Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Dec;64(6):1048–1052. doi: 10.1104/pp.64.6.1048

Mechanism of Decarboxylation of Glycine and Glycolate by Isolated Soybean Cells

David J Oliver a,1
PMCID: PMC543189  PMID: 16661090

Abstract

Isolated soybean leaf mesophyll cells decarboxylated exogenously added [1-14C]glycolate and [1-14C]glycine in the dark. The rate of CO2 release from glycine was inhibited over 90% by isonicotinic acid hydrazide and about 80% by KCN, two inhibitors of the glycine to serine plus CO2 reaction. The release of CO2 from glycolate was inhibited by less than 50% under the same conditions. This indicates that about 50% of the CO2 released from glycolate occurred at a site other than the glycine to serine reaction. The sensitivity of this alternative site of CO2 release to an inhibitor of glycolate oxidase (methyl-2-hydroxy-3-butynoate) but not an inhibitor of the glutamate:glyoxylate aminotransferase (2,3-epoxypropionate) indicates that this alternative (isonicotinic acid hydrazide insensitive) site of CO2 release involved glyoxylate. Catalase inhibited this CO2 release. Under the conditions used it is suggested that about half of the CO2 released from glycolate occurred at the conversion of glycine to serine plus CO2 while the remaining half of the CO2 loss resulted from the direct oxidation of glyoxylate by H2O2.

The rate of glycine decarboxylation by the glycine to serine reaction was apparently controlled by the amount of NAD in the mitochondria. Mitochondrial electron transport inhibitors, KCN and actinomycin A, inhibited glycine decarboxylation while an uncoupler, 2,4-dinitrophenol, stimulated the reaction. Competition within the mitochondria between the enzymes of dark respiration and glycine decarboxylation for limiting NAD may force substantial amounts of the glycolate formed to be decarboxylated by the direct oxidation of glyoxylate.

Full text

PDF
1048

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Douce R., Moore A. L., Neuburger M. Isolation and oxidative properties of intact mitochondria isolated from spinach leaves. Plant Physiol. 1977 Oct;60(4):625–628. doi: 10.1104/pp.60.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jewess P. J., Kerr M. W., Whitaker D. P. Inhibition of glycollate oxidase from pea leaves. FEBS Lett. 1975 May 15;53(3):292–296. doi: 10.1016/0014-5793(75)80039-1. [DOI] [PubMed] [Google Scholar]
  3. Lawyer A. L., Zelitch I. Inhibition of glutamate:glyoxylate aminotransferase activity in tobacco leaves and callus by glycidate, an inhibitor of photorespiration. Plant Physiol. 1978 Feb;61(2):242–247. doi: 10.1104/pp.61.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Oliver D. J., Zelitch I. Increasing photosynthesis by inhibiting photorespiration with glyoxylate. Science. 1977 Jun 24;196(4297):1450–1451. doi: 10.1126/science.867040. [DOI] [PubMed] [Google Scholar]
  5. ZELITCH I., OCHOA S. Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic and oxidase. J Biol Chem. 1953 Apr;201(2):707–718. [PubMed] [Google Scholar]
  6. Zelitch I. The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration. Arch Biochem Biophys. 1972 Jun;150(2):698–707. doi: 10.1016/0003-9861(72)90088-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES