Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Oct;58(4):526–529. doi: 10.1104/pp.58.4.526

Development of the Primary Photochemical Apparatus of Photosynthesis during Greening of Etiolated Bean Leaves 1

Neil R Baker a,2, Warren L Butler a
PMCID: PMC543266  PMID: 16659710

Abstract

Seven-day-old dark-grown bean leaves were greened under continuous light. The amount of chlorophyll, the ratio of chlorophyll a to chlorophyll b, the O2 evolving capacity and the primary photochemical activities of Photosystem I and Photosystem II were measured on the leaves after various times of greening. The primary photochemical activities were measured as the photo-oxidation of P700, the photoreduction of C-550, and the photo-oxidation of cytochrome b559 in intact leaves frozen to −196 C. The results indicate that the reaction centers of Photosystem I and Photosystem II begin to appear within the first few minutes and that Photosystem II reaction centers accumulate more rapidly than Photosystem I reaction centers during the first few hours of greening. The very early appearances of the primary photochemical activity of Photosystem II was also confirmed by light-induced fluorescence yield measurements at −196 C.

Full text

PDF
526

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boardman N. K., Thorne S. W. Sensitive fluorescence method for the determination of chlorophyll a-chlorophyll b ratios. Biochim Biophys Acta. 1971 Nov 2;253(1):222–231. doi: 10.1016/0005-2728(71)90248-9. [DOI] [PubMed] [Google Scholar]
  3. Butler W. L. Absorption spectroscopy of biological materials. Methods Enzymol. 1972;24:3–25. doi: 10.1016/0076-6879(72)24052-6. [DOI] [PubMed] [Google Scholar]
  4. Butler W. L. Development of photosynthetic system 1 and 2 in a greening leaf. Biochim Biophys Acta. 1965 May 25;102(1):1–8. doi: 10.1016/0926-6585(65)90198-6. [DOI] [PubMed] [Google Scholar]
  5. De Greef J., Butler W. L., Roth T. F. Greening of etiolated bean leaves in far red light. Plant Physiol. 1971 Apr;47(4):457–464. doi: 10.1104/pp.47.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henningsen K. W., Boardman N. K. Development of Photochemical Activity and the Appearance of the High Potential Form of Cytochrome b-559 in Greening Barley Seedlings. Plant Physiol. 1973 Jun;51(6):1117–1126. doi: 10.1104/pp.51.6.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Oelze-Karow H., Butler W. L. The development of photophosphorylation and photosynthesis in greening bean leaves. Plant Physiol. 1971 Nov;48(5):621–625. doi: 10.1104/pp.48.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Plesnicar M., Bendall D. S. The photochemical activities and electron carriers of developing barley leaves. Biochem J. 1973 Nov;136(3):803–812. doi: 10.1042/bj1360803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Strasser R. J. A new device for timultaneous measurements of oxygen concentration. Absorption and fluorescence changes in photosynthetic systems. Experientia. 1974 Mar 15;30(3):320–320. doi: 10.1007/BF01934855. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES