Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1977 May;59(5):986–990. doi: 10.1104/pp.59.5.986

Oxygen Inhibition of Photosynthesis

I. Temperature Dependence and Relation to O2/CO2 Solubility Ratio 1

Sun-Ben Ku a, Gerald E Edwards a
PMCID: PMC543346  PMID: 16659981

Abstract

The magnitude of the percentage inhibition of photosynthesis by atmospheric levels of O2 in the C3 species Solanum tuberosum L., Medicago sativa L., Phaseolus vulgaris L., Glycine max L., and Triticum aestivum L. increases in a similar manner with an increase in the apparent solubility ratio of O2/CO2 in the leaf over a range of solubility ratios from 25 to 45. The solubility ratio is based on calculated levels of O2 and CO2 in the intercellular spaces of leaves as derived from whole leaf measurements of photosynthesis and transpiration. The solubility ratio of O2/CO2 can be increased by increased leaf temperature under constant atmospheric levels of O2 and CO2 (since O2 is relatively more soluble than CO2 with increasing temperature); by increasing the relative levels of O2/CO2 in the atmosphere at a given leaf temperature, or by increased stomatal resistance. If the solubility ratio of O2/CO2 is kept constant, as leaf temperature is increased, by varying the levels of O2 or CO2 in the atmosphere, then the percentage inhibition of photosynthesis by O2 is similar. The decreased solubility of CO2 relative to O2 (decreased CO2/O2 ratio) may be partly responsible for the increased percentage inhibition of photosynthesis by O2 under atmospheric conditions with increasing temperature.

Full text

PDF
986

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badger M. R., Andrews T. J. Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun. 1974 Sep 9;60(1):204–210. doi: 10.1016/0006-291x(74)90192-2. [DOI] [PubMed] [Google Scholar]
  2. Bowes G., Ogren W. L., Hageman R. H. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun. 1971 Nov 5;45(3):716–722. doi: 10.1016/0006-291x(71)90475-x. [DOI] [PubMed] [Google Scholar]
  3. Chollet R., Oglen W. L. Oxygen inhibits maize bundle sheath photosynthesis. Biochem Biophys Res Commun. 1972 Mar 24;46(6):2062–2066. doi: 10.1016/0006-291x(72)90759-0. [DOI] [PubMed] [Google Scholar]
  4. Hew C. S., Krotkov G., Canvin D. T. Effects of Temperature on Photosynthesis and CO(2) Evolution in Light and Darkness by Green Leaves. Plant Physiol. 1969 May;44(5):671–677. doi: 10.1104/pp.44.5.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jolliffe P. A., Tregunna E. B. Effect of Temperature, CO(2) Concentration, and Light Intensity on Oxygen Inhibition of Photosynthesis in Wheat Leaves. Plant Physiol. 1968 Jun;43(6):902–906. doi: 10.1104/pp.43.6.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ku S. B., Edwards G. E. Oxygen Inhibition of Photosynthesis: II. Kinetic Characteristics as Affected by Temperature. Plant Physiol. 1977 May;59(5):991–999. doi: 10.1104/pp.59.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ku S. B., Edwards G. E., Tanner C. B. Effects of Light, Carbon Dioxide, and Temperature on Photosynthesis, Oxygen Inhibition of Photosynthesis, and Transpiration in Solanum tuberosum. Plant Physiol. 1977 May;59(5):868–872. doi: 10.1104/pp.59.5.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laing W. A. Regulation of Soybean Net Photosynthetic CO(2) Fixation by the Interaction of CO(2), O(2), and Ribulose 1,5-Diphosphate Carboxylase. Plant Physiol. 1974 Nov;54(5):678–685. doi: 10.1104/pp.54.5.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
  10. Radmer R. J., Kok B. Photoreduction of O(2) Primes and Replaces CO(2) Assimilation. Plant Physiol. 1976 Sep;58(3):336–340. doi: 10.1104/pp.58.3.336. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES