Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Aug;64(2):220–223. doi: 10.1104/pp.64.2.220

Hydrogen Peroxide-mediated Oxidation of Indole-3-acetic Acid by Tomato Peroxidase and Molecular Oxygen 1

Demetri M Kokkinakis a,2, James L Brooks a,3
PMCID: PMC543058  PMID: 16660936

Abstract

The oxidation of indole-3-acetic acid by anionic tomato peroxidase was found to be negligible unless reaction mixtures were supplemented with H2O2. The addition of H2O2 to reaction mixtures initiated a period of rapid indole-3-acetic acid oxidation and O2 uptake; this phase ended and O2 uptake fell to a low level when the H2O2 was exhausted. The stoichiometry of the reaction, which is highly dependent on enzyme concentration and pH, suggests that H2O2 initiates a sequence of reactions in which indole-3-acetic acid is oxidized.

Full text

PDF
220

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpar E. K., Brooks D. M. Long-term results of ulnar to median nerve pedicle grafts. Hand. 1978 Feb;10(1):61–64. doi: 10.1016/s0072-968x(78)80027-8. [DOI] [PubMed] [Google Scholar]
  2. Brennan T., Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 1977 Mar;59(3):411–416. doi: 10.1104/pp.59.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Degn H. Compound 3 kinetics and chemiluminescence in oscillatory oxidation reactions catalyzed by horseradish peroxidase. Biochim Biophys Acta. 1969 Jun 24;180(2):271–290. doi: 10.1016/0005-2728(69)90114-5. [DOI] [PubMed] [Google Scholar]
  4. Frenkel C., Haard N. F. Initiation of Ripening in Bartlett Pear with an Antiauxin alpha(p-Chlorophenoxy)isobutyric Acid. Plant Physiol. 1973 Oct;52(4):380–384. doi: 10.1104/pp.52.4.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frenkel C. Oxidative turnover of auxins in relation to the onset of ripening in bartlett pear. Plant Physiol. 1975 Mar;55(3):480–484. doi: 10.1104/pp.55.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GALSTON A. W., BONNER J., BAKER R. S. Flavoprotein and peroxidase as components of the indoleacetic acid oxidase system of peas. Arch Biochem Biophys. 1953 Feb;42(2):456–470. doi: 10.1016/0003-9861(53)90373-7. [DOI] [PubMed] [Google Scholar]
  7. HINMAN R. L., LANG J. PEROXIDASE-CATALYZED OXIDATION OF INDOLE-3-ACETIC ACID. Biochemistry. 1965 Jan;4:144–158. doi: 10.1021/bi00877a023. [DOI] [PubMed] [Google Scholar]
  8. KENTEN R. H. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem J. 1955 Jan;59(1):110–121. doi: 10.1042/bj0590110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kokkinakis D. M., Brooks J. L. Tomato peroxidase: purification, characterization, and catalytic properties. Plant Physiol. 1979 Jan;63(1):93–99. doi: 10.1104/pp.63.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MACLACHLAN G. A., WAYGOOD E. R. Kinetics of the enzymically-catalyzed oxidation of indoleacetic acid. Can J Biochem Physiol. 1956 Nov;34(6):1233–1250. [PubMed] [Google Scholar]
  11. Macnicol P. K. Peroxidases of the Alaska pea (Pisum sativum L.). Enzymic properties and distribution within the plant. Arch Biochem Biophys. 1966 Nov;117(2):347–356. doi: 10.1016/0003-9861(66)90422-x. [DOI] [PubMed] [Google Scholar]
  12. Manning D. T., Galston A. W. On the Nature of the Enzymatically Catalyzed Oxidation Products of Indoleacetic Acid. Plant Physiol. 1955 May;30(3):225–231. doi: 10.1104/pp.30.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RAY P. M. Destruction of indoleacetic acid. IV. Kinetics of enzymic oxidation. Arch Biochem Biophys. 1962 Feb;96:199–209. doi: 10.1016/0003-9861(62)90399-5. [DOI] [PubMed] [Google Scholar]
  14. RAY P. M., THIMANN K. V. The destruction of indoleacetic acid. I. Action of an enzyme from Omphalia flavida. Arch Biochem Biophys. 1956 Sep;64(1):175–192. doi: 10.1016/0003-9861(56)90253-3. [DOI] [PubMed] [Google Scholar]
  15. SIEGEL S. M., GALSTON A. W. Peroxide genesis in plant tissues and its relation to indoleacetic acid destruction. Arch Biochem Biophys. 1955 Jan;54(1):102–113. doi: 10.1016/0003-9861(55)90012-6. [DOI] [PubMed] [Google Scholar]
  16. Stonier T., Yang H. M. Studies on Auxin Protectors: XI. Inhibition of Peroxidase-Catalyzed Oxidation of Glutathione by Auxin Protectors and o-Dihydroxyphenols. Plant Physiol. 1973 Feb;51(2):391–395. doi: 10.1104/pp.51.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tingwa P. O., Young R. E. The Effect of Indole-3-acetic Acid and Other Growth Regulators on the Ripening of Avocado Fruits. Plant Physiol. 1975 May;55(5):937–940. doi: 10.1104/pp.55.5.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. YAMAZAKI I., PIETTE L. H. THE MECHANISM OF AEROBIC OXIDASE REACTION CATALYZED BY PEROXIDASE. Biochim Biophys Acta. 1963 Sep 3;77:47–64. doi: 10.1016/0006-3002(63)90468-2. [DOI] [PubMed] [Google Scholar]
  19. YAMAZAKI I., SOUZU H. The mechanism of indoleacetic acid oxidase reaction catalyzed by turnip peroxidase. Arch Biochem Biophys. 1960 Feb;86:294–301. doi: 10.1016/0003-9861(60)90421-5. [DOI] [PubMed] [Google Scholar]
  20. YOKOTA K., YAMAZAKI I. THE ACTIVITY OF THE HORSERADISH PEROXIDASE COMPOUND 3. Biochem Biophys Res Commun. 1965 Jan 4;18:48–53. doi: 10.1016/0006-291x(65)90880-6. [DOI] [PubMed] [Google Scholar]
  21. Yamazaki H., Yamazaki I. The reaction between indole 3-acetic acid and horseradish peroxidase. Arch Biochem Biophys. 1973 Jan;154(1):147–159. doi: 10.1016/0003-9861(73)90043-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES