Abstract
Accelerator mass spectrometry (AMS) is used to determine the amount of carcinogen covalently bound to mouse liver DNA (DNA adduct) following very low-level exposure to a 14C-labeled carcinogen. AMS is a highly sensitive method for counting long-lived but rare cosmogenic isotopes. While AMS is a tool of importance in the earth sciences, it has not been applied in biomedical research. The ability of AMS to assay rare isotope concentrations (10Be, 14C, 26Al, 41Ca, and 129I) in microgram amounts suggests that extension to the biomedical sciences is a natural and potentially powerful application of the technology. In this study, the relationship between exposure to low levels of 2-amino-3,8-dimethyl[2-14C]imidazo[4,5-f]quinoxaline and formation of DNA adducts is examined to establish the dynamic range of the technique and the potential sensitivity for biological measurements, as well as to evaluate the relationship between DNA adducts and low-dose carcinogen exposure. Instrument reproducibility in this study is 2%; sensitivity is 1 adduct per 10(11) nucleotides. Formation of adducts is linearly dependent on dose down to an exposure of 500 ng per kg of body weight. With the present measurements, we demonstrate at least 1 order of magnitude improvement over the best adduct detection sensitivity reported to date and 3-5 orders of magnitude improvement over other methods used for adduct measurement. An additional improvement of 2 orders of magnitude in sensitivity is suggested by preliminary experiments to develop bacterial hosts depleted in radiocarbon. Expanded applications involving human subjects, including clinical applications, are now expected because of the great detection sensitivity and small sample size requirements of AMS.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham K., Krowke R., Neubert D. Pharmacokinetics and biological activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. 1. Dose-dependent tissue distribution and induction of hepatic ethoxyresorufin O-deethylase in rats following a single injection. Arch Toxicol. 1988;62(5):359–368. doi: 10.1007/BF00293624. [DOI] [PubMed] [Google Scholar]
- Dunn B. P., San R. H. HPLC enrichment of hydrophobic DNA--carcinogen adducts for enhanced sensitivity of 32P-postlabeling analysis. Carcinogenesis. 1988 Jun;9(6):1055–1060. doi: 10.1093/carcin/9.6.1055. [DOI] [PubMed] [Google Scholar]
- Elmore D., Phillips F. M. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science. 1987 May 1;236(4801):543–550. doi: 10.1126/science.236.4801.543. [DOI] [PubMed] [Google Scholar]
- Felton J. S., Knize M. G., Shen N. H., Andresen B. D., Bjeldanes L. F., Hatch F. T. Identification of the mutagens in cooked beef. Environ Health Perspect. 1986 Aug;67:17–24. doi: 10.1289/ehp.866717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grivas S. A convenient synthesis of the potent mutagen 3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxalin-2-amine. Acta Chem Scand B. 1985;39(3):213–217. doi: 10.3891/acta.chem.scand.39b-0213. [DOI] [PubMed] [Google Scholar]
- Gupta R. C., Earley K. 32P-adduct assay: comparative recoveries of structurally diverse DNA adducts in the various enhancement procedures. Carcinogenesis. 1988 Sep;9(9):1687–1693. doi: 10.1093/carcin/9.9.1687. [DOI] [PubMed] [Google Scholar]
- Gupta R. C. Enhanced sensitivity of 32P-postlabeling analysis of aromatic carcinogen:DNA adducts. Cancer Res. 1985 Nov;45(11 Pt 2):5656–5662. [PubMed] [Google Scholar]
- Gupta R. C. Nonrandom binding of the carcinogen N-hydroxy-2-acetylaminofluorene to repetitive sequences of rat liver DNA in vivo. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6943–6947. doi: 10.1073/pnas.81.22.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris C. C., Vahakangas K., Newman M. J., Trivers G. E., Shamsuddin A., Sinopoli N., Mann D. L., Wright W. E. Detection of benzo[a]pyrene diol epoxide-DNA adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6672–6676. doi: 10.1073/pnas.82.19.6672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu I. C., Poirier M. C., Yuspa S. H., Grunberger D., Weinstein I. B., Yolken R. H., Harris C. C. Measurement of benzo(a)pyrene-DNA adducts by enzyme immunoassays and radioimmunoassay. Cancer Res. 1981 Mar;41(3):1091–1095. [PubMed] [Google Scholar]
- Mohamed G. B., Nazareth A., Hayes M. J., Giese R. W., Vouros P. Gas chromatography-mass spectrometry characteristics of methylated perfluoroacyl derivatives of cytosine and 5-methylcytosine. J Chromatogr. 1984 Nov 30;314:211–217. doi: 10.1016/s0021-9673(01)97735-0. [DOI] [PubMed] [Google Scholar]
- Poland A., Glover E. An estimate of the maximum in vivo covalent binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to rat liver protein, ribosomal RNA, and DNA. Cancer Res. 1979 Sep;39(9):3341–3344. [PubMed] [Google Scholar]
- Rahn R. O., Chang S. S., Holland J. M., Shugart L. R. A fluorometric-HPLC assay for quantitating the binding of benzo[a]pyrene metabolites to DNA. Biochem Biophys Res Commun. 1982 Nov 16;109(1):262–268. doi: 10.1016/0006-291x(82)91594-7. [DOI] [PubMed] [Google Scholar]
- Randerath K., Putman K. L., Randerath E., Mason G., Kelley M., Safe S. Organ-specific effects of long term feeding of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8-pentachlorodibenzo-p-dioxin on I-compounds in hepatic and renal DNA of female Sprague-Dawley rats. Carcinogenesis. 1988 Dec;9(12):2285–2289. doi: 10.1093/carcin/9.12.2285. [DOI] [PubMed] [Google Scholar]
- Reddy M. V., Randerath K. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis. 1986 Sep;7(9):1543–1551. doi: 10.1093/carcin/7.9.1543. [DOI] [PubMed] [Google Scholar]
- Sanders M. J., Cooper R. S., Small G. J., Heisig V., Jeffrey A. M. Identification of polycyclic aromatic hydrocarbon metabolites in mixtures using fluorescence line narrowing spectrometry. Anal Chem. 1985 May;57(6):1148–1152. doi: 10.1021/ac00283a042. [DOI] [PubMed] [Google Scholar]
- Turesky R. J., Aeschbacher H. U., Malnoë A., Würzner H. P. Metabolism of the food-borne mutagen/carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in the rat: assessment of biliary metabolites for genotoxicity. Food Chem Toxicol. 1988 Feb;26(2):105–110. doi: 10.1016/0278-6915(88)90106-8. [DOI] [PubMed] [Google Scholar]
- Turteltaub K. W., Watkins B. E., Vanderlaan M., Felton J. S. Role of metabolism on the DNA binding of MeIQx in mice and bacteria. Carcinogenesis. 1990 Jan;11(1):43–49. doi: 10.1093/carcin/11.1.43. [DOI] [PubMed] [Google Scholar]
- Vahakangas K., Trivers G., Rowe M., Harris C. C. Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry. Environ Health Perspect. 1985 Oct;62:101–104. doi: 10.1289/ehp.8562101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vo-Dinh T., Uziel M. Laser-induced room-temperature phosphorescence detection of benzo[a]pyrene-DNA adducts. Anal Chem. 1987 Apr 15;59(8):1093–1095. doi: 10.1021/ac00135a006. [DOI] [PubMed] [Google Scholar]
- Yamashita K., Umemoto A., Grivas S., Kato S., Sugimura T. In vitro reaction of hydroxyamino derivatives of MeIQx, Glu-P-1 and Trp-P-1 with DNA: 32P-postlabelling analysis of DNA adducts formed in vivo by the parent amines and in vitro by their hydroxyamino derivatives. Mutagenesis. 1988 Nov;3(6):515–520. doi: 10.1093/mutage/3.6.515. [DOI] [PubMed] [Google Scholar]