Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Nov;64(5):739–743. doi: 10.1104/pp.64.5.739

Immediate Acetylene Reduction by Excised Grass Roots Not Previously Preincubated at Low Oxygen Tensions 1

Peter van Berkum a, Charles Sloger a
PMCID: PMC543349  PMID: 16661045

Abstract

Excised roots of Spartina alterniflora Loisel. and corn reduced acetylene in air without the previously reported period of zero activity lasting 8 to 18 hours. The profiles of acetylene-dependent ethylene accumulation by excised roots and intact plants of S. alterniflora were similar. No significant change in the number of bacteria associated with the roots was detectable during the assay. Most of the nitrogenase activity was detected in the roots and rhizomes of the plants. The salt marsh sediment also was capable of reducing acetylene. Additional damage to roots by washing and cutting increased the rate of acetylene reduction with samples incubated in air. Low concentrations of nitrate significantly inhibited the nitrogenase activity associated with the sediment and excised roots, but not with intact plants. Rates of acetylene reduction by excised corn roots were low. Oxidation and endogenous production of ethylene in the absence of acetylene were negligible. Measurements made with excised grass roots as described probably reflect the occurrence and magnitude of nitrogenase activity associated with the plants in the field.

Full text

PDF
739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht S. L., Okon Y., Burris R. H. Effects of Light and Temperature on the Association between Zea mays and Spirillum lipoferum. Plant Physiol. 1977 Oct;60(4):528–531. doi: 10.1104/pp.60.4.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber L. E., Tjepkema J. D., Russell S. A., Evans H. J. Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum. Appl Environ Microbiol. 1976 Jul;32(1):108–113. doi: 10.1128/aem.32.1.108-113.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. David K. A., Fay P. Effects of long-term treatment with acetylene on nitrogen-fixing microorganisms. Appl Environ Microbiol. 1977 Dec;34(6):640–646. doi: 10.1128/aem.34.6.640-646.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Flett R. J., Rudd J. W., Hamilton R. D. Acetylene reduction assays for nitrogen fixation in freshwaters: a note of caution. Appl Microbiol. 1975 May;29(5):580–583. doi: 10.1128/am.29.5.580-583.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hanson R. B. Comparison of Nitrogen Fixation Activity in Tall and Short Spartina alterniflora Salt Marsh Soils. Appl Environ Microbiol. 1977 Mar;33(3):596–602. doi: 10.1128/aem.33.3.596-602.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jackson A. O., Larkins B. A. Influence of Ionic Strength, pH, and Chelation of Divalent Metals on Isolation of Polyribosomes from Tobacco Leaves. Plant Physiol. 1976 Jan;57(1):5–10. doi: 10.1104/pp.57.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Okon Y., Albrecht S. L., Burris R. H. Methods for Growing Spirillum lipoferum and for Counting It in Pure Culture and in Association with Plants. Appl Environ Microbiol. 1977 Jan;33(1):85–88. doi: 10.1128/aem.33.1.85-88.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tarrand J. J., Krieg N. R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol. 1978 Aug;24(8):967–980. doi: 10.1139/m78-160. [DOI] [PubMed] [Google Scholar]
  10. Tjepkema J., Van Berkum P. Acetylene reduction by soil cores of maize and sorghum in Brazil. Appl Environ Microbiol. 1977 Mar;33(3):626–629. doi: 10.1128/aem.33.3.626-629.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Von Bülow J. F., Döbereiner J. Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2389–2393. doi: 10.1073/pnas.72.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. deBont J. A. Bacterial degradation of ethylene and the acetylene reduction test. Can J Microbiol. 1976 Jul;22(7):1060–1062. doi: 10.1139/m76-155. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES