Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 May;63(5):956–962. doi: 10.1104/pp.63.5.956

Low Root Temperature Effects on Soybean Nitrogen Metabolism and Photosynthesis 1

Stanley H Duke a, Larry E Schrader a, Cynthia A Henson a, Jerome C Servaites a,2, Robert D Vogelzang a, John W Pendleton a
PMCID: PMC542951  PMID: 16660844

Abstract

The influences of low root temperature on soybeans (Glycine max [L.] Merr. cv. Wells) were studied by germinating and maintaining plants at root temperatures of 13 and 20 C through maturity. At 42 days from the beginning of imbibition, 13 and 20 C plants were switched to 20 and 13 C, respectively. Plants were harvested after 63 days. Control plants (13 C) did not nodulate, whereas those switched to 20 C did and at harvest had C2H2 reduction rates of 0.2 micromoles per minute per plant. Rates of C2H2 reduction decreased rapidly in plants switched from 20 to 13 C; however, after 2 days, rates recovered to original levels (0.8 micromoles per minute per plant) and then began a slow decline until harvest. Arrhenius plots of C2H2 reduction by whole plants indicated a large increase in the energy of activation below the inflection at 15 C. Highest C2H2 reduction rates (1.6 micromoles per minute per plant) were at 58 days for the 20 C control. Root respiration rates followed much the same pattern as C2H2 reduction in the 20 C control and transferred plants. At harvest, roots from 13 C-treated plants had the highest activities for malate dehydrogenase, glutamate oxaloacetate transaminase, and phosphoenolpyruvate carboxylase. Roots from transferred plants had intermediate activities and those from the 20 C treatment the lowest activities. Newly formed nodules from plants switched from 13 to 20 C had much higher glutamate dehydrogenase than glutamine synthetase activity.

Photosynthetic rates on a leaf area basis were about three times as high in the 20 C control as compared to 13 C control plants. Photosynthetic rates of plants switched from 20 to 13 C decreased to less than half the original rate within 2 days. Photosynthetic rates of plants switched from 13 to 20 C recovered to rates near those of the 20 C control plants within 2 weeks. All leaf enzymes assayed at harvest, with the exception of nitrate reductase, were highest in activity in the 20 C control plants.

Full text

PDF
956

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bethlenfalvay G. J., Phillips D. A. Ontogenetic Interactions between Photosynthesis and Symbiotic Nitrogen Fixation in Legumes. Plant Physiol. 1977 Sep;60(3):419–421. doi: 10.1104/pp.60.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Christeller J. T., Laing W. A., Sutton W. D. Carbon Dioxide Fixation by Lupin Root Nodules: I. Characterization, Association with Phosphoenolpyruvate Carboxylase, and Correlation with Nitrogen Fixation during Nodule Development. Plant Physiol. 1977 Jul;60(1):47–50. doi: 10.1104/pp.60.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. David K. A., Apte S. K., Thomas J. Stimulation of nitrogenase by acetylene: fresh synthesis or conformational chance? Biochem Biophys Res Commun. 1978 May 15;82(1):39–45. doi: 10.1016/0006-291x(78)90573-9. [DOI] [PubMed] [Google Scholar]
  4. David K. A., Fay P. Effects of long-term treatment with acetylene on nitrogen-fixing microorganisms. Appl Environ Microbiol. 1977 Dec;34(6):640–646. doi: 10.1128/aem.34.6.640-646.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duke S. H., Schrader L. E., Miller M. G. Low Temperature Effects on Soybean (Glycine max [L.] Merr. cv. Wells) Free Amino Acid Pools during Germination. Plant Physiol. 1978 Oct;62(4):642–647. doi: 10.1104/pp.62.4.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duke S. H., Schrader L. E., Miller M. G. Low Temperature Effects on Soybean (Glycine max [L.] Merr. cv. Wells) Mitochondrial Respiration and Several Dehydrogenases during Imbibition and Germination. Plant Physiol. 1977 Nov;60(5):716–722. doi: 10.1104/pp.60.5.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klucas R. V. Studies on soybean nodule senescence. Plant Physiol. 1974 Oct;54(4):612–616. doi: 10.1104/pp.54.4.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mahon J. D. Root and nodule respiration in relation to acetylene reduction in intact nodulated peas. Plant Physiol. 1977 Dec;60(6):812–816. doi: 10.1104/pp.60.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Quebedeaux B., Havelka U. D., Livak K. L., Hardy R. W. Effect of Altered pO(2) in the Aerial Part of Soybean on Symbiotic N(2) Fixation. Plant Physiol. 1975 Dec;56(6):761–764. doi: 10.1104/pp.56.6.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schrader L. E., Cataldo D. A., Peterson D. M. Use of protein in extraction and stabilization of nitrate reductase. Plant Physiol. 1974 May;53(5):688–690. doi: 10.1104/pp.53.5.688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES