Abstract
Protochlorophyllide and chlorophyll(ide) holochromes (Pchl-H and Chl-H) were extracted from dark-grown and greening seedlings with saponin and partly purified by ammonium sulfate fractionation. Sephadex gel filtration in the presence of saponin showed that the photoactive saponin Pchl-H from dark-grown leaves of bean (Phaseolus vulgaris L. cv. Redlands Pioneer) or pea (Pisum sativum L. cv. Greenfeast) has an apparent molecular weight of about 170,000, compared with 51,000 to 75,000 for the saponin Pchl-H from barley (Hordeum vulgare L. cv. Svalöfs Bonus). Photoconversion of saponin Pchl-H from dark-grown barley seedlings yields Chl-H with an absorption maximum at 678 nm, and with no change in apparent molecular weight. Above 0 C, a spectral shift from 678 to 672 nm follows, and a change in apparent molecular weight from about 63,000 to 29,000 is observed.
Saponin Chl-H extracted from barley leaves illuminated for 15 minutes has an absorption maximum at 670 nm and an apparent molecular weight greater than 100,000. This chlorophyll holochrome has photosystem I activity and it is eluted together with the cytochromes. Saponin holochrome extracted from barley leaves returned to darkness after a light period, contains chlorophyll(ide) and protochlorophyllide complexes. Gel chromatography yields a complete separation of Chl-H (apparent molecular weight > 100,000) and photoactive Pchl-H (63,000).
It is proposed that Chl-H dissociates into a chlorophyll(ide) a carrier protein complex and a photoenzyme, before the incorporation of chlorophyll into the lamellar membrane.
Spectrofluorimetry on partially photoconverted preparations of saponin holochrome from barley, bean, and pea gave no indication for resonance energy transfer from protochlorophyllide to chlorophyllide. The saponin holochromes gave high polarization values, in contrast with bean holochrome extracted without the aid of detergents and bean leaves.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOARDMAN N. K. Studies on a protochlorophyll-protein complex. I. Purification and molecular-weight determination. Biochim Biophys Acta. 1962 Jul 30;62:63–79. doi: 10.1016/0006-3002(62)90492-4. [DOI] [PubMed] [Google Scholar]
- Boardman N. K., Thorne S. W. Studies on a barley mutant lacking chlorophyll b. II. Fluorescence properties of isolated chloroplasts. Biochim Biophys Acta. 1968 Feb 12;153(2):448–458. doi: 10.1016/0005-2728(68)90086-8. [DOI] [PubMed] [Google Scholar]
- Bonner B. A. A Short-lived Intermediate Form in the in Vivo Conversion of Protochlorophyllide 650 to Chlorophyllide 684. Plant Physiol. 1969 May;44(5):739–747. doi: 10.1104/pp.44.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler W. L., Briggs W. R. The relation between structure and pigments during the first stages of proplastid greening. Biochim Biophys Acta. 1966 Jan 4;112(1):45–53. doi: 10.1016/s0926-6585(96)90006-0. [DOI] [PubMed] [Google Scholar]
- Gassman M. L. A Reversible Conversion of Phototransformable Protochlorophyll(ide)(656) to Photoinactive Protochlorophyll(ide)(656) by Hydrogen Sulfide in Etiolated Bean Leaves. Plant Physiol. 1973 Jan;51(1):139–145. doi: 10.1104/pp.51.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gassman M., Granick S., Mauzerall D. A rapid spectral change in etiolated red kidney bean leaves following phototransformation of protochlorophyllide. Biochem Biophys Res Commun. 1968 Jul 26;32(2):295–300. doi: 10.1016/0006-291x(68)90384-7. [DOI] [PubMed] [Google Scholar]
- Henningsen K. W., Boardman N. K. Development of Photochemical Activity and the Appearance of the High Potential Form of Cytochrome b-559 in Greening Barley Seedlings. Plant Physiol. 1973 Jun;51(6):1117–1126. doi: 10.1104/pp.51.6.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henningsen K. W., Boynton J. E. Macromolecular physiology of plastids. VII. The effect of a brief illumination on plastids of dark-grown barley leaves. J Cell Sci. 1969 Nov;5(3):757–793. doi: 10.1242/jcs.5.3.757. [DOI] [PubMed] [Google Scholar]
- Henningsen K. W., Kahn A. Photoactive Subunits of Protochlorophyll(ide) Holochrome. Plant Physiol. 1971 May;47(5):685–690. doi: 10.1104/pp.47.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henningsen K. W. Macromolecular physiology of plastids. VI. Changes in membrane structure associated with shifts in the absorption maxima of the chlorophyllous pigments. J Cell Sci. 1970 Nov;7(3):587–621. doi: 10.1242/jcs.7.3.587. [DOI] [PubMed] [Google Scholar]
- Kahn A., Boardman N. K., Thorne S. W. Energy transfer between protochlorophyllide molecules: evidence for multiple chromophores in the photoactive protochlorophyllide-protein complex vivo and in vitro. J Mol Biol. 1970 Feb 28;48(1):85–101. doi: 10.1016/0022-2836(70)90220-2. [DOI] [PubMed] [Google Scholar]
- Kahn A. Developmental Physiology of Bean Leaf Plastids III. Tube Transformation and Protochlorophyll (ide) Photoconversion by a Flash Irradiation. Plant Physiol. 1968 Nov;43(11):1781–1785. doi: 10.1104/pp.43.11.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein S., Schiff J. A. The Correlated Appearance of Prolamellar Bodies, Protochlorophyll(ide) Species, and the Shibata Shift during Development of Bean Etioplasts in the Dark. Plant Physiol. 1972 Apr;49(4):619–626. doi: 10.1104/pp.49.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathis P., Sauer K. Circular dichroism studies on the structure and the photochemistry of protochlorophyllide and chlorophyllide holochrome. Biochim Biophys Acta. 1972 Jun 23;267(3):498–511. doi: 10.1016/0005-2728(72)90178-8. [DOI] [PubMed] [Google Scholar]
- Nadler K., Granick S. Controls on chlorophyll synthesis in barley. Plant Physiol. 1970 Aug;46(2):240–246. doi: 10.1104/pp.46.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schopfer P., Siegelman H. W. Purification of protochlorophyllide holochrome. Plant Physiol. 1968 Jun;43(6):990–996. doi: 10.1104/pp.43.6.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz A., Sauer K. Circular dichroism and fluorescence changes accompanying the protochylorophyllide to chlorophyllide transformation in greening leaves and holochrome preparations. Biochim Biophys Acta. 1972 May 25;267(2):320–340. doi: 10.1016/0005-2728(72)90120-x. [DOI] [PubMed] [Google Scholar]
- Süzer S., Sauer K. The sites of photoconversion of protochlorophyllide to chlorophyllide in barley seedlings. Plant Physiol. 1971 Jul;48(1):60–63. doi: 10.1104/pp.48.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorne S. W. The greening of etiolated bean leaves. I. The initial photoconversion process. Biochim Biophys Acta. 1971 Jan 12;226(1):113–127. doi: 10.1016/0005-2728(71)90183-6. [DOI] [PubMed] [Google Scholar]
- Thorne S. W. The greening of etiolated bean leaves. II. Secondary and further photoconversion processes. Biochim Biophys Acta. 1971 Jan 12;226(1):128–134. doi: 10.1016/0005-2728(71)90184-8. [DOI] [PubMed] [Google Scholar]
