Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Jun;63(6):1016–1021. doi: 10.1104/pp.63.6.1016

Involvement of Nonhistone Chromosomal Proteins in Transcriptional Activity of Chromatin during Wheat Germination

Kouichi Yoshida a,1, Mamoru Sugita a, Kimiko Sasaki a,2
PMCID: PMC542962  PMID: 16660849

Abstract

To clarify how the transcriptionally inactive chromatin of dormant wheat seed embryos becomes active during germination, we studied two kinds of chromatin-associated proteins: histones and nonhistone proteins found in wheat germ.

Two major nonhistone proteins were solubilized from purified germ chromatin with 5 molar urea, and were separated from histones and chromosomal RNA by BioRex-70 resin and diethylaminoethyl-cellulose chromatography, respectively. We found that purified 5 molar urea-soluble nonhistone proteins, including the two major nonhistone proteins, had no effect on the transcription of native wheat DNA.

Two kinds of chromatins were reconstituted by gradient dialysis from a mixture of DNA, germ histones, and nonhistone proteins derived from germs or germinated seedlings. Reconstituted chromatins had a 1.4- to 1.6-fold higher protein content than DNA content, protein components similar to native chromatin, and had only about 17 to 25% and 37% the transcriptional activities of native seedling and germ chromatins, respectively. Using the transcriptional activity of chromatin reconstituted from DNA and histones alone as a standard, one kind of reconstituted chromatin containing nonhistone proteins of germ was only about one-fourth as active as the standard. Another with nonhistone proteins from seedlings was about 1.3 to 1.5 times more active than the standard.

The ratio of histones to DNA content is approximately 1.3 during germination, but the proportion of histone H1 to the total histones is reduced.

Full text

PDF
1016

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett T., Maryanka D., Hamlyn P. H., Gould H. J. Nonhistone proteins control gene expression in reconstituted chromatin. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5057–5061. doi: 10.1073/pnas.71.12.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bekhor I., Samal B. Nonhistone chromosomal protein interaction with DNA/histone complexes. Transcription. Arch Biochem Biophys. 1977 Mar;179(2):537–544. doi: 10.1016/0003-9861(77)90142-4. [DOI] [PubMed] [Google Scholar]
  4. Bhorjee J. S., Pederson T. Chromatin: its isolation from cultured mammalian cells with particular reference to contamination by nuclear ribnucleoprotein particles. Biochemistry. 1973 Jul 3;12(14):2766–2773. doi: 10.1021/bi00738a033. [DOI] [PubMed] [Google Scholar]
  5. Brooker J. D., Tomaszewski M., Marcus A. Preformed Messenger RNAs and Early Wheat Embryo Germination. Plant Physiol. 1978 Feb;61(2):145–149. doi: 10.1104/pp.61.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  7. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gadski R. A., Chae C. B. Effect of proteolysis of transcriptional fidelity of reconstituted chromatin. Biochemistry. 1977 Jul 26;16(15):3465–3469. doi: 10.1021/bi00634a027. [DOI] [PubMed] [Google Scholar]
  9. Gadski R. A., Chae C. B. Mode of chromatin reconstitution. Elements controlling globin gene transcription. Biochemistry. 1978 Mar 7;17(5):869–874. doi: 10.1021/bi00598a019. [DOI] [PubMed] [Google Scholar]
  10. Getz M. J., Saunders G. F. Origins of human leukocyte chromatin-associated RNA. Biochim Biophys Acta. 1973 Jul 13;312(3):555–573. doi: 10.1016/0005-2787(73)90454-1. [DOI] [PubMed] [Google Scholar]
  11. Grellet F., Delseny M., Guitton Y. Histone content of germinating pea embryo chromatin decreases as DNA replicates. Nature. 1977 Jun 23;267(5613):724–726. doi: 10.1038/267724a0. [DOI] [PubMed] [Google Scholar]
  12. Jendrisak J., Becker W. M. Isolation, purification and characterization of RNA polymerases from wheat germ. Biochim Biophys Acta. 1973 Aug 10;319(1):48–54. doi: 10.1016/0005-2787(73)90039-7. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Marzluff W. F., Jr, White E. L., Benjamin R., Huang R. C. Low molecular weight RNA species from chromatin. Biochemistry. 1975 Aug 12;14(16):3715–3724. doi: 10.1021/bi00687a031. [DOI] [PubMed] [Google Scholar]
  16. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  17. Park W., Jansing R., Stein J., Stein G. Activation of histone gene transcription in quiescent WI-38 cells or mouse liver by a nonhistone chromosomal protein fraction from HeLa S3 cells. Biochemistry. 1977 Aug 9;16(16):3713–3721. doi: 10.1021/bi00635a032. [DOI] [PubMed] [Google Scholar]
  18. Renz M., Nehls P., Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci U S A. 1977 May;74(5):1879–1883. doi: 10.1073/pnas.74.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Samal B., Bekhor I. Nonhistone chromosomal protein interaction with dna/histone complexes. Circular dichroism. Arch Biochem Biophys. 1977 Mar;179(2):527–536. doi: 10.1016/0003-9861(77)90141-2. [DOI] [PubMed] [Google Scholar]
  20. Simon J. H., Becker W. M. A polyethylene glycol/dextran procedure for the isolation of chromatin proteins (histones and nonhistones) from wheat germ. Biochim Biophys Acta. 1976 Nov 12;454(1):154–171. doi: 10.1016/0005-2787(76)90362-2. [DOI] [PubMed] [Google Scholar]
  21. Stein G. S., Mans R. J., Gabbay E. J., Stein J. L., Davis J., Adawadkar P. D. Evidence for fidelity of chromatin reconstitution. Biochemistry. 1975 May 6;14(9):1859–1866. doi: 10.1021/bi00680a009. [DOI] [PubMed] [Google Scholar]
  22. Stein G., Park W., Thrall C., Mans R., Stein J. Regulation of cell cycle stage-specific transcription of histone genes from chromatin by non-histone chromosomal proteins. Nature. 1975 Oct 30;257(5529):764–767. doi: 10.1038/257764a0. [DOI] [PubMed] [Google Scholar]
  23. Thoma F., Koller T. Influence of histone H1 on chromatin structure. Cell. 1977 Sep;12(1):101–107. doi: 10.1016/0092-8674(77)90188-x. [DOI] [PubMed] [Google Scholar]
  24. Wang S., Chiu J. F., Klyszejko-Stefanowicz L., Fujitani H., Hnilica L. S. Tissue-specific chromosomal non-histone protein interactions with DNA. J Biol Chem. 1976 Mar 10;251(5):1471–1475. [PubMed] [Google Scholar]
  25. Yoshida K., Sasaki K. Changes of Template Activity and Proteins of Chromatin during Wheat Germination. Plant Physiol. 1977 Mar;59(3):497–501. doi: 10.1104/pp.59.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES