Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jul;87(14):5410–5414. doi: 10.1073/pnas.87.14.5410

Isolation of L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide), a sea anemone neuropeptide containing an unusual amino-terminal blocking group.

C J Grimmelikhuijzen 1, K L Rinehart 1, E Jacob 1, D Graff 1, R K Reinscheid 1, H P Nothacker 1, A L Staley 1
PMCID: PMC54334  PMID: 1973541

Abstract

Using a radioimmunoassay for the carboxyl-terminal sequence Arg-Asn-NH2, we have purified a peptide from acetic acid extracts of the sea anemone Anthopleura elegantissima. By classical amino acid analyses, mass spectrometry, and 1H NMR spectroscopy, the structure of this peptide was determined as 3-phenyllactyl-Leu-Arg-Asn-NH2. By using reversed-phase HPLC and a chiral mobile phase, it was shown that the 3-phenyllactyl group had the L configuration. Immunocytochemical staining with antiserum against Arg-Asn-NH2 showed that L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide) was localized in neurons of sea anemones. The L-3-phenyllactyl group has not been found earlier in neuropeptides of vertebrates or higher invertebrates. We propose that this residue renders Antho-RNamide resistant to nonspecific aminopeptidases, thereby increasing the stability of the peptide after neuronal release.

Full text

PDF
5410

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. A. Physiology of a bidirectional, excitatory, chemical synapse. J Neurophysiol. 1985 Mar;53(3):821–835. doi: 10.1152/jn.1985.53.3.821. [DOI] [PubMed] [Google Scholar]
  2. Anderson P. A., Spencer A. N. The importance of cnidarian synapses for neurobiology. J Neurobiol. 1989 Jul;20(5):435–457. doi: 10.1002/neu.480200513. [DOI] [PubMed] [Google Scholar]
  3. Asano Y., Nakazawa A., Endo K. Novel phenylalanine dehydrogenases from Sporosarcina ureae and Bacillus sphaericus. Purification and characterization. J Biol Chem. 1987 Jul 25;262(21):10346–10354. [PubMed] [Google Scholar]
  4. Graff D., Grimmelikhuijzen C. J. Isolation of less than Glu-Gly-Leu-Arg-Trp-NH2 (Antho-RWamide II), a novel neuropeptide from sea anemones. FEBS Lett. 1988 Oct 24;239(1):137–140. doi: 10.1016/0014-5793(88)80560-x. [DOI] [PubMed] [Google Scholar]
  5. Graff D., Grimmelikhuijzen C. J. Isolation of less than Glu-Ser-Leu-Arg-Trp-NH2, a novel neuropeptide from sea anemones. Brain Res. 1988 Mar 1;442(2):354–358. doi: 10.1016/0006-8993(88)91525-9. [DOI] [PubMed] [Google Scholar]
  6. Gray W. R., Smith J. F. Rapid sequence analysis of small peptides. Anal Biochem. 1970 Jan;33(1):36–42. doi: 10.1016/0003-2697(70)90436-7. [DOI] [PubMed] [Google Scholar]
  7. Grimmelikhuijzen C. J., Graff D. Isolation of pyroGlu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9817–9821. doi: 10.1073/pnas.83.24.9817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grimmelikhuijzen C. J., Graff D., McFarlane I. D. Neurones and neuropeptides in coelenterates. Arch Histol Cytol. 1989;52 (Suppl):265–278. doi: 10.1679/aohc.52.suppl_265. [DOI] [PubMed] [Google Scholar]
  9. Grimmelikhuijzen C. J., Hahn M., Rinehart K. L., Spencer A. N. Isolation of pyroGlu-Leu-Leu-Gly-Gly-Arg-Phe-NH2 (Pol-RFamide), a novel neuropeptide from hydromedusae. Brain Res. 1988 Dec 13;475(1):198–203. doi: 10.1016/0006-8993(88)90219-3. [DOI] [PubMed] [Google Scholar]
  10. Grimmelikhuijzen C. J., Spencer A. N. FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J Comp Neurol. 1984 Dec 10;230(3):361–371. doi: 10.1002/cne.902300305. [DOI] [PubMed] [Google Scholar]
  11. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koizumi O., Wilson J. D., Grimmelikhuijzen C. J., Westfall J. A. Ultrastructural localization of RFamide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra. J Exp Zool. 1989 Jan;249(1):17–22. doi: 10.1002/jez.1402490105. [DOI] [PubMed] [Google Scholar]
  13. Liu B., Poulter L., Neacsu C., Burbach J. P. Isolation and identification of vasopressin- and oxytocin-immunoreactive substances from bovine pineal gland. Presence of N alpha-acetyloxytocin. J Biol Chem. 1988 Jan 5;263(1):72–75. [PubMed] [Google Scholar]
  14. O'Donohye T. L., Handelmann G. E., Miller R. L., Jacobowitz D. M. N-acetylation regulates the behavioral activity of alpha-melanotropin in a multineurotransmitter neuron. Science. 1982 Feb 26;215(4536):1125–1127. doi: 10.1126/science.7063845. [DOI] [PubMed] [Google Scholar]
  15. Smyth D. G., Massey D. E., Zakarian S., Finnie M. D. Endorphins are stored in biologically active and inactive forms: isolation of alpha-N-acetyl peptides. Nature. 1979 May 17;279(5710):252–254. doi: 10.1038/279252a0. [DOI] [PubMed] [Google Scholar]
  16. Tatemoto K., Mutt V. Chemical determination of polypeptide hormones. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4115–4119. doi: 10.1073/pnas.75.9.4115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weber W. W., Zannoni V. G. Reduction of phenylpyruvic acids to phenyllactic acids in mammalian tissues. J Biol Chem. 1966 Mar 25;241(6):1345–1349. [PubMed] [Google Scholar]
  18. Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]
  19. Zannoni V. G., Weber W. W. Isolation and properties of aromatic alpha-keto acid reductase. J Biol Chem. 1966 Mar 25;241(6):1340–1344. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES