Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(14):5303–5306. doi: 10.1073/pnas.87.14.5303

Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors.

R O Kuljis 1, P Rakic 1
PMCID: PMC54311  PMID: 2164675

Abstract

The visual cortex in primates consists of an array of anatomically and chemically identifiable cellular modules (hypercolumns) with distinct physiological properties. For example, layers II/III in the macaque monkey contain a regular array of cytochrome oxidase-rich blobs. Furthermore, the surrounding cytochrome oxidase-poor interblob regions have a higher density of neuropeptide Y-positive aspiny stellate cells. Neurons in the blobs are thought to mediate predominantly low spatial frequencies and color vision, while those in the interblobs appear to be engaged in pattern vision and high spatial frequency analysis. In this study we examined the role of the retina in the development of hypercolumns. A bilateral retinal ablation was performed in embryos at midgestation, before any photoreceptors had established contacts with other retinal neurons and before layers II/III of the cortex--or their synaptic connection--had been generated. We found that the cortex in operated animals had cytochrome oxidase blobs and that their size and spacing were normal. In addition, neuropeptide Y-containing neurons were preferentially distributed in the interblob region as in control animals. Our findings indicate that some basic aspects of the cyto- and chemoarchitectonic organization of the cerebral cortex, which presumably evolved for the analysis of form and color, can emerge in the absence of cues from the retinal photoreceptors that mediate these attributes of vision.

Full text

PDF
5303

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrés F. L. Supranumerary barrels develop in the somatosensory cortex of mice, after the implantation of the vibrissal follicle parts containing large numbers of receptors. J Neural Transplant. 1989;1(2):33–47. doi: 10.1155/NP.1989.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper N. G., Steindler D. A. Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse. J Comp Neurol. 1986 Jul 8;249(2):157–169. doi: 10.1002/cne.902490204. [DOI] [PubMed] [Google Scholar]
  3. Hendry S. H., Jones E. G. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature. 1986 Apr 24;320(6064):750–753. doi: 10.1038/320750a0. [DOI] [PubMed] [Google Scholar]
  4. Horton J. C. Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Philos Trans R Soc Lond B Biol Sci. 1984 Jan 17;304(1119):199–253. doi: 10.1098/rstb.1984.0021. [DOI] [PubMed] [Google Scholar]
  5. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  6. Hubel D. H., Livingstone M. S. Complex-unoriented cells in a subregion of primate area 18. Nature. 1985 May 23;315(6017):325–327. doi: 10.1038/315325a0. [DOI] [PubMed] [Google Scholar]
  7. Hubel D. H., Wiesel T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci. 1977 Jul 28;198(1130):1–59. doi: 10.1098/rspb.1977.0085. [DOI] [PubMed] [Google Scholar]
  8. Johnston J. G., van der Kooy D. Protooncogene expression identifies a transient columnar organization of the forebrain within the late embryonic ventricular zone. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1066–1070. doi: 10.1073/pnas.86.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones E. G., DeFelipe J., Hendry S. H., Maggio J. E. A study of tachykinin-immunoreactive neurons in monkey cerebral cortex. J Neurosci. 1988 Apr;8(4):1206–1224. doi: 10.1523/JNEUROSCI.08-04-01206.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuljis R. O., Rakic P. Multiple types of neuropeptide Y-containing neurons in primate neocortex. J Comp Neurol. 1989 Feb 15;280(3):393–409. doi: 10.1002/cne.902800306. [DOI] [PubMed] [Google Scholar]
  11. Kuljis R. O., Rakic P. Neuropeptide Y-containing neurons are situated predominantly outside cytochrome oxidase puffs in macaque visual cortex. Vis Neurosci. 1989;2(1):57–62. doi: 10.1017/s0952523800004326. [DOI] [PubMed] [Google Scholar]
  12. Livingstone M. S., Hubel D. H. Specificity of intrinsic connections in primate primary visual cortex. J Neurosci. 1984 Nov;4(11):2830–2835. doi: 10.1523/JNEUROSCI.04-11-02830.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Livingstone M. S., Hubel D. H. Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6098–6101. doi: 10.1073/pnas.79.19.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lumsden A., Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature. 1989 Feb 2;337(6206):424–428. doi: 10.1038/337424a0. [DOI] [PubMed] [Google Scholar]
  15. Martin K. A. From enzymes to visual perception: a bridge too far? Trends Neurosci. 1988 Sep;11(9):380–387. doi: 10.1016/0166-2236(88)90072-0. [DOI] [PubMed] [Google Scholar]
  16. Nishimura Y., Rakic P. Development of the rhesus monkey retina: II. A three-dimensional analysis of the sequences of synaptic combinations in the inner plexiform layer. J Comp Neurol. 1987 Aug 8;262(2):290–313. doi: 10.1002/cne.902620209. [DOI] [PubMed] [Google Scholar]
  17. Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science. 1974 Feb 1;183(4123):425–427. doi: 10.1126/science.183.4123.425. [DOI] [PubMed] [Google Scholar]
  18. Rakic P. Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):245–260. doi: 10.1098/rstb.1977.0040. [DOI] [PubMed] [Google Scholar]
  19. Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976 Jun 10;261(5560):467–471. doi: 10.1038/261467a0. [DOI] [PubMed] [Google Scholar]
  20. Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
  21. Schambra U. B., Sulik K. K., Petrusz P., Lauder J. M. Ontogeny of cholinergic neurons in the mouse forebrain. J Comp Neurol. 1989 Oct 1;288(1):101–122. doi: 10.1002/cne.902880109. [DOI] [PubMed] [Google Scholar]
  22. Shipp S., Zeki S. Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature. 1985 May 23;315(6017):322–325. doi: 10.1038/315322a0. [DOI] [PubMed] [Google Scholar]
  23. Silverman M. S., Grosof D. H., De Valois R. L., Elfar S. D. Spatial-frequency organization in primate striate cortex. Proc Natl Acad Sci U S A. 1989 Jan;86(2):711–715. doi: 10.1073/pnas.86.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Somogyi P., Takagi H. A note on the use of picric acid-paraformaldehyde-glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience. 1982 Jul;7(7):1779–1783. doi: 10.1016/0306-4522(82)90035-5. [DOI] [PubMed] [Google Scholar]
  25. Steindler D. A., Cooper N. G., Faissner A., Schachner M. Boundaries defined by adhesion molecules during development of the cerebral cortex: the J1/tenascin glycoprotein in the mouse somatosensory cortical barrel field. Dev Biol. 1989 Jan;131(1):243–260. doi: 10.1016/s0012-1606(89)80056-9. [DOI] [PubMed] [Google Scholar]
  26. Ts'o D. Y., Gilbert C. D. The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci. 1988 May;8(5):1712–1727. doi: 10.1523/JNEUROSCI.08-05-01712.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wong-Riley M., Carroll E. W. Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature. 1984 Jan 19;307(5948):262–264. doi: 10.1038/307262a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES