Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Dec;64(6):909–913. doi: 10.1104/pp.64.6.909

Characterization of GDP-Fucose

Polysaccharide Fucosyl Transferase in Corn Roots (Zea mays L.) 1

Douglas W James Jr a,2, Russell L Jones a,3
PMCID: PMC543163  PMID: 16661104

Abstract

The peripheral root cap cells of corn (cv. SX-17A) secrete a fucose-rich, high molecular weight, polysaccharide slime via the dictyosome pathway. To study the synthesis of this polysaccharide, a technique for isolating and assaying GDP-fucose:polysaccharide fucosyl transferase activity was developed. Corn roots were excised from germinated seeds, incubated 12 hours at 10 C in water, and ground in 100 millimolar Tris or Pipes buffer (pH 7.0) with or without 0.5 molar sucrose. The membrane-bound enzyme was solubilized by sonication in the presence of 2 molar urea and 1.5% (v/v) Triton X-100 and assayed by monitoring the incorporation of GDP-[14C]fucose into endogenous acceptors. Optimum enzyme activity is expressed at pH 7.0 and 30 C in the presence of 0.8% (v/v) Triton X-100. The enzyme does not require divalent cations for activation and is inhibited by concentrations of MnCl2 or MgCl2 greater than 1 millimolar. Corn root cap slime will serve as an exogenous acceptor for the enzyme if it is first hydrolyzed in 5 millimolar trifluoroacetic acid for 60 minutes at 18 pounds per square inch, 121 C. This procedure prepares the acceptor by removing terminal fucose residues from the slime molecule. Kinetics of fucose release during hydrolysis of native slime and in vitro synthesized product suggests that the two polymers possess similar linkages to fucose.

Full text

PDF
909

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., McClure W. O. An improved scintillation cocktail of high-solubilizing power. Anal Biochem. 1973 Jan;51(1):173–179. doi: 10.1016/0003-2697(73)90465-x. [DOI] [PubMed] [Google Scholar]
  2. Bosmann H. B., Hagopian A., Eylar E. H. Glycoprotein biosynthesis: the characterization of two glycoprotein:frucosyl transferases in HeLa cells. Arch Biochem Biophys. 1968 Nov;128(2):470–481. doi: 10.1016/0003-9861(68)90053-2. [DOI] [PubMed] [Google Scholar]
  3. Bowles D. J., Northcote D. H. The amounts and rates of export of polysaccharides found within the membrane system of maize root cells. Biochem J. 1974 Jul;142(1):139–144. doi: 10.1042/bj1420139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowles D. J., Northcote D. H. The sites of synthesis and transport of extracellular polysaccharides in the root tissues of maize. Biochem J. 1972 Dec;130(4):1133–1145. doi: 10.1042/bj1301133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garewal H. S., Wasserman A. R. Triton X-100-4 M urea as an extraction medium for membrane proteins. I. Purification of chloroplast cytochrome b559. Biochemistry. 1974 Sep 24;13(20):4063–4071. doi: 10.1021/bi00717a001. [DOI] [PubMed] [Google Scholar]
  6. Green J. R., Northcote D. H. The structure and function of glycoproteins synthesized during slime-polysaccharide production by membranes of the root-cap cells of maize (Zea mays). Biochem J. 1978 Mar 15;170(3):599–608. doi: 10.1042/bj1700599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harris P. J., Northcote D. H. Patterns of polysaccharide biosynthesis in differentiating cells of maize root-tips. Biochem J. 1970 Dec;120(3):479–491. doi: 10.1042/bj1200479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Northcote D. H., Pickett-Heaps J. D. A function of the Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem J. 1966 Jan;98(1):159–167. doi: 10.1042/bj0980159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pacuszka T., Kościelak J. Alpha 1--greater than 2 fucosyltransferase of human bone marrow. FEBS Lett. 1974 May 1;41(2):348–351. doi: 10.1016/0014-5793(74)81246-9. [DOI] [PubMed] [Google Scholar]
  11. Paull R. E., Jones R. L. Studies on the Secretion of Maize Root Cap Slime: IV. Evidence for the Involvement of Dictyosomes. Plant Physiol. 1976 Feb;57(2):249–256. doi: 10.1104/pp.57.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Powell J. T., Brew K. Glycosyltransferases in the Golgi membranes of onion stem. Biochem J. 1974 Aug;142(2):203–209. doi: 10.1042/bj1420203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sadowski P. L., Strobel G. A. Guanosine diphosphate-L-fucose glycopeptide fucosyltransferase activity in Corynebacterium insidiosum. J Bacteriol. 1973 Aug;115(2):668–672. doi: 10.1128/jb.115.2.668-672.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  15. Tertrin-Clary C., De La Llosa-Hermier M. P., De La Llosa P. Characterization of the mannosyl and fucosyl transferases in the ovine anterior pituitary glands. Biochimie. 1975;57(9):1073–1077. doi: 10.1016/s0300-9084(75)80364-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES