Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(14):5322–5326. doi: 10.1073/pnas.87.14.5322

Expression and characterization of an antibody binding specificity joined to insulin-like growth factor 1: potential applications for cellular targeting.

S U Shin 1, S L Morrison 1
PMCID: PMC54315  PMID: 2115168

Abstract

To create antibody molecules with improved functional properties, a growth factor (insulin-like growth factor 1, IGF1) was used to replace the constant region of a chimeric mouse-human IgG3 anti-dansyl antibody. The chimeric heavy chain was expressed with an anti-dansyl-specific chimeric kappa light chain. The IgG3-IGF1 chimeric protein retained its specificity for the antigen dansyl. The chimeric proteins bound to the IGF1 receptors of the human lymphoblast IM-9, albeit with reduced affinity, and elicited some of the same biologic effects (increased glucose and amino acid uptake) in human KB cells as did human IGF1, but with reduced specific activity. The reduced affinity and biologic activity may result from several things: the presence of the unprocessed IGF1 moiety, the large size of the IgG3-IGF1 chimeric protein (160 kDa) compared with IGF1 (7 kDa), and three amino acid substitutions in rat IGF1 compared with human IGF1, which may lead to decreased affinity for the human IGF1 receptor. The chimeric proteins show that it is feasible to produce a new family of immunotherapeutic molecules targeted to growth factor receptors.

Full text

PDF
5322

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beguinot F., Kahn C. R., Moses A. C., Smith R. J. Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells. J Biol Chem. 1985 Dec 15;260(29):15892–15898. [PubMed] [Google Scholar]
  2. Boulianne G. L., Hozumi N., Shulman M. J. Production of functional chimaeric mouse/human antibody. Nature. 1984 Dec 13;312(5995):643–646. doi: 10.1038/312643a0. [DOI] [PubMed] [Google Scholar]
  3. Dangl J. L., Wensel T. G., Morrison S. L., Stryer L., Herzenberg L. A., Oi V. T. Segmental flexibility and complement fixation of genetically engineered chimeric human, rabbit and mouse antibodies. EMBO J. 1988 Jul;7(7):1989–1994. doi: 10.1002/j.1460-2075.1988.tb03037.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fishman J. B., Rubin J. B., Handrahan J. V., Connor J. R., Fine R. E. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res. 1987;18(2):299–304. doi: 10.1002/jnr.490180206. [DOI] [PubMed] [Google Scholar]
  5. Frank H. J., Pardridge W. M., Morris W. L., Rosenfeld R. G., Choi T. B. Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes. 1986 Jun;35(6):654–661. doi: 10.2337/diab.35.6.654. [DOI] [PubMed] [Google Scholar]
  6. Liu A. Y., Robinson R. R., Hellström K. E., Murray E. D., Jr, Chang C. P., Hellström I. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci U S A. 1987 May;84(10):3439–3443. doi: 10.1073/pnas.84.10.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LoBuglio A. F., Wheeler R. H., Trang J., Haynes A., Rogers K., Harvey E. B., Sun L., Ghrayeb J., Khazaeli M. B. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4220–4224. doi: 10.1073/pnas.86.11.4220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Misra P., Hintz R. L., Rosenfeld R. G. Structural and immunological characterization of insulin-like growth factor II binding to IM-9 cells. J Clin Endocrinol Metab. 1986 Dec;63(6):1400–1405. doi: 10.1210/jcem-63-6-1400. [DOI] [PubMed] [Google Scholar]
  9. Miyata Y., Hoshi M., Koyasu S., Kadowaki T., Kasuga M., Yahara I., Nishida E., Sakai H. Rapid stimulation of fluid-phase endocytosis and exocytosis by insulin, insulin-like growth factor-I, and epidermal growth factor in KB cells. Exp Cell Res. 1988 Sep;178(1):73–83. doi: 10.1016/0014-4827(88)90379-5. [DOI] [PubMed] [Google Scholar]
  10. Morrison S. L., Canfield S., Porter S., Tan L. K., Tao M. H., Wims L. A. Production and characterization of genetically engineered antibody molecules. Clin Chem. 1988 Sep;34(9):1668–1675. [PubMed] [Google Scholar]
  11. Morrison S. L., Johnson M. J., Herzenberg L. A., Oi V. T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6851–6855. doi: 10.1073/pnas.81.21.6851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  13. Neuberger M. S., Williams G. T., Mitchell E. B., Jouhal S. S., Flanagan J. G., Rabbitts T. H. A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature. 1985 Mar 21;314(6008):268–270. doi: 10.1038/314268a0. [DOI] [PubMed] [Google Scholar]
  14. Pardridge W. M., Eisenberg J., Yang J. Human blood-brain barrier insulin receptor. J Neurochem. 1985 Jun;44(6):1771–1778. doi: 10.1111/j.1471-4159.1985.tb07167.x. [DOI] [PubMed] [Google Scholar]
  15. Rosenfeld R. G., Hintz R. L. Characterization of a specific receptor for somatomedin C (SM-C) on cultured human lymphocytes: evidence that SM-C modulates homologous receptor concentration. Endocrinology. 1980 Dec;107(6):1841–1848. doi: 10.1210/endo-107-6-1841. [DOI] [PubMed] [Google Scholar]
  16. Shapiro W. R., Shapiro J. R. Principles of brain tumor chemotherapy. Semin Oncol. 1986 Mar;13(1):56–69. [PubMed] [Google Scholar]
  17. Shin S. U., Morrison S. L. Production and properties of chimeric antibody molecules. Methods Enzymol. 1989;178:459–476. doi: 10.1016/0076-6879(89)78034-4. [DOI] [PubMed] [Google Scholar]
  18. Yelton D. E., Scharff M. D. Mutant monoclonal antibodies with alterations in biological functions. J Exp Med. 1982 Oct 1;156(4):1131–1148. doi: 10.1084/jem.156.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zack D. J., Morrison S. L., Cook W. D., Dackowski W., Scharff M. D. Somatically generated mouse myeloma variants synthesizing IgA half-molecules. J Exp Med. 1981 Nov 1;154(5):1554–1569. doi: 10.1084/jem.154.5.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 1982 Oct 25;10(20):6487–6500. doi: 10.1093/nar/10.20.6487. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES