Abstract
Rhythmic changes in the light reactions of Euglena gracilis have been found which help to explain the basic reactions effected in the circadian rhythm of O2 evolution. Diurnal changes in the slope of light intensity plots indicated that the maximal rate of photosynthesis changed throughout the circadian cycle. No evidence was obtained consistent with the premise that changes in chlorophyll content, as measured by total chlorophyll or chlorophyll a/b ratio, or photosynthetic unit size are responsible for this rhythim.
The rate of light-induced electron flow through the entire electron chain (H2O to methyl viologen) was rhythmic both in whole cells and in isolated chloroplasts, and the highest rate of electron flow coincided with the highest rate of O2 evolution. The individual activities of photosystem I (reduced from 2,6-dichlorophenol-indophenol to methyl viologen) and photosystem II (H2O to 2,6-dichlorophenol-indophenol) did not, however, change significantly with time of day, suggesting that the coordination of the two photosystems may be the site of circadian control. Evidence consistent with this concept was obtained from studies of low temperature emission from systems I and II following preillumination with system I or II light.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARMSTRONG J. M. THE MOLAR EXTINCTION COEFFICIENT OF 2,6-DICHLOROPHENOL INDOPHENOL. Biochim Biophys Acta. 1964 Apr 4;86:194–197. doi: 10.1016/0304-4165(64)90180-1. [DOI] [PubMed] [Google Scholar]
- Alberte R. S., McClure P. R., Thornber J. P. Photosynthesis in trees: organization of chlorophyll and photosynthetic unit size in isolated gymnosperm chloroplasts. Plant Physiol. 1976 Sep;58(3):341–344. doi: 10.1104/pp.58.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armond P. A., Staehelin L. A., Arntzen C. J. Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. J Cell Biol. 1977 May;73(2):400–418. doi: 10.1083/jcb.73.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boardman N. K., Thorne S. W. Sensitive fluorescence method for the determination of chlorophyll a-chlorophyll b ratios. Biochim Biophys Acta. 1971 Nov 2;253(1):222–231. doi: 10.1016/0005-2728(71)90248-9. [DOI] [PubMed] [Google Scholar]
- Bonaventura C., Myers J. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta. 1969;189(3):366–383. doi: 10.1016/0005-2728(69)90168-6. [DOI] [PubMed] [Google Scholar]
- Bush K. J., Sweeney B. M. The Activity of Ribulose Diphosphate Carboxylase in Extracts of Gonyaulax polyedra in the Day and the Night Phases of the Circadian Rhythm of Photosynthesis. Plant Physiol. 1972 Oct;50(4):446–451. doi: 10.1104/pp.50.4.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler W. L. Energy distribution in the photosynthetic apparatus of plants. Brookhaven Symp Biol. 1976 Jun 7;(28):338–346. [PubMed] [Google Scholar]
- Edmunds L. N., Jr Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). II. Patterns of biosynthesis during the cell cycle. J Cell Physiol. 1965 Oct;66(2):159–181. doi: 10.1002/jcp.1030660205. [DOI] [PubMed] [Google Scholar]
- Forsee W. T., Kahn J. S. Carbon dioxide fixation by isolated chloroplasts of Euglena gracilis. I. Isolation of functionally intact chloroplasts and their characterization. Arch Biochem Biophys. 1972 May;150(1):296–301. doi: 10.1016/0003-9861(72)90038-0. [DOI] [PubMed] [Google Scholar]
- HASTINGS J. W., ASTRACHAN L., SWEENEY B. M. A persistent daily rhythm in photosynthesis. J Gen Physiol. 1961 Sep;45:69–76. doi: 10.1085/jgp.45.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFSTEE B. H. Non-inverted versus inverted plots in enzyme kinetics. Nature. 1959 Oct 24;184:1296–1298. doi: 10.1038/1841296b0. [DOI] [PubMed] [Google Scholar]
- Keck R. W., Dilley R. A., Ke B. Photochemical characteristics in a soybean mutant. Plant Physiol. 1970 Nov;46(5):699–704. doi: 10.1104/pp.46.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lonergan T. A., Sargent M. L. Regulation of the Photosynthesis Rhythm in Euglena gracilis: I. Carbonic Anhydrase and Glyceraldehyde-3-Phosphate Dehydrogenase Do Not Regulate the Photosynthesis Rhythm. Plant Physiol. 1978 Feb;61(2):150–153. doi: 10.1104/pp.61.2.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munday J. C., Jr, Govindjee Light-induced changes in the fluorescence yield of chlorophyll A in vivo. 3. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J. 1969 Jan;9(1):1–21. doi: 10.1016/s0006-3495(69)86365-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murata N. Control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochim Biophys Acta. 1969 Oct 21;189(2):171–181. doi: 10.1016/0005-2728(69)90045-0. [DOI] [PubMed] [Google Scholar]
- PALMER J. D., LIVINGSTON L., ZUSY D. A PERSISTENT DIURNAL RHYTHM IN PHOTOSYNTHETIC CAPACITY. Nature. 1964 Sep 5;203:1087–1088. doi: 10.1038/2031087a0. [DOI] [PubMed] [Google Scholar]
- Patterson D. T., Bunce J. A., Alberte R. S., Van Volkenburgh E. Photosynthesis in relation to leaf characteristics of cotton from controlled and field environments. Plant Physiol. 1977 Mar;59(3):384–387. doi: 10.1104/pp.59.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prézelin B. B., Sweeney B. M. Characterization of Photosynthetic Rhythms in Marine Dinoflagellates: II. Photosynthesis-Irradiance Curves and in Vivo Chlorophyll a Fluorescence. Plant Physiol. 1977 Sep;60(3):388–392. doi: 10.1104/pp.60.3.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SWEENEY B. M. The photosynthetic rhythm in single cells of Gonyaulax polyedra. Cold Spring Harb Symp Quant Biol. 1960;25:145–148. doi: 10.1101/sqb.1960.025.01.013. [DOI] [PubMed] [Google Scholar]
- Schor S., Siekevitz P., Palade G. E. Cyclic Changes in Thylakoid Membranes of Synchronized Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1970 May;66(1):174–180. doi: 10.1073/pnas.66.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Senger H., Bishop N. I. Quantum yield of photosynthesis in synchronous Scenedesmus cultures. Nature. 1967 Apr 8;214(5084):140–142. doi: 10.1038/214140a0. [DOI] [PubMed] [Google Scholar]
- Stemler A., Govindjee Bicarbonate ion as a critical factor in photosynthetic oxygen evolution. Plant Physiol. 1973 Aug;52(2):119–123. doi: 10.1104/pp.52.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanden Driessche T., Dujardin E., Magnusson A., Sironval C. Acetabulaira mediterranea: circadian rhythms of photosynthesis and associated changes in molecular structure of the thylakoid membranes. Int J Chronobiol. 1976;4(2):111–124. [PubMed] [Google Scholar]
- Walther W. G., Edmunds L. N. Studies on the Control of the Rhythm of Photosynthetic Capacity in Synchronized Cultures of Euglena gracilis (Z). Plant Physiol. 1973 Feb;51(2):250–258. doi: 10.1104/pp.51.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
