Abstract
[3H]- and δ-[14C]Aminolevulinic acids were incorporated into the chlorophylls of Skeletonema costatum, a marine plankton diatom. In the stationary phase of growth, the tetrapyrrole-based pigments reached steady-state labeling after 10 hours. Under conditions of exponential cell division and chlorophyll accumulation, 3H was rapidly lost from the labeled chlorophylls and was replaced with 14C derived from δ-[4−14C]aminolevulinic acid. The kinetics of isotope dilution suggests recycling of tetrapyrrole precursors and/or two pigment pools, containing both chlorophyll a and chlorophyllide c, one which turns over rapidly (10 hours) and another which turns over more slowly (100 hours). Calculation of turnover times varied from 3 to 10 hours for chlorophyll a and from 7 to 26 hours for chlorophyllide c. The data suggest the dynamics of chlorophyll metabolism in S. costatum and explain the diatom's ability to undergo light-shade adaptation within a generation time.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Owens T. G., Riper D. M., Falkowski P. G. Studies of Delta-Aminolevulinic Acid Dehydrase from Skeletonema costatum, a Marine Plankton Diatom. Plant Physiol. 1978 Oct;62(4):516–521. doi: 10.1104/pp.62.4.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PERKINS H. J., ROBERTS D. W. Purification of chlorophylls, pheophytins and pheophorbides for specific activity determinations. Biochim Biophys Acta. 1962 Apr 23;58:486–498. doi: 10.1016/0006-3002(62)90059-8. [DOI] [PubMed] [Google Scholar]
- Troxler R. F., Brown A. S. Metabolism of delta-Aminolevulinic Acid in Red and Blue-Green Algae. Plant Physiol. 1975 Mar;55(3):463–467. doi: 10.1104/pp.55.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
