Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1976 Oct;58(4):592–594. doi: 10.1104/pp.58.4.592

Effects of Chloramphenicol on the Circadian Rhythm of Neurospora crassa1

John G Frelinger a,2, Harvey Motulsky a,3, Dow O Woodward a
PMCID: PMC543288  PMID: 16659724

Abstract

Chloramphenicol, an inhibitor of mitochondrial protein synthesis, shortened the period length of the circadian rhythm in the Timex strain of Neurospora crassa by 2 hours. Both the l(+) threo and d(−) threo optical isomers had the same effect on the period of the rhythm, whereas only the d(−) threo isomer significantly inhibited mitochondrial protein synthesis. Tetracycline, another inhibitor of mitochondrial protein synthesis, did not change the period of the circadian rhythm. The effect of chloramphenicol on the circadian rhythm is, therefore, presumably not directly related to inhibition of mitochondrial protein synthesis, suggesting that chloramphenicol has other effects.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bünning E., Moser I. Light-induced phase shifts of circadian leaf movements of phaseolus: comparison with the effects of potassium and of ethyl alcohol. Proc Natl Acad Sci U S A. 1973 Dec;70(12 Pt 1-2):3387–3389. doi: 10.1073/pnas.70.12.3387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Engelmann W. Lithium slows down the Kalanchoe clock. Z Naturforsch B. 1972 Apr;27(4):477–477. doi: 10.1515/znb-1972-0431. [DOI] [PubMed] [Google Scholar]
  3. Freeman K. B. Effects of chloramphenicol and its isomers and analogues on the mitochondrial respiratory chain. Can J Biochem. 1970 Apr;48(4):469–478. doi: 10.1139/o70-076. [DOI] [PubMed] [Google Scholar]
  4. Görts C. P., Hasilík A. Effects of antibiotics on the development and stability of mitochondrial enzymes in Saccharomyces cerevisiae. Eur J Biochem. 1972 Sep 18;29(2):282–287. doi: 10.1111/j.1432-1033.1972.tb01986.x. [DOI] [PubMed] [Google Scholar]
  5. KROON A. M. Protein synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beefheart mitochondria and fractions derived from them by sonic oscillation. Biochim Biophys Acta. 1963 Jul 30;72:391–402. doi: 10.1016/0006-3002(63)90258-0. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. MAGER J. Chloramphenicol and chlortetracycline inhibition of amino acid incorporation into proteins in a cell-free system from Tetrahymena pyriformis. Biochim Biophys Acta. 1960 Feb 12;38:150–152. doi: 10.1016/0006-3002(60)91207-5. [DOI] [PubMed] [Google Scholar]
  8. Njus D., Sulzman F. M., Hastings J. W. Membrane model for the circadian clock. Nature. 1974 Mar 8;248(5444):116–120. doi: 10.1038/248116a0. [DOI] [PubMed] [Google Scholar]
  9. Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sussman A. S., Durkee T. L., Lowry R. J. A model for rhythmic and temperature-independent growth in 'clock' mutants of Neurospora. Mycopathol Mycol Appl. 1965 Apr 14;25(3):381–396. doi: 10.1007/BF02049924. [DOI] [PubMed] [Google Scholar]
  11. Sweeney B. M., Tuffli C. F., Jr, Rubin R. H. The circadian rhythm in photosynthesis in Acetabularia in the presence of actinomycin D, puromycin, and chloramphenicol. J Gen Physiol. 1967 Jan;50(3):647–659. doi: 10.1085/jgp.50.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES