Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1979 Nov;64(5):872–875. doi: 10.1104/pp.64.5.872

Photosynthate Partitioning in Soybean Leaves at Two Irradiance Levels

Comparative Responses of Acclimated and Unacclimated Leaves

John E Silvius 1, N Jerry Chatterton 1, Diane F Kremer 1
PMCID: PMC543381  PMID: 16661072

Abstract

High irradiance-acclimated soybean leaves had the same CO2 exchange rates, but lower starch accumulation rates and correspondingly higher translocation rates than unacclimated leaves. Increased translocation rates were associated with increased sucrose phosphate synthetase (EC 2.4.1.14) activity. Foliar sucrose levels and adenosine diphosphate-glucose pyrophosphorylase (EC 2.7.7.9) activity were unaffected. Carbon assimilation, partitioning, and enzyme activity of unacclimated leaves were unaltered even after a second day's exposure to high irradiance. Results are consistent with the hypothesis that photosynthate partitioning between starch synthesis and sucrose translocation are controlled in part by the rate of sucrose synthesis.

Full text

PDF
872

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bunce J. A., Patterson D. T., Peet M. M. Light acclimation during and after leaf expansion in soybean. Plant Physiol. 1977 Aug;60(2):255–258. doi: 10.1104/pp.60.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ghosh H. P., Preiss J. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem. 1966 Oct 10;241(19):4491–4504. [PubMed] [Google Scholar]
  3. Giaquinta R. Source and sink leaf metabolism in relation to Phloem translocation: carbon partitioning and enzymology. Plant Physiol. 1978 Mar;61(3):380–385. doi: 10.1104/pp.61.3.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heldt H. W., Chon C. J., Maronde D. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol. 1977 Jun;59(6):1146–1155. doi: 10.1104/pp.59.6.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Silvius J. E., Kremer D. F., Lee D. R. Carbon assimilation and translocation in soybean leaves at different stages of development. Plant Physiol. 1978 Jul;62(1):54–58. doi: 10.1104/pp.62.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Thorne J. H., Koller H. R. Influence of assimilate demand on photosynthesis, diffusive resistances, translocation, and carbohydrate levels of soybean leaves. Plant Physiol. 1974 Aug;54(2):201–207. doi: 10.1104/pp.54.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES