Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Jul;64(1):159–161. doi: 10.1104/pp.64.1.159

Photosynthesis in the Higher Plant Vicia faba

V. Role of Malate as a Precursor of the Tricarboxylic Acid Cycle 1

Samuel S Kent a
PMCID: PMC543044  PMID: 16660906

Abstract

In the higher plant Vicia faba, anomalous labeling patterns in the organic acids and related amino acids of the tricarboxylic acid cycle which result from photosynthetic 14CO2 fixation (in conjunction with an enzyme localization pattern unique to plant mitochondria) suggest that the tricarboxylic acid cycle functions primarily as a pathway leading to glutamic acid biosynthesis during autotrophic growth. The distribution of isotope in citrate indicates little recycling of oxaloacetate for the resynthesis of citrate. Rather, malate appears to provide both the C2 and C4 fragments for the synthesis of citrate, and [3H]formate and 14CO2-labeling patterns implicate serine as the ultimate C3 precursor of malate.

Full text

PDF
159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONOFF S. Metabolism of soybean leaves. III. The organic acids produced in short-time photosynthesis. Arch Biochem Biophys. 1951 Jul;32(2):237–248. doi: 10.1016/0003-9861(51)90269-x. [DOI] [PubMed] [Google Scholar]
  2. BASSHAM J. A., BENSON A. A., CALVIN M. The path of carbon in photosynthesis. J Biol Chem. 1950 Aug;185(2):781–787. [PubMed] [Google Scholar]
  3. Bowman E. J., Ikuma H., Stein H. J. Citric Acid cycle activity in mitochondria isolated from mung bean hypocotyls. Plant Physiol. 1976 Sep;58(3):426–432. doi: 10.1104/pp.58.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coleman J. O., Palmer J. M. The oxidation of malate by isolated plant mitochondria. Eur J Biochem. 1972 Apr 24;26(4):499–509. doi: 10.1111/j.1432-1033.1972.tb01792.x. [DOI] [PubMed] [Google Scholar]
  5. GIBBS M. Effect of light intensity on the distribution of C14 in sunflower leaf metabolites during photosynthesis. Arch Biochem Biophys. 1953 Jul;45(1):156–160. doi: 10.1016/0003-9861(53)90415-9. [DOI] [PubMed] [Google Scholar]
  6. Hess J. L., Tolbert N. E. Glycolate, glycine, serine, and glycerate formation during photosynthesis by tobacco leaves. J Biol Chem. 1966 Dec 10;241(23):5705–5711. [PubMed] [Google Scholar]
  7. Ikuma H., Bonner W. D. Properties of Higher Plant Mitochondria. I. Isolation and Some Characteristics of Tightly-coupled Mitochondria from Dark-grown Mung Bean Hypocotyls. Plant Physiol. 1967 Jan;42(1):67–75. doi: 10.1104/pp.42.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kent S. S. Complete stereochemical distribution of 14 C-isotope in citrate. Anal Biochem. 1972 Oct;49(2):393–406. doi: 10.1016/0003-2697(72)90442-3. [DOI] [PubMed] [Google Scholar]
  9. Kent S. S. Distribution of 14C-isotope in stereoisomers of serine. Can J Biochem. 1973 Nov;51(11):1475–1478. doi: 10.1139/o73-195. [DOI] [PubMed] [Google Scholar]
  10. Kent S. S. On the Metabolic Relationship between the Calvin Cycle and the Tricarboxylic Acid Cycle: IV. A Plant Survey for Anomalous Acetyl Coenzyme A. Plant Physiol. 1977 Aug;60(2):274–276. doi: 10.1104/pp.60.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kent S. S. Photosynthesis in the higher plant Vicia faba. I. Anomalous distributions of 14 CO 2 -isotope in citrate and glutamate. J Biol Chem. 1972 Nov 25;247(22):7288–7292. [PubMed] [Google Scholar]
  12. Kent S. S. Photosynthesis in the higher plant Vicia faba. II. The non-Calvin cycle origin of acetate and its metabolic relationship to the photosynthetic origin of formate. J Biol Chem. 1972 Nov 25;247(22):7293–7302. [PubMed] [Google Scholar]
  13. Kent S. S., Pinkerton F. D., Strobel G. A. Photosynthesis in the Higher Plant, Vicia faba: III. Serine, a Precursor of the Tricarboxylic Acid Cycle. Plant Physiol. 1974 Mar;53(3):491–495. doi: 10.1104/pp.53.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kent S. S., Rinehart C. A., Andersen W. R. A method for obtaining the 14C-isotope distribution in malate(C-2,3). Anal Biochem. 1977 May 15;80(1):176–182. doi: 10.1016/0003-2697(77)90637-6. [DOI] [PubMed] [Google Scholar]
  15. Klingenberg M. Mitochondria metabolite transport. FEBS Lett. 1970 Feb 16;6(3):145–154. doi: 10.1016/0014-5793(70)80044-8. [DOI] [PubMed] [Google Scholar]
  16. Macrae A. R., Moorhouse R. The oxidation of malate by mitochondria isolated from cauliflower buds. Eur J Biochem. 1970 Sep;16(1):96–102. doi: 10.1111/j.1432-1033.1970.tb01058.x. [DOI] [PubMed] [Google Scholar]
  17. Muecke P. S., Wiskich J. T. Respiratory activity of mitochondria from legume root nodules. Nature. 1969 Feb 15;221(5181):674–675. doi: 10.1038/221674a0. [DOI] [PubMed] [Google Scholar]
  18. RABSON R., TOLBERTNE, KEARNEY P. C. Formation of serine and glyceric acid by the glycolate pathway. Arch Biochem Biophys. 1962 Jul;98:154–163. doi: 10.1016/0003-9861(62)90161-3. [DOI] [PubMed] [Google Scholar]
  19. Riesz P., White F. H., Jr Determination of free radicals in gamma irradiated proteins. Nature. 1967 Dec 23;216(5121):1208–1210. doi: 10.1038/2161208b0. [DOI] [PubMed] [Google Scholar]
  20. SLATER E. C., TAMBLYN-HAGUE C., DAVIS-VANTHIENEN W. THE OXIDATION OF PYRUVATE BY ISOLATED HEART SARCOSOMES. Biochim Biophys Acta. 1965 Feb 22;96:206–216. [PubMed] [Google Scholar]
  21. Sarkissian I. V., Srivastava H. K. On methods of isolation of active, tightly coupled mitochondria of wheat seedlings. Plant Physiol. 1968 Sep;43(9):1406–1410. doi: 10.1104/pp.43.9.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Servaites J. C. Chemical inhibition of the glycolate pathway in soybean leaf cells. Plant Physiol. 1977 Oct;60(4):461–466. doi: 10.1104/pp.60.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ting I. P., Osmond C. B. Photosynthetic phosphoenolpyruvate carboxylases: characteristics of alloenzymes from leaves of c(3) and c(1) plants. Plant Physiol. 1973 Mar;51(3):439–447. doi: 10.1104/pp.51.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WERKHEISER W. C., BARTLEY W. The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium. Biochem J. 1957 May;66(1):79–91. doi: 10.1042/bj0660079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiskich J. T., Bonner W. D. Preparation and Properties of Sweet Potato Mitochondria. Plant Physiol. 1963 Sep;38(5):594–604. doi: 10.1104/pp.38.5.594. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES