Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Sep;64(3):428–430. doi: 10.1104/pp.64.3.428

Elongation Pathway for α-Linolenic Acid Synthesis in Spinach Leaves

A Reexamination 1

Denis J Murphy a, P K Stumpf a
PMCID: PMC543106  PMID: 16660981

Abstract

Leaf slices from spinach exhibited considerable variation in their incorporation of [14C]bicarbonate and [1-14C]acetate into fatty acids. Reductive ozonolysis studies indicated that all the 14C-labeled fatty acids were synthesized de novo; no in vivo evidence was found for the previously proposed elongation of hexadecatrienoate to α-linolenate.

Full text

PDF
428

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedord C. J., McMahon V., Adams B. alpha-linolenic acid biosynthesis in Cyanidium caldarium. Arch Biochem Biophys. 1978 Jan 15;185(1):15–20. doi: 10.1016/0003-9861(78)90138-8. [DOI] [PubMed] [Google Scholar]
  2. Harris R. V., James A. T. Linoleic and alpha-linolenic acid biosynthesis in plant leaves and green alga. Biochim Biophys Acta. 1965 Dec 2;106(3):456–464. doi: 10.1016/0005-2760(65)90062-7. [DOI] [PubMed] [Google Scholar]
  3. Jacobson B. S., Kannangara C. G., Stumpf P. K. The elongation of medium chain trienoic acids to -linolenic acid by a spinach chloroplast stroma system. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1190–1198. doi: 10.1016/0006-291x(73)90626-8. [DOI] [PubMed] [Google Scholar]
  4. Jaworski J. G., Stumpf P. K. Fat metabolism in higher plants. Properties of a soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch Biochem Biophys. 1974 May;162(1):158–165. doi: 10.1016/0003-9861(74)90114-3. [DOI] [PubMed] [Google Scholar]
  5. Kannangara C. G., Jacobson B. S., Stumpf P. K. In vivo biosynthesis of -linolenic acid in plants. Biochem Biophys Res Commun. 1973 May 15;52(2):648–655. doi: 10.1016/0006-291x(73)90762-6. [DOI] [PubMed] [Google Scholar]
  6. Kannangara C. G., Stumpf P. K. Fat metabolism in higher plants. I. The biosynthesis of polyunsaturated fatty acids by isolated spinach chloroplasts. Arch Biochem Biophys. 1972 Feb;148(2):414–424. doi: 10.1016/0003-9861(72)90159-2. [DOI] [PubMed] [Google Scholar]
  7. Murphy D. J., Stumpf P. K. Light-dependent Induction of Polyunsaturated Fatty Acid Biosynthesis in Greening Cucumber Cotyledons. Plant Physiol. 1979 Feb;63(2):328–335. doi: 10.1104/pp.63.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ohlrogge J. B., Kuhn D. N., Stumpf P. K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1194–1198. doi: 10.1073/pnas.76.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Richards R. L., Quackenbush F. W. Alternate pathways of linolenic acid biosynthesis in growing cultures of Penicillium chrysogenum. Arch Biochem Biophys. 1974 Dec;165(2):780–786. doi: 10.1016/0003-9861(74)90307-5. [DOI] [PubMed] [Google Scholar]
  10. Vance W. A., Stumpf P. K. Fat metabolism in higher plants. The elongation of saturated and unsaturated acyl-CoAs by a stromal system from isolated spinach chloroplasts. Arch Biochem Biophys. 1978 Sep;190(1):210–220. doi: 10.1016/0003-9861(78)90270-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES