of the intracellular limitation to leaf photosynthesis. Plant Physiol. 1972 Aug;50(2):283–288. doi: 10.1104/pp.50.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ku S. B., Edwards G. E. Oxygen Inhibition of Photosynthesis: I. Temperature Dependence and Relation to O(2)/CO(2) Solubility Ratio. Plant Physiol. 1977 May;59(5):986–990. doi: 10.1104/pp.59.5.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ku S. B., Edwards G. E. Oxygen Inhibition of Photosynthesis: II. Kinetic Characteristics as Affected by Temperature. Plant Physiol. 1977 May;59(5):991–999. doi: 10.1104/pp.59.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lake J. V. Respiration of leaves during photosynthesis. I. Estimates from an electrical analogue. Aust J Biol Sci. 1967 Jun;20(3):487–493. doi: 10.1071/bi9670487. [DOI] [PubMed] [Google Scholar]
- Lake J. V. Respiration of leaves during photosynthesis. II. Effects on the estimation of mesophyll resistance. Aust J Biol Sci. 1967 Jun;20(3):495–499. doi: 10.1071/bi9670495. [DOI] [PubMed] [Google Scholar]
- Lilley R. M., Walker D. A. Carbon dioxide assimilation by leaves, isolated chloroplasts, and ribulose bisphosphate carboxylase from spinach. Plant Physiol. 1975 Jun;55(6):1087–1092. doi: 10.1104/pp.55.6.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig L. J., Canvin D. T. The Rate of Photorespiration during Photosynthesis and the Relationship of the Substrate of Light Respiration to the Products of Photosynthesis in Sunflower Leaves. Plant Physiol. 1971 Dec;48(6):712–719. doi: 10.1104/pp.48.6.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiger H. M., Beck E. Oxygen Concentration in Isolated Chloroplasts during Photosynthesis. Plant Physiol. 1977 Dec;60(6):903–906. doi: 10.1104/pp.60.6.903. [DOI] [PMC free article] [PubMed] [Google Scholar]