Skip to main content
Springer logoLink to Springer
. 2017 Mar 31;20(2):217–232. doi: 10.1007/s10456-017-9546-9

The clinical application of angiostatic therapy in combination with radiotherapy: past, present, future

Lisanne C Hamming 1, Ben J Slotman 2, Henk M W Verheul 1, Victor L Thijssen 2,
PMCID: PMC5437175  PMID: 28364160

Abstract

Although monotherapy with angiostatic drugs is still far from effective, there is abundant evidence that angiostatic therapy can improve the efficacy of conventional treatments like radiotherapy. This has instigated numerous efforts to optimize and clinically implement the combination of angiostatic drugs with radiation treatment. The results from past and present clinical trials that explored this combination therapy indeed show encouraging results. However, current findings also show that the combination has variable efficacy and is associated with increased toxicity. This indicates that combining radiotherapy with angiostatic drugs not only holds opportunities but also provides several challenges. In the current review, we provide an update of the most recent insights from clinical trials that evaluated the combination of angiostatic drugs with radiation treatment. In addition, we discuss the outstanding questions for future studies in order to improve the clinical benefit of combining angiostatic therapy with radiation therapy.

Keywords: Angiogenesis, Radiation, Angiostatic drugs, Clinical trials, Cancer, Combination therapy

Introduction

In 2004, more than 30 years after the proposition that targeting the vascularization of malignant tissues might provide a therapeutic benefit [1], the first angiostatic drug was approved by the FDA, i.e., bevacizumab (Avastin®) [2]. Currently, bevacizumab, a monoclonal antibody targeting the vascular endothelial growth factor (VEGF), is FDA approved for the treatment of metastatic colorectal cancer (mCRC), metastatic renal cell cancer (mRCC), non-small cell lung cancer (NSCLC) and glioblastoma, while its treatment efficacy in other malignancies is still being investigated. In addition, in the last decade the FDA has approved several other angiostatic drugs for the treatment of different malignancies (Table 1). Despite the increasing number of angiostatic drugs targeting different angiogenic pathways [35], thus far only limited clinical benefit of angiostatic therapy has been demonstrated. For example, bevacizumab monotherapy in patients with previously treated mCRC resulted in an inferior overall survival (OS) of 10.2 months compared to a OS of 10.8 months with standard chemotherapy (FOLFOX4) [6], whereas the first-line therapy with sorafenib in patients with mRCC results in a similar progression-free survival as treatment with interferon alpha-2a [7]. A well-known exception to this is sunitinib which has been shown to improve OS in the first-line treatment of patients with metastatic RCC as compared to interferon alpha [8, 9].

Table 1.

FDA-approved angiostatic drugs for cancer treatment

Drug (trade name) Main target(s) Cancer typea
Antibodies
 Aflibercept (Zaltrap®) VEGF/PlGF mCRC
 Bevacizumab (Avastin®) VEGF mCRC, NSCLC, mRCC, Glioblastoma
 Ramucirumab (Cyramza®) VEGFR2 Advanced stomach cancer or gastroesophageal junction adenocarcinoma
 Panitumumab (Vectibix® ) EGFR mCRC (wt KRAS)
 Cetuximab (Erbitux®)b EGFR mCRC (wtKRAS), metastatic non-small cell lung cancer and head and neck cancer
Small molecules
 Axitinib (Inlyta®) VEGF-R1/2/3, PDGFR, c-KIT RCC
 Everolimus (Afinitor®) FKBP12/mTORC1 RCC, breast cancer, NET
 Erlotinib (Tarceva®) EGFR NSCLC, PC
 Pazopanib (Votrient®) VEGFR-1/2/3, PDGFR-α/β, c-Kit RCC, STS
 Regorafenib (Stivarga®) VEGFR-2, TIE-2 mCRC, GIST
 Sorafenib (Nexavar®) C-RAF, B-RAF, VEGFR-2/3, PDGFR-β, RCC, HCC, thyroid cancer
 Sunitinib (Sutent®) VEGFR-1/2/3, PDGFR-α/β, c-Kit mRCC, imatinib-resistant GIST, progressive NET in the pancreas
 Thalidomide (Thalomid®) Cereblon, unknown Multiple myeloma
 Vandetanib (Caprelsa®) VEGFR-1/2/3, EGFR, RET Medullary thyroid cancer
 Cabozantinib (Cabometyx®) VEGF-R2, c-MET Advanced RCC, medullary thyroid cancer
 Lenvatinib (Lenvima®) VEGF-R1/2/3 Advanced RCC, thyroid cancer

a m metastatic, CRC colorectal cancer, NSCLC non-small cell lung cancer, RCC renal cell cancer, PC pancreatic cancer, NET neuroendocrine tumors, STS soft tissue sarcoma, HCC liver cancer, GIST gastrointestinal cancer

bWas also approved by the FDA in 2004 for the treatment of mCRC [2]

Despite their limited benefit as monotherapeutics, both clinical and preclinical studies have shown that angiostatic drugs can improve the treatment efficacy when combined with other treatments, including chemotherapy [1014], photodynamic therapy [1517], immunotherapy [18, 19], miRNA-based therapy [4] and radiotherapy [13, 2023]. Regarding the latter, promising preclinical observations instigated numerous clinical trials exploring the benefit of combining angiostatic drugs with radiotherapy. Five years ago, we evaluated the clinical opportunities and challenges that accompany the combination of radiotherapy with angiostatic therapy [24]. At that time, over 75 trials were still ongoing. Here, we present an updated overview of the outcome of these clinical trials. In addition, we evaluate the novel insights from these studies and discuss the outstanding questions that new trials should answer in order to improve the clinical benefit of combining radiotherapy with angiostatic treatment.

The rationale behind combining angiostatic drugs with radiotherapy

At the first sight, the rationale to combine radiotherapy with angiostatic drugs appears counterintuitive since the effect of radiotherapy relies on the presence of oxygen [25] while angiostatic drugs aim to block tumor oxygenation. Despite this apparent conflict, several preclinical studies have shown that angiostatic treatment can enhance tumor oxygenation, thereby increasing the efficacy of radiation treatment [13, 22, 2628]. The mechanisms by which angiostatic drugs improve tumor oxygenation are still not fully understood. Initially, it was hypothesized that selective killing of the endothelial cells would reduce their oxygen consumption and increase vascular permeability. This would result in an increased oxygen availability and diffusion into the tumor tissue [29, 30]. Later studies indicated that angiostatic treatment might improve tumor oxygenation by remodeling of the abnormal and dysfunctional tumor vasculature to a more normal and functional phenotype [27, 31]. This ‘vascular normalization’ is hypothesized to result from restoring the balance between pro- and anti-angiogenic signals. It results in more stable vessels, lower interstitial fluid pressure, better perfusion and consequently a better overall tumor oxygenation [22, 3234]. For example, our previous work has focussed on the role of galectins in tumor angiogenesis and cancer [3540]. This was instigated by our discovery of galectin-1 as a pro-angiogenic factor that is essential for endothelial cell function during tumor angiogenesis [4144]. Importantly, we identified galectin-1 as the endothelial cell target of a synthetic angiostatic peptide named anginex [41, 45]. Treatment of murine tumor models with anginex (or bevacizumab) was shown to improve tumor oxygenation and consequently to enhance the anti-tumor effect of radiotherapy [22]. This is in line with other preclinical studies which have linked vascular normalization to an enhanced efficacy of radiation treatment [13, 27]. At the same time, it has been shown that the vascular normalization occurs only transiently and that continuation of angiostatic treatment eventually causes vessel regression and reduced tumor oxygenation [22, 31, 34]. Hence, adequate scheduling is important to ensure that radiation is applied during the normalization window [22]. In addition, to what extent vascular normalization occurs in the clinical setting and whether or not it contributes to better tumor oxygenation is still under debate [46, 47]. While the latter still requires further investigation, the potential effects on tumor oxygenation certainly provide a rationale to combine angiostatic drugs with radiotherapy.

Another rationale to combine angiostatic therapy with radiotherapy is the observation that tumor irradiation can directly affect tumor vascularization, perfusion and oxygenation. Such radiation-induced vascular changes appear to be dependent on the dose-scheduling regime. Based on a literature study, different dose-dependent effects of radiotherapy on the vasculature could be distinguished, i.e., vessel deterioration, vessel preservation and vessel induction [48]. The latter, i.e., the stimulation of tumor vascularization and perfusion, is predominantly observed during fractionated (low-dose) radiotherapy. For example, Mayr et al. [49] used contrast enhanced MRI to determine tumor perfusion in cervical cancer patients receiving fractionated radiotherapy (±5 × 2 Gy/week for 4–5 weeks). They observed increased perfusion after 2 weeks of treatment after which a decline in perfusion was observed. A comparable finding was reported by Shibuya et al. [50] using perfusion CT. Improved tumor perfusion following fractionated irradiation was also reported in other tumor types, including in non-locally advanced rectal tumors (5 × 5 Gy) [51], and inoperable non-small cell lung tumors (6 × 4.5 Gy) [52]. In the latter study, the increase in tumor blood volume occurred both at the rim and the center of the tumor albeit to a lesser extent in the tumor center [52]. We also observed improved perfusion in the center of xenograft colorectal tumors in mice that received 3 weeks of fractionated irradiation (5 × 2 Gy/week) [28]. Interestingly, the observation that fractionated irradiation can induce tumor tissue perfusion is in line with reports that fractionated radiotherapy can improve tumor oxygenation [53, 54]. Thus, improved tumor perfusion might represent an additional mechanism of radiotherapy-induced tumor oxygenation, next to previously described mechanisms like decreased oxygen consumption, increased inflammation and reduced tumor volume [55]. While the improved perfusion and oxygenation might increase the efficacy of subsequent irradiations, our recent findings confirm that the tumor areas with increased perfusion also contained more viable tumor tissue [28]. Apparently, the improved tumor vascularization and oxygenation can also contribute to tumor cell survival or to tumor regrowth following fractionated radiotherapy. Thus, blocking this effect by angiostatic drugs could improve the efficacy of the radiation treatment.

Altogether, the addition of angiostatic drugs to radiotherapy might be effective by (1) transiently improving tumor oxygenation and/or (2) counteracting radiotherapy-induced tumor (re)vascularization to prevent or delay tumor recurrence. However, it is evident that optimal dose-scheduling of both treatment modalities is the key to achieve beneficial effects of the combination therapy. After all, dose-scheduling of angiostatic drugs will influence whether and when vessel normalization occurs, thereby affecting the efficacy of radiotherapy. At the same time, dose-scheduling of radiotherapy will influence tumor perfusion and oxygenation, thereby affecting the efficacy of angiostatic drugs. All this has been recognized and studied by us and others in different preclinical tumor models [22, 23, 56, 57]. The current challenge is to translate all these insights into clinically applicable protocols. For this, several outstanding questions have to be answered, especially with regard to dose-scheduling and with regard to the commonality of the observed effects of radiotherapy on tumor vascularization and perfusion. Insights from past, present and future clinical trials on the efficacy of the combination therapy can help to answer these questions.

The past results of combined angiostatic/radiation therapy

In 2012, we performed an extensive review of the results of clinical trials that combined radiotherapy with angiostatic treatment. The overall conclusion at that time was that this combination treatment generally results in favorable outcomes with regard to tumor response and patients survival [24]. The observed efficacy appeared to depend not only on the type of drug and the type of tumor but also on the proper scheduling and dosing of both therapies which was in line with preclinical observations. In fact, exploring the optimization of dose-scheduling was identified as an important future challenge, especially since concerns were raised regarding the increased toxicity that is observed in patients who received the combination treatment [24, 58, 59]. Interestingly, our recent studies in preclinical tumor models indeed show that optimizing the treatment schedule does allow dose reductions without loss of treatment efficacy, i.e., decrease in tumor volume [23, 28]. This is in line with a previously published mouse study [60] as well as with several clinical case reports [61, 62]. However, strong clinical evidence that dose reduction does result in lower toxicity while not affecting the efficacy of the combination treatment is still lacking.

Collectively, past clinical trials confirmed the preclinical findings that the combination of angiostatic drugs with tumor irradiation could provide opportunities to improve patient outcome. However, the combination therapy was found to be associated with increased toxicity profiles which pointed toward the need to improve dose-scheduling.

The present progress in combined angiostatic/radiation therapy

The 2012 paper by Kleibeuker et al. listed 78 ongoing clinical trials combining angiostatic drugs with radiotherapy [24] which was illustrative of the expectations regarding the clinical benefit of this combination treatment strategy. At present, 45 of these trials have been completed and 19 trials are still ongoing. In addition, four have been terminated due to either an insufficient number of participants, unacceptable toxicity or withdrawal of support from the sponsor, whereas the remaining studies did not have a recent status update (Table 2). Out of the 45 completed trials, 22 published study results in PubMed-indexed journals. Of note, the majority of these published trials, i.e., 18, evaluated the combination of (chemo)radiotherapy with bevacizumab (Table 3). Since we recently discussed the opportunities of combining radiotherapy with another widely used angiogenesis inhibitor, i.e., sunitinib [63], we will focus here mainly on bevacizumab.

Table 2.

Updated list of ongoing clinical trials in 2012

Trial Phase Diseasea Schedulingb Radiotherapy regimec Chemotherapy Statusd Remark/publication
Bevacizumab
 NCT00570531 II EC (locoregional) Conc 25 × xGy Paclitaxel/cisplatin/5-FU 4 Insufficient number of participants
 NCT00354679 II ES (LA) Neo/conc 30 × xGy Cisplatin/irinotecan 1 Results, unpublished
 NCT01332929 I Brain metastases Neo/conc 15 × 2 or 10 × 3 Gy 1 Levy et al. [109]
 NCT00817284 II GBM Neo/conc 30 × 2 Gy Temozolomide vs irinotecan 1 No results/publications
 NCT00805961 II GBM (first-line treatment) Conc/adj 30 × 2 Gy Temozolomide/everolimus 1 Hainsworth et al. [77]
 NCT00590681 II GBM (ND) Adj 30–33 × 1.8–2.0 Gy Temozolomide 1 No results/publications
 NCT01186406 II GBM (ND) Conc/adj 30 × 2 Gy Gliadel/temozolomide 2 Results, no publications
 NCT00884741 III GBM (ND) Conc/adj 30 × xGy Temozolomide 1 Gilbert et al. [65]
 NCT00943826 III GBM (ND) Neo/conc 30 × 2 Gy Temozolomide 1 Chinot et al. [64]
 NCT01102595 II GBM (unresectable) Neo/conc 30 × 2 Gy Temozolomide 1 No results/publications
 NCT01022918 II GBM (unresectable) Neo/adj 30 × 2 Gy Temozolomide/irinotecan 1 Chauffert et al. [72]
 NCT00597402 II GBM and gliosarcomas Conc/adj 33 × xGy Temozolomide/irinotecan 1 Results, no publications
 NCT01209442 II GBM Conc/adj 60 Gy in 2 weeks Temozolomide 2 No results/publications
 NCT01013285 II GBM or gliosarcoma (ND) Conc/adj 30 × xGy Temozolomide 2 No results/publications
 NCT01443676 II GBM (eldery patient) Conc Unknown 1 No results/publications
 NCT00369122 II Cervical cancer (LA) Conc 45 Gy in 25 fractions Cisplatin 1 Results, unpublished
 NCT00545792 II Gynecological cancer (recurrent) Conc 45 Gy in 25 fractions 1 Viswanathan et al. [78]
 NCT00703976 II HNSCC (LA) Conc 35 × 2 Gy Cetuximab/pemetrexed 1 No results/publications
 NCT00281840 II HNSCC (stage III/IV) Conc/adj 40 × 1.8 Gy Docetaxel 1 Yao et al. [76]
 NCT01004874 II Malignant glioma (grade IV) Conc/adj Standard Rth for 6.5 weeks Temozolomide/topotecan 2 Results, no publications
 NCT00782756 II Malignant glioma (ND) Neo/conc/adj 3 × xGy/week for 2 weeks Temozolomide 2 No results/publications
 NCT01478321 II High-grade recurrent malignant glioma Conc/adj 25 × xGy Temozolomide 3 No results/publications
 NCT00387374 II NCSLC (stage IIIB/IV unresectable) Adj 10 × xGy Carboplatin/paclitaxel 1 No results/publications
 NCT00896181 II NPC (advanced) Neo/conc 30–35 × xGy Doxatel/cisplatin/5-FU/carboplatin 3 No results/publications
 NCT00408694 II NPC (stage IIB–VB) Conc/adj 33 × 2.12 Gy Cisplatin/5-FU 1 Lee et al. [74]
 NCT00334815 I/II NSCLC (stage III irresectable) Conc 35 × xGy Cisplatin/etoposide 2 Results, unpublished
 NCT00402883 II NSCLC (stage III) Conc/adj 35 × 1.8 Gy Pemetrexed/carboplatin 4 Toxicity
 NCT00578149 II NSCLC (stage III) Conc/adj 35 × xGy Paclitaxel/carboplatin 1 No results/publications
 NCT00307723 I/II Pancreatic cancer Conc 35 × xGy Oxaliplatin/5-FU 4 Insufficient number of patients
 NCT00336648 II Pancreatic cancer Conc/adj 28 × 1.8 Gy Gemcitabine 1 No results/publications
 NCT00460174 II Pancreatic cancer (localized) Neo 15 × 2.4 Gy Gemcitabine 1 Rezai et al. [110]
 NCT00557492 II Pancreatic cancer (potentially resectable) Conc/adj 10 × 3 Gy Gemcitabine 2 Results, unpublished
 NCT00349557 II Prostate cancer (high risk) Conc/adj IMRT Bicalutamide 1 No results/publications
 NCT00321685 II RC (LA non-metastatic) Conc 28 × 1.8 Gy Capecitabine/oxaliplatin (FOLFOX) 1 Landry et al. [73]
 NCT00113230 II RC (LA) Conc 28 × 1.8 Gy Capecitabine 1 Results, unpublished
 NCT01434147 II RC (LA) Neo 25 × 1.8 Gy Capecitabine/oxaliplatin 1 No results/publications
 NCT00557713 II RC (LA) Neo/conc 28 × 1.8 Gy Oxaliplatin/capecitabine 5 No results/publications
 NCT00842686 II RC (LA) Neo/conc 28 × 1.8 Gy Capecitabine 5 No results/publications
 NCT00865189 II RC (LA) Neo/conc 25 × 1.8 Gy FOLFOX/5-FU 1 Borg et al. [71]
 NCT01043484 II RC (localized) Conc 25 × 1.8 Gy Capecitabine 1 Salazar et al. [75]
 NCT00308516 II RC (stage II/III) Conc/adj 28 × 1.8 Gy FU/FOLFOX6 1 Spigel et al. [83]
 NCT01481545 II RC (poor risk) Conc/adj 25 × 1.8 Gy 2 No results/publications
 NCT00356031 II Sarcoma Neo 30 × xGy 5 No results/publications
 NCT00308529 II SCLC (LA) Neo/conc/adj 34 × 1.8 Gy Irinotecan/carboplatin 1 Spigel et al. [111]
 NCT00387699 II SCLC (limited stage) Conc/adj 15 × twice daily xGy Cisplatin/etoposide 1 No results/publications
Bevacizumab/erlotinib
 NCT00393068 II EC (operable) Conc 25 × 1.8 Gy 5-FU/paclitaxel/carboplatin 1 Bendell et al. [70]
 NCT00720356 II GBM or gliosarcoma (ND) Conc/adj 30 × xGy Temozolomide 2 No results/publications
 NCT00140556 I HNSCC/NPC Conc 70 Gy in twice daily 1.25 Gy Cisplatin 1 Yoo et al. [87]
 NCT00392704 II HNSCC (LA) Neo/conc 38 × 1.8 Gy Paclitaxel/carboplatin/5-FU 1 Hainsworth et al. [112]
 NCT00280150 I/II NSCLC (stage III) Conc 74 Gy in 35 fractions Carboplatin 1 No results/publications
 NCT00614653 I Pancreatic cancer Conc 28 × 1.8 Gy Capecitabine 1 No results/publications
 NCT00735306 I/II Pancreatic cancer Conc 28 × 1.8 Gy Raltitrexed/oxaliplatin/5-FU 1 Results, unpublished
 NCT00307736 I/II RC (LA) Conc 28 × 1.8 Gy 5-FU 1 Blaszkowsky et al. [113]
 NCT00543842 I/II RC (LA) Conc 28 × 1.8 Gy Capecitabine 1 No results/publications
Bevacizumab/cetuximab
 NCT00703976 II HNSCC (LA) Conc/adj 35 × 2 Gy Pemetrexed 1 No results/publications
 NCT01262859 II HNSCC (LA) Neo/con 35–37 × 2 Gy Cisplatin 4 No results/publications
 NCT00968435 II HNSCC (stage III/IV) Neo/conc 70 Gy in 33 fractions Cisplatin 1 No results/publications
Endostar/endostatin
 NCT01158144 II NSCLC (LA) Conc 30–33 × 2 Gy Paclitaxel/carboplatin 1 Sun et al. [104]
 NCT01218594 II NSCLC (LA) Neo/conc/adj 30–33 × 2 Gy Doxatel/cisplatin 1 Bao et al. [102]
 NCT01211002 IV NSCLC (LA) Conc 30–33 × 2 Gy Etoposide/cisplatin 5 No results/publications
Sorafenib
 NCT00822848 I Soft tissue sarcoma Neo/conc 28 Gy in eight fractions Epirubicin/Ifosfamide 2 No results/publications
 NCT00610246 I Cancer (not eligible for curative treatment) Neo/conc/adj X × xGy 1 No results/publications
 NCT00544817 II GBM (postsurgical) Adj 30 × 2.0 Gy Temozolomide 1 Hainsworth et al. [92]
 NCT00892658 I HCC Neo/conc/adj Three fractions in 2 weeks 2 No results/publications
 NCT01328223 II HCC (advanced) Conc/adj 23–24 × 2.0–2.5 Gy 5 No results/publications
 NCT00892424 I/II Liver metastasis (unresectable) Neo/conc 3 × xGy/week for 2 weeks 2 No results/publications
 NCT00609934 I/II RCC with bone metastasis Conc/adj 10 × 3 Gy 1 No results/publications
SU5416
 NCT00023725 I/II Soft tissue sarcoma Neo/conc/adj 25 × xGy 1 No results/publications
 NCT00023738 I/II Soft tissue sarcoma Conc/adj 2 cycles of 11 × xGy Doxorubicin/ifosfamide/dacarbazine 1 No results/publications
 NCT01308034 I Non-GIST Sarcomas Conc 30 × xGy 2 No results/publications
Sunitinib
 NCT01100177 II GBM (ND) Neo/conc 30 × 2 Gy 1 No results/publications
 NCT01498835 I Soft tissue sarcoma Conc 28 x 1.8 Gy 1 Jakob et al. [96, 114]
 NCT00753727 I/II Soft tissue sarcoma Neo/conc 28 × 1.8 Gy 5 No results/publications
 NCT00631527 I Prostate cancer Conc 40 fractions of xGy Hormone therapy 1 No results/publications
Thalidomide
 NCT00049361 II Brain metastases (ND) Conc/adj 15 × xGy Temozolomide 1 No results/publications
 NCT00033254 III Brain metastases Conc/adj 15 × 2.5 Gy 1 No results/publications
Vandetanib
 NCT00745732 I/II NSCLC Neo/conc 15 × 3 or 33–35 × 2 Gy 4 Sponsor withdrew support

aDisease: RCC renal cell carcinoma, LA locally advanced, HNSCC head and neck squamous cell cancer, NSCLC non-small cell lung cancer, EC esophageal cancer, RC rectal cancer, ND newly diagnosed, GBM glioblastoma, NPC nasopharyngeal cancer, HCC hepatocellular carcinoma, SCLC small cell lung cancer

bScheduling: scheduling of angiostatic drug to radiotherapy neo neoadjuvant, conc concurrent, adj adjuvant

cRadiotherapy: Rth is applied at a frequency of 5 days/week unless indicated otherwise. When the dose applied is unknown, this is indicated with × Gy

dStatus: 1 = completed; 2 = active, not recruiting; 3 = recruiting; 4 = terminated/withdrawn; 5 = unknown

Table 3.

Overview of trials combining RTx with bevacizumab published between 2012 and 2017

Trial Phase Diseasea Schedulingb Radiotherapy regimec Chemotherapy Treatment benefit References
NCT01332929 I Brain metastases Neo/conc 15 × 2 or 10 × 3 Gy 1/3 versus 11/15a [109]
NCT00805961 II GBM (first-line treatment) Conc/adj 30 × 2 Gy Temozolomide/everolimus Yes (PFS)b [77]
NCT01186406 II GBM (ND) Conc/adj 30 × 2 Gy Temozolomide No (OS and PFS) [65]
NCT00943826 III GBM (ND) Neo/conc 30 × 2 Gy Temozolomide Yes (PFS), No (OS) [64]
NCT01022918 II GBM (unresectable) Neo/adj 30 × 2 Gy Temozolomide/irinotecan No (PFS) [72]
NCT00545792 II Gynecological cancer (recurrent) Conc 45 Gy in 25 fractions Yes (PFS) [78]
NCT00281840 II HNSCC (stage III/IV) Conc/adj 40 × 1.8 Gy Docetaxel No (PFS)b [76]
NCT00408694 II NPC (stage IIB–VB) Conc/adj 33 × 2.12 Gy Cisplatin/5-FU No (PFS)b [74]
NCT00460174 II Pancreatic cancer (localized) Neo 15 × 2.4 Gy Gemcitabine NAc [110]
NCT00321685 II RC (LA non-metastatic) Conc 28 × 1.8 Gy Capecitabine/oxaliplatin (FOLFOX) No (pCR)b [73, 115]
NCT00865189 II RC (LA) Neo/conc 25 × 1.8 Gy FOLFOX/5-FU No (pCR)b [71]
NCT01043484 II RC (localized) Conc 25 × 1.8 Gy Capecitabine No (pCR) [75]
NCT00308516 II RC (stage II/III) Conc/adj 28 × 1.8 Gy FU (conc)/FOLFOX6 (adj) Yes (pCR; DFS)b [83]
NCT00307736 I/II RC (LA) Conc 28 × 1.8 Gy 5-FU/erlotinib Yes (pCR)b [113]
NCT00308529 II SCLC (LA) Neo/conc/adj 34 × 1.8 Gy Irinotecan/carboplatin NAd [111]
NCT00393068 II EC (operable) Conc 25 × 1.8 Gy 5-FU/paclitaxel/carboplatin/erlotinib No (pCR) [70]
NCT00140556 I HNSCC/NPC Conc 70 Gy in twice daily 1.25 Gy Cisplatin/erlotinib Yes (OS)b [87]
NCT00392704 II HNSCC (LA) Neo/conc 38 × 1.8 Gy Paclitaxel/carboplatin/5-FU (neo); Paclitaxel/erlotinib (conc) Yes (PFS)b [112]

aResponders according RECIST in patients treated with increasing dose bevacizumab

bCompared to historical studies, NA not assessed

cStudy was set up to compare different response measures

dDue to early trial closure related to toxicity

Combining bevacizumab with (chemo)radiotherapy

In 2014, Gilbert et al. and Chinot et al. published the results of two phase III trials that evaluated whether bevacizumab improves the efficacy of standard chemoradiotherapy for patients with newly diagnosed glioblastoma [64, 65]. Both studies were initiated based on previous observations in phase I/II trials that suggested a potential benefit of this combination treatment [6669]. In the trial of Gilbert et al., bevacizumab (or placebo) was added in the fourth treatment week of concurrent radiotherapy (30 × 2 Gy) plus temozolomide, whereas Chinot et al. started bevacizumab (or placebo) already in the first treatment week of radiotherapy (30 × 2 Gy) plus temozolomide. Gilbert et al. found no benefit of bevacizumab in terms of overall survival (OS; 15.7 vs. 16.1 months; HR 1.13) and progression-free survival (PFS; 10.7 vs. 7.3 months; HR 0.79), but reported a worse quality of life and a decline in neurocognitive function in the bevacizumab group. Patients treated with bevacizumab experienced grade 3 or higher adverse events more frequently [65]. Chinot et al. did observe a prolonged PFS in the bevacizumab group as compared to placebo (10.6 vs. 6.2 months), but also failed to show a significant difference in OS. Again, grade 3 or higher adverse events were more common in the bevacizumab cohort (66.8 vs. 51.3% in the placebo group) [64]. Of note, since the statistical design of the two trials was not comparable, a direct comparison cannot be made. However, both studies point toward a favorable PFS with the addition of bevacizumab to radiotherapy plus temozolomide in newly diagnosed glioblastoma, especially when combination treatment is initiated at the start of radiotherapy. Unfortunately, the favorable PFS is accompanied with increased toxicity. Thus, it remains to be seen if bevacizumab is really a beneficial addition to the first-line treatment in glioblastoma patients.

Overall, the clinical value of combining bevacizumab with radiotherapy is open for debate, especially since most current trials either report no clinical benefit [7076] or only a (minor) benefit in PFS or pCR (pathological complete response) [77, 78]. For example, several phase II studies have been performed in rectal cancer patients based on promising results in phase I trials [79, 80]. Borg et al. [71] added bevacizumab to neoadjuvant 5-FU and RT for 46 patients with stage III rectal cancer before total mesorectal excision, evaluating the proportion of patients achieving a pathological complete response (pCR; ypT0N0). The study did not reach a significant difference from expected pCR (10.0%) with a rate of 11.4%. Salazar et al. also failed to show a significant difference in pCR with the addition of bevacizumab to capecitabine-based neoadjuvant chemoradiotherapy (CRT) in 44 patients with stage II/III rectal cancer as compared to 46 patients undergoing only CRT (16 vs. 11%, p = 0.54) [75]. Comparable observations were reported by Dellas et al. [81]. More recently, Landry et al. reported on the 5-year clinical outcomes of a phase II trial in patients with locally advanced rectal cancer that received preoperative chemoradiation with bevacizumab followed by postoperative chemotherapy (FOLFOX) plus bevacizumab. Despite excellent 5-year OS and DFS, the primary endpoint (30% pCR) was not reached. Moreover, the treatment schedule was associated with substantial neoadjuvant and surgical toxicity. This resulted in low compliance to adjuvant treatment, and therefore, it was recommended to not further explore this combination treatment [73]. Also Kennecke et al. [82], who evaluated preoperative bevacizumab treatment added to oxaliplatin, capecitabine and radiation in 42 locally advanced or low rectal cancer patients, suggested that the results of their study did not justify a phase III trial aimed at exploring the benefit of neoadjuvant bevacizumab in rectal cancer. Of note, Spigel et al. [83] observed an improved pCR rate of 29% in patients with stage II/III rectal cancer who were treated prior to surgery with 5-fluorouracil, bevacizumab and radiotherapy. Also Xiao et al. [84] reported that sandwich-like neoadjuvant therapy with bevacizumab was safe and effective for locally advanced rectal cancer. Possibly, differences in the timing of surgery, i.e., 2–8 versus 6–8 weeks following chemoradiation could underlie the different observations [85]. This should be taken into account when further optimizing dose-scheduling of both treatments in rectal cancer. Regarding scheduling, the patient accrual in a single-arm phase II study by Resch et al. [86] in rectal cancer patients that received bevacizumab concurrent with chemoradiation was terminated due to toxicity. Based on these current results, it can be argued whether the combination of radiotherapy with bevacizumab will provide a clinical benefit to rectal cancer patients.

A similar conclusion can be claimed regarding the combination of radiotherapy and bevacizumab in nasopharyngeal cancer. In a phase II clinical trial by Lee et al. [74], 44 patients with stage IIB–IVB nasopharyngeal cancer received radiotherapy (33 × 1.2 Gy) in combination with three cycles of bevacizumab and cisplatin, followed by standard adjuvant treatment consisting of fluorouracil in combination with bevacizumab. While the study was designed to test toxicity, the estimated PFS was lower than previously reported in standard therapy (75 vs. 86%). The estimated PFS was also not reached in the study by Yao et al. in patients with locally advanced squamous cell carcinoma of the head and neck that received bevacizumab concurrent with chemoradiation followed by maintenance bevacizumab treatment. Nevertheless, they concluded that the regimen could be further studied in appropriately selected patients, especially those not eligible for cisplatin administration [76]. Of note, a study combining both bevacizumab and erlotinib with concurrent chemoradiation in head and neck cancer patients appeared to give favorable locoregional control and OS compared to historical controls. It was suggested to further study this in a randomized study [87].

Altogether, most current studies combining bevacizumab with radiotherapy only show moderate to no clinical benefit at all. In addition, in most studies the combination treatment is associated with increased albeit manageable toxicities. All this is in line with previous observations [24].

Combining sorafenib with (chemo)radiotherapy

As mentioned previously, most trials on combining angiostatic drugs with irradiation that were published between 2012 and 2015 involved the addition of bevacizumab to radiotherapy. However, a few trials assessed the combination with other angiostatic drugs. For example, several studies evaluated the addition of the tyrosine kinase inhibitor sorafenib to radiation therapy. Brade et al. [88] tested the safety of combining sorafenib with SBRT (up to 51 Gy) in liver cancer patients. They observed a high rate of adverse events and DLTs, predominantly in patients in which a high volume of liver was irradiated. This is in line with reports from Goody et al. and Dawson et al. [89, 90]. Based on these observations, it appears not advisable to combine concurrent sorafenib with SBRT in patients with locally advanced HCC [88]. Interestingly, Chen et al. [91] observed more acceptable toxicities when combining concurrent sorafenib with conventional fractionated radiotherapy (2.0–2.5 Gy/fraction up to 60 Gy). Since the response rate appeared similar compared to historical studies of radiotherapy alone, it was concluded that the schedule could be further investigated, albeit with caution [91]. A comparable conclusion was drawn by Hainsworth et al. [92] who applied maintenance sorafenib plus temozolomide treatment following fractionated radiotherapy (30 × 2 Gy) plus temozolomide in newly diagnosed glioblastoma patients. Of note, the necessity to combine radiotherapy with sorafenib with caution was further exemplified by the observation that sorafenib prior to radiotherapy can result in reduced liver volumes which might require adjustment of the radiation dose [93]. In addition, sorafenib treatment was associated with gastrointestinal perforation after radiotherapy in advanced renal cell carcinoma patients [94]. These findings again illustrate the necessity to gain more insight in the effects of alternative dose-scheduling regimes when combining radiotherapy with angiostatic drugs.

Combining sunitinib with (chemo)radiotherapy

The opportunities and challenges of this combination treatment were previously reviewed by Kleibeuker et al. [63]. Here, we briefly discuss some of the latest insights. Recently, Jakob et al. published the results of two phase I trials that explored the feasibility of concurrent sunitinib and radiotherapy for treatment of locally advanced soft tissue sarcoma (STS) prior to surgery [95, 96]. They observed acceptable toxicity which was comparable to other studies that evaluated the combination of radiotherapy with angiostatic drugs in STS, including pazopanib [97] and bevacizumab [98]. Based on favorable responses, all these studies recommended further investigation of the combination treatment in future trials [9598]. However, a single phase Ib/II study of sunitinib with radiotherapy in soft tissue sarcoma reported unacceptable toxicities as well as increased local relapse rates [99]. Interestingly, the initial dose of sunitinib used in this study was higher compared to the other studies (50 vs. 25–37.5 mg), which might explain the observed increased toxicity. Horgan et al. explored the feasibility, tolerability and efficacy of sunitinib adjuvant to surgery in locally advanced esophageal cancer patients that received neoadjuvant chemoradiation (irinotecan/cisplatin + 25 × 2 Gy). This regime appeared feasible although it was poorly tolerated. In addition, the treatment did not show any clinical benefit compared to (historical) controls [100]. All these findings support the previous conclusions by Kleibeuker et al. [63] that effective combination of radiotherapy with sunitinib relies on better insights in the optimal dosing and scheduling of the combination treatment.

Combining other angiostatic drugs with (chemo)radiotherapy

Besides the trials discussed above, a handful of studies described the combination of additional angiostatic drugs with radiotherapy. For some of these, e.g., SU5416 (semaxanib) and vandetanib, no trial results have been published, possibly because the combination treatment is no longer of interest. For other inhibitors, some information is available. As mentioned above, pazopanib was combined with radiotherapy in soft tissue sarcoma patients [97]. Based on a dose–escalation study, Haas et al. [97] concluded that neoadjuvant pazopanib (daily dose of 800 mg daily for 6 weeks) in combination with 50 Gy (25 × 2 Gy) appeared safe, albeit that toxicity should be carefully monitored in future studies. Of note, a case study reported complete remission of gastric and esophageal metastases in a renal cancer patient after treatment with radiotherapy (10 × 3 Gy) and neoadjuvant as well as adjuvant pazopanib [101]. The study by Haas et al. also reported favorable responses which warrants further studies on the clinical benefit of radiotherapy combined with pazopanib.

Two recent studies evaluated the combination of endostar/endostatin with radiotherapy in NSCLC patients. In the study by Bao et al. [102], patients with unresectable stage III NSCLC were treated with endostar combined with concurrent chemoradiation (docetaxel/cisplatin + 30–33 × 2 Gy). They reported promising short-term efficacy and local control rates, and the treatment regimen was generally well tolerated [102]. These findings are in agreement with a previous study in NSCLC patients and warrant future evaluation of this treatment [103]. On the other hand, Sun et al. evaluated the addition of endostatin to concurrent chemoradiation (carboplatin/paclitaxel + 30–33 × 2 Gy) followed by maintenance chemotherapy + endostatin in patients with unresectable stage III NSCLC. This study was closed early because of unacceptable toxicity, i.e., four out of ten patients presented with grade III pulmonary toxicity [104].

Collectively, the results of the current studies that evaluate the feasibility to combine angiostatic drugs with radiotherapy have not provided remarkable novel insights regarding this treatment regimen. The occurrence of toxicities remains an issue of concern [105]. Combining radiotherapy with bevacizumab generally shows limited efficacy while the combination with other angiostatic drugs has shown favorable responses, but still awaits further confirmation in (randomized) clinical studies. Optimization of dosing and scheduling of both treatment modalities remains one of the key future challenges.

The future of combined angiostatic/radiation therapy

Based on preclinical studies as well as on different clinical observations, it still appears feasible that the combination of angiostatic drugs with radiotherapy can be a valuable addition to current therapeutic strategies for cancer patients. At the same time, the insights from past and present clinical trials have made it clear that successful clinical implementation of this combination treatment requires considerable investigations. As evident from our current and previous review, there are a large number of studies ongoing that will help to resolve some of the outstanding questions, especially with regard to feasibility and toxicity of combining different angiostatic drugs with different radiation regimes in a broad spectrum of cancer types. Moreover, several novel trials have been initiated in the past 5 years, for example with bevacizumab (Table 4). The results of all these trials will help to make the necessary steps to bring effective combination therapy to cancer patients.

Table 4.

Newly initiated trials combining bevacizumab with radiotherapy (2012–2017)

Trial Phase Diseasea Schedulingb Radiotherapy regimec Chemotherapy Statusd
NCT01730950 II GBM Conc IMRT, 3D-CRT, or proton beam RT 5 days a week for 2 weeks None 2
NCT01746238 I STS Conc 6 weeks, 5 days a week Doxorubicin 3
NCT02313272 I GBM Conc Hypofractionated SRT Pembrolizumab 3
NCT01871363 II RC Conc 25 × 2 Gy Capecitabine 5
NCT01743950 II GBM Conc 27 × 2 Gy (PRDR) None 3
NCT01569984 II mCRC Neo Up to 60 Gy in six fractions, alternating weekdays for 2 weeks None 1
NCT02185352 II BM in BC Neo WBRT Etoposide, cisplatin 3
NCT01580969 Ib/II Glioma Conc Individually determined Minocycline 3
NCT01588431 II HNSCC Neo/conc 5 weeks, 70 Gy Docetaxel, cetuximab, cisplatin 2
NCT01818973 II RC Neo/conc 5 weeks, 50 Gy Capecitabine + oxaliplatin 3
NCT01554059 II RC Neo/conc 5 weeks, 50 Gy 5-FU, oxaliplatin 1
NCT02812641 II EC Conc 4 weeks, 40 Gy Cisplatin, 5-FU 3
NCT02672995 I BM Conc Three fractions, 18–27 Gy None 3

aDisease: GBM glioblastoma, STS soft tissue sarcoma, RC rectal cancer, mCRC metastatic colorectal cancer, BM brain metastasis, BC breast cancer, HNSCC head and neck squamous cell cancer, EC esophageal cancer

bScheduling: scheduling of angiostatic drug to radiotherapy neo neoadjuvant, conc concurrent, adj adjuvant

cRadiotherapy: radiation is applied at a frequency of 5 days/week unless indicated otherwise. When the dose applied is unknown, this is indicated with × Gy

dStatus: 1 = completed; 2 = active, not recruiting; 3 = recruiting; 4 = terminated/withdrawn; 5 = unknown

One of the most urgent issues to address involves the optimal dose-scheduling of both treatment modalities, not only to improve treatment efficacy, but also because the results from past studies indicated that inadequate dose-scheduling can induce severe toxicities [24, 63]. With regard to dosing, it is important to explore how alterations in dosing of either treatment affect the toxicity and efficacy of combination therapy. For example, Carlson et al. and Omura et al. explored the addition of bevacizumab to hypofractionated radiotherapy in newly diagnosed glioblastoma patients [106, 107]. In the latter study, patients received hypofractionated stereotactic radiotherapy (6 × 6 + 4 Gy over 2 weeks) with concurrent and adjuvant temozolomide plus bevacizumab. The regime was identified as safe and was found to have a comparable effect on OS as compared to historical standard treatment. Moreover, the reduced treatment period appears more convenient for cancer patients [106]. The study by Carlson et al. [107] also reported that the addition of concurrent/adjuvant bevacizumab to hyperfractionated IMRT (10 × 6 Gy) did not improve OS while a somewhat higher rate of grade 3 toxicity was observed. Nevertheless, these studies provide the first evidence that altered dose-scheduling can be explored in order to improve treatment efficacy. In this light, our recent preclinical results are also of interest. We observed that concurrent combination treatment allowed a 50% reduction in dosing of the angiostatic drug sunitinib without affecting the therapeutic efficacy of conventional fractionated radiotherapy [23, 28]. Of note, the low dose was also effective in combination with single high-dose irradiation. These observations could provide opportunities to improve combination treatment both in the curative and in the palliative setting. However, the applicability of such approaches in a clinical setting still awaits confirmation.

Apart from dosing, the scheduling of both treatments is also of importance. Different effects have been observed between concurrent and (neo)adjuvant combination of angiostatic drugs with radiotherapy [24, 63]. Recently, Avallone et al. [108] reported on differential clinical effects of combining bevacizumab with chemoradiation either concomitantly or sequentially in high-risk locally advanced rectal cancer patients. While the endpoint was reached using the sequential schedule, the concomitant schedule arm was terminated early because of inconsistent activity. Also, toxicity and postoperative complications appeared to be higher after concomitant treatment [108]. This is illustrative of the importance of optimal scheduling, and it is therefore essential that the effect of scheduling is further explored in future studies.

Finally, future studies should aim to integrate insights on tumor perfusion with the observed response to therapy. As described above, the main rationales to combine angiostatic drugs with radiotherapy are (1) to improve tumor perfusion and oxygenation by vessel normalization and (2) to counteract radiation-induced tumor (re)vascularization. Both aims require different approaches with regard to dose-scheduling. Thus, it is vital in obtain information of tumor perfusion and oxygenation prior to treatment planning but also to monitor changes in these parameters during treatment. This could improve treatment efficacy. Several of the trials that were discussed here also included perfusion measurements or explored (bio)markers that could predict response to therapy. However, it is outside the scope of the current review to discuss the insights of these studies regarding these issues. It suffices to state that the development and implementation of noninvasive imaging techniques to measure perfusion and early tumor responses are important to better explain and/or predict the response to the combination of angiostatic drugs with radiotherapy.

Conclusions

Despite the limited clinical efficacy of angiostatic drugs as monotherapeutics, there is ample evidence that angiostatic therapy can be valuable when combined with other treatment modalities, including radiotherapy. This involves the beneficial effects of angiostatic drugs on tumor perfusion prior to and during radiation as well as their inhibitory effects on tumor (re)vascularization during or after radiation. Past and present clinical trials that combined angiostatic drugs with radiotherapy indeed showed that this approach can improve therapeutic outcome. However, this is mainly observed in phase I/II trials and actual validation of clinical benefit awaits confirmation in larger randomized phase III trials. Moreover, variable efficacy as well as increased toxicity has been reported when angiostatic drugs are combined with radiotherapy. This is most likely due to non-optimal dosing and inadequate scheduling of both treatment regimes. Thus, exploring the close relation between dose-scheduling represents the key challenge for future research regarding combination treatment. This directly relates to the development of rapid and noninvasive imaging strategies in order to measure tumor perfusion prior, during and after treatment. This will help to optimize current approaches to improve treatment strategies and to make effective combination therapy available for cancer patients in daily clinical practice.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  • 1.Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–1186. doi: 10.1056/NEJM197111182852108. [DOI] [PubMed] [Google Scholar]
  • 2.New treatments for colorectal cancer New treatments for colorectal cancer. FDA Consum. 2004;38:17. [PubMed] [Google Scholar]
  • 3.Berndsen RH, Abdul K, Weiss A, Zoetemelk M, Te Winkel MT, Dyson PJ, Griffioen AW, and Nowak-Sliwinska P (2017) Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment. Angiogenesis. doi:10.1007/s10456-017-9551-z [DOI] [PubMed]
  • 4.Van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, and Griffioen AW (2017) miRNAs: micro-managers of anti-cancer combination therapies. Angiogenesis. doi:10.1007/s10456-017-9545-x [DOI] [PMC free article] [PubMed]
  • 5.Bani M, Decio A, Giavazzi R, Ghilardi C (2017) Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists. Angiogenesis. doi:10.1007/s10456-017-9549-6 [DOI] [PubMed]
  • 6.Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, Benson AB, Eastern Cooperative Oncology Group Study E3200 Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol. 2007;25:1539–1544. doi: 10.1200/JCO.2006.09.6305. [DOI] [PubMed] [Google Scholar]
  • 7.Escudier B, Bellmunt J, Negrier S, Bajetta E, Melichar B, Bracarda S, Ravaud A, Golding S, Jethwa S, Sneller V. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010;28:2144–2150. doi: 10.1200/JCO.2009.26.7849. [DOI] [PubMed] [Google Scholar]
  • 8.Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–124. doi: 10.1056/NEJMoa065044. [DOI] [PubMed] [Google Scholar]
  • 9.Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Huang X, Figlin RA. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:3584–3590. doi: 10.1200/JCO.2008.20.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Teicher BA. Role of angiogenesis in the response to anticancer therapies. Drug Resist Updat. 1998;1:59–61. doi: 10.1016/s1368-7646(98)80215-x. [DOI] [PubMed] [Google Scholar]
  • 11.Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–2342. doi: 10.1056/NEJMoa032691. [DOI] [PubMed] [Google Scholar]
  • 12.Zhou Q, Guo P, Gallo JM. Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin Cancer Res. 2008;14:1540–1549. doi: 10.1158/1078-0432.CCR-07-4544. [DOI] [PubMed] [Google Scholar]
  • 13.Cerniglia GJ, Pore N, Tsai JH, Schultz S, Mick R, Choe R, Xing X, Durduran T, Yodh AG, Evans SM, Koch CJ, Hahn SM, Quon H, Sehgal CM, Lee WM, Maity A. Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. PLoS One. 2009;4:e6539. doi: 10.1371/journal.pone.0006539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Maity A, Bernhard EJ. Modulating tumor vasculature through signaling inhibition to improve cytotoxic therapy. Cancer Res. 2010;70:2141–2145. doi: 10.1158/0008-5472.CAN-09-3615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Nowak-Sliwinska P, Weiss A, van Beijnum JR, Wong TJ, Ballini JP, Lovisa B, van den Bergh H, Griffioen AW. Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion. J Cell Mol Med. 2011;16:1553–1562. doi: 10.1111/j.1582-4934.2011.01440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Weiss A, Bonvin D, Berndsen RH, Scherrer E, Wong TJ, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Angiostatic treatment prior to chemo- or photodynamic therapy improves anti-tumor efficacy. Sci Rep. 2015;5:8990. doi: 10.1038/srep08990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Nowak-Sliwinska P, Weiss A, van Beijnum JR, Wong TJ, Kilarski WW, Szewczyk G, Verheul HM, Sarna T, van den Bergh H, Griffioen AW. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition. Cell Death Dis. 2015;6:e1641. doi: 10.1038/cddis.2015.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ramjiawan RR, Griffioen AW, Duda DG (2017) Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis. doi:10.1007/s10456-017-9552-y [DOI] [PMC free article] [PubMed]
  • 19.Kuusk T, Grivas, N, Bex A (2017) Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer: a review. Angiogenesis. doi:10.1007/s10456-017-9550-0 [DOI] [PubMed]
  • 20.Gorski DH, Mauceri HJ, Salloum RM, Gately S, Hellman S, Beckett MA, Sukhatme VP, Soff GA, Kufe DW, Weichselbaum RR. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res. 1998;58:5686–5689. [PubMed] [Google Scholar]
  • 21.Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA, Bigelow K, Heimann R, Gately S, Dhanabal M, Soff GA, Sukhatme VP, Kufe DW, Weichselbaum RR. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature. 1998;394:287–291. doi: 10.1038/28412. [DOI] [PubMed] [Google Scholar]
  • 22.Dings RP, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH, Griffin RJ. Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res. 2007;13:3395–3402. doi: 10.1158/1078-0432.CCR-06-2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kleibeuker EA, Ten Hooven MA, Castricum KC, Honeywell R, Griffioen AW, Verheul HM, Slotman BJ, Thijssen VL. Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction. Cancer Med. 2015;4:1003–1015. doi: 10.1002/cam4.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kleibeuker EA, Griffioen AW, Verheul HM, Slotman BJ, Thijssen VL. Combining angiogenesis inhibition and radiotherapy: a double-edged sword. Drug Resist Updat. 2012;15:173–182. doi: 10.1016/j.drup.2012.04.002. [DOI] [PubMed] [Google Scholar]
  • 25.Overgaard J, Horsman MR. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol. 1996;6:10–21. doi: 10.1053/SRAO0060010. [DOI] [PubMed] [Google Scholar]
  • 26.Lee C-G, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, Boucher Y. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Can Res. 2000;60:5565–5570. [PubMed] [Google Scholar]
  • 27.Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–147. doi: 10.1038/nm988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kleibeuker EA, Fokas E, Allen PD, Kersemans V, Griffioen AW, Beech J, Im JH, Smart SC, Castricum KC, van den Berg J, Schulkens IA, Hill SA, Harris AL, Slotman BJ, Verheul HM, Muschel RJ, Thijssen VL. Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget. 2016;7:76613–76627. doi: 10.18632/oncotarget.12814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Teicher BA, Dupuis N, Kusomoto T, Robinson MF, Liu F, Menon K, Coleman CN. Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat Oncol Investig. 1994;2:269–276. [Google Scholar]
  • 30.Teicher BA, Holden SA, Ara G, Dupuis NP, Liu F, Yuan J, Ikebe M, Kakeji Y. Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int J Cancer. 1995;61:732–737. doi: 10.1002/ijc.2910610523. [DOI] [PubMed] [Google Scholar]
  • 31.Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6:553–563. doi: 10.1016/j.ccr.2004.10.011. [DOI] [PubMed] [Google Scholar]
  • 32.Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–693. doi: 10.1038/nm0603-685. [DOI] [PubMed] [Google Scholar]
  • 33.Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62. doi: 10.1126/science.1104819. [DOI] [PubMed] [Google Scholar]
  • 34.Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R, Gadisetti C, Subramanian S, Devasahayam N, Munasinghe JP, Mitchell JB, Krishna MC. Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Can Res. 2011;71:6350–6359. doi: 10.1158/0008-5472.CAN-11-2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Thijssen VL, Poirier F, Baum LG, Griffioen AW. Galectins in the tumor endothelium; opportunities for combined cancer therapy. Blood. 2007;110:2819–2827. doi: 10.1182/blood-2007-03-077792. [DOI] [PubMed] [Google Scholar]
  • 36.Thijssen VL, Hulsmans S, Griffioen AW. The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. Am J Pathol. 2008;172:545–553. doi: 10.2353/ajpath.2008.070938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Heusschen R, Schulkens IA, van Beijnum J, Griffioen AW, Thijssen VL. Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis. Biochim Biophys Acta. 2014;1842:284–292. doi: 10.1016/j.bbadis.2013.12.003. [DOI] [PubMed] [Google Scholar]
  • 38.Schulkens IA, Heusschen R, van den Boogaart V, van Suylen RJ, Dingemans AM, Griffioen AW, Thijssen VL. Galectin expression profiling identifies galectin-1 and galectin-9Δ5 as prognostic factors in stage I/II non-small cell lung cancer. PLoS One. 2014;9:e107988. doi: 10.1371/journal.pone.0107988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Punt S, Thijssen VL, Vrolijk J, de Kroon CD, Gorter A, Jordanova ES. Galectin-1, -3 and -9 expression and clinical significance in squamous cervical cancer. PLoS One. 2015;10:e0129119. doi: 10.1371/journal.pone.0129119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Thijssen VL, Heusschen R, Caers J, Griffioen AW. Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta. 2015;1855:235–247. doi: 10.1016/j.bbcan.2015.03.003. [DOI] [PubMed] [Google Scholar]
  • 41.Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J, Mayo KH, Poirier F, Griffioen AW. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA. 2006;103:15975–15980. doi: 10.1073/pnas.0603883103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, Hackeng TM, Kiss R, Kloog Y, Poirier F, Griffioen AW. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res. 2010;70:6216–6224. doi: 10.1158/0008-5472.CAN-09-4150. [DOI] [PubMed] [Google Scholar]
  • 43.Thijssen VL, Rabinovich GA, Griffioen AW. Vascular galectins: regulators of tumor progression and targets for cancer therapy. Cytokine Growth Factor Rev. 2013;24:547–558. doi: 10.1016/j.cytogfr.2013.07.003. [DOI] [PubMed] [Google Scholar]
  • 44.van Beijnum JR, Thijssen VL, Läppchen T, Wong TJ, Verel I, Engbersen M, Schulkens IA, Rossin R, Grüll H, Griffioen AW, Nowak-Sliwinska P. A key role for galectin-1 in sprouting angiogenesis revealed by novel rationally designed antibodies. Int J Cancer. 2016;139:824–835. doi: 10.1002/ijc.30131. [DOI] [PubMed] [Google Scholar]
  • 45.Griffioen AW, van der Schaft DW, Barendsz-Janson AF, Cox A, Struijker Boudier HA, Hillen HF, Mayo KH. Anginex, a designed peptide that inhibits angiogenesis. Biochem J. 2001;354:233–242. doi: 10.1042/0264-6021:3540233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, Sahani DV, Kalva SP, Cohen KS, Scadden DT, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Shellito PC, Mino-Kenudson M, Lauwers GY. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol. 2005;23:8136–8139. doi: 10.1200/JCO.2005.02.5635. [DOI] [PubMed] [Google Scholar]
  • 47.Verstraete M, Debucquoy A, Dekervel J, van Pelt J, Verslype C, Devos E, Chiritescu G, Dumon K, D’Hoore A, Gevaert O, Sagaert X, Van Cutsem E, Haustermans K. Combining bevacizumab and chemoradiation in rectal cancer. Translational results of the AXEBeam trial. Br J Cancer. 2015;112:1314–1325. doi: 10.1038/bjc.2015.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS) Radiat Res. 2012;177:311–327. doi: 10.1667/rr2773.1. [DOI] [PubMed] [Google Scholar]
  • 49.Mayr NA, Yuh WT, Magnotta VA, Ehrhardt JC, Wheeler JA, Sorosky JI, Davis CS, Wen BC, Martin DD, Pelsang RE, Buller RE, Oberley LW, Mellenberg DE, Hussey DH. Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys. 1996;36:623–633. doi: 10.1016/s0360-3016(97)85090-0. [DOI] [PubMed] [Google Scholar]
  • 50.Shibuya K, Tsushima Y, Horisoko E, Noda SE, Taketomi-Takahashi A, Ohno T, Amanuma M, Endo K, Nakano T. Blood flow change quantification in cervical cancer before and during radiation therapy using perfusion CT. J Radiat Res. 2011;52:804–811. doi: 10.1269/jrr.11079. [DOI] [PubMed] [Google Scholar]
  • 51.Janssen MH, Aerts HJ, Kierkels RG, Backes WH, Ollers MC, Buijsen J, Lambin P, Lammering G. Tumor perfusion increases during hypofractionated short-course radiotherapy in rectal cancer: sequential perfusion-CT findings. Radiother Oncol. 2010;94:156–160. doi: 10.1016/j.radonc.2009.12.013. [DOI] [PubMed] [Google Scholar]
  • 52.Ng QS, Goh V, Milner J, Padhani AR, Saunders MI, Hoskin PJ. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: in vivo whole tumor assessment using volumetric perfusion computed tomography. Int J Radiat Oncol Biol Phys. 2007;67:417–424. doi: 10.1016/j.ijrobp.2006.10.005. [DOI] [PubMed] [Google Scholar]
  • 53.Cooper RA, West CM, Logue JP, Davidson SE, Miller A, Roberts S, Statford IJ, Honess DJ, Hunter RD. Changes in oxygenation during radiotherapy in carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 1999;45:119–126. doi: 10.1016/s0360-3016(99)00093-0. [DOI] [PubMed] [Google Scholar]
  • 54.Dunst J, Hänsgen G, Lautenschläger C, Füchsel G, Becker A. Oxygenation of cervical cancers during radiotherapy and radiotherapy + cis-retinoic acid/interferon. Int J Radiat Oncol Biol Phys. 1999;43:367–373. doi: 10.1016/s0360-3016(98)00361-7. [DOI] [PubMed] [Google Scholar]
  • 55.Crokart N, Jordan BF, Baudelet C, Ansiaux R, Sonveaux P, Grégoire V, Beghein N, DeWever J, Bouzin C, Feron O, Gallez B. Early reoxygenation in tumors after irradiation: determining factors and consequences for radiotherapy regimens using daily multiple fractions. Int J Radiat Oncol Biol Phys. 2005;63:901–910. doi: 10.1016/j.ijrobp.2005.02.038. [DOI] [PubMed] [Google Scholar]
  • 56.Murata R, Nishimura Y, Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys. 1997;37:1107–1113. doi: 10.1016/s0360-3016(96)00628-1. [DOI] [PubMed] [Google Scholar]
  • 57.Fenton BM, Paoni SF, Ding I. Effect of VEGF receptor-2 antibody on vascular function and oxygenation in spontaneous and transplanted tumors. Radiother Oncol. 2004;72:221–230. doi: 10.1016/j.radonc.2004.05.005. [DOI] [PubMed] [Google Scholar]
  • 58.Fu P, He YS, Huang Q, Ding T, Cen YC, Zhao HY, Wei X. Bevacizumab treatment for newly diagnosed glioblastoma: systematic review and meta-analysis of clinical trials. Mol Clin Oncol. 2016;4:833–838. doi: 10.3892/mco.2016.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Odia Y, Shih JH, Kreisl TN, Fine HA. Bevacizumab-related toxicities in the National Cancer Institute malignant glioma trial cohort. J Neurooncol. 2014;120:431–440. doi: 10.1007/s11060-014-1571-6. [DOI] [PubMed] [Google Scholar]
  • 60.Wachsberger PR, Burd R, Cardi C, Thakur M, Daskalakis C, Holash J, Yancopoulos GD, Dicker AP. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int J Radiat Oncol Biol Phys. 2007;67:1526–1537. doi: 10.1016/j.ijrobp.2006.11.011. [DOI] [PubMed] [Google Scholar]
  • 61.Choi YR, Han HS, Lee OJ, Lim SN, Kim MJ, Yeon MH, Jeon HJ, Lee KH, Kim ST. Metastatic renal cell carcinoma in a supraclavicular lymph node with no known primary: a case report. Cancer Res Treat. 2012;44:215–218. doi: 10.4143/crt.2012.44.3.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hird AE, Chow E, Ehrlich L, Probyn L, Sinclair E, Yip D, Ko YJ. Rapid improvement in pain and functional level in a patient with metastatic renal cell carcinoma: a case report and review of the literature. J Palliat Med. 2008;11:1156–1161. doi: 10.1089/jpm.2008.9846. [DOI] [PubMed] [Google Scholar]
  • 63.Kleibeuker EA, Ten Hooven MA, Verheul HM, Slotman BJ, Thijssen VL. Combining radiotherapy with sunitinib: lessons (to be) learned. Angiogenesis. 2015;18:385–395. doi: 10.1007/s10456-015-9476-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–722. doi: 10.1056/NEJMoa1308345. [DOI] [PubMed] [Google Scholar]
  • 65.Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ, Mehta MP. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370:699–708. doi: 10.1056/NEJMoa1308573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Filka E, Yong WH, Mischel PS, Liau LM, Phuphanich S, Black K, Peak S, Green RM, Spier CE, Kolevska T, Polikoff J, Fehrenbacher L, Elashoff R, Cloughesy T. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol. 2011;29:142–148. doi: 10.1200/JCO.2010.30.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Vredenburgh JJ, Desjardins A, Herndon JE, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Wagner M, Bailey L, Bigner DD, Friedman AH, Friedman HS. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–4729. doi: 10.1200/JCO.2007.12.2440. [DOI] [PubMed] [Google Scholar]
  • 68.Vredenburgh JJ, Desjardins A, Reardon DA, Peters KB, Herndon JE, Marcello J, Kirkpatrick JP, Sampson JH, Bailey L, Threatt S, Friedman AH, Bigner DD, Friedman HS. The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin Cancer Res. 2011;17:4119–4124. doi: 10.1158/1078-0432.CCR-11-0120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27:740–745. doi: 10.1200/JCO.2008.16.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Bendell JC, Meluch A, Peyton J, Rubin M, Waterhouse D, Webb C, Burris HA, Hainsworth JD. A phase II trial of preoperative concurrent chemotherapy/radiation therapy plus bevacizumab/erlotinib in the treatment of localized esophageal cancer. Clin Adv Hematol Oncol. 2012;10:430–437. [PubMed] [Google Scholar]
  • 71.Borg C, André T, Mantion G, Boudghène F, Mornex F, Maingon P, Adenis A, Azria D, Piutti M, Morsli O, Bosset JF. Pathological response and safety of two neoadjuvant strategies with bevacizumab in MRI-defined locally advanced T3 resectable rectal cancer: a randomized, noncomparative phase II study. Ann Oncol. 2014;25:2205–2210. doi: 10.1093/annonc/mdu377. [DOI] [PubMed] [Google Scholar]
  • 72.Chauffert B, Feuvret L, Bonnetain F, Taillandier L, Frappaz D, Taillia H, Schott R, Honnorat J, Fabbro M, Tennevet I, Ghiringhelli F, Guillamo JS, Durando X, Castera D, Frenay M, Campello C, Dalban C, Skrzypski J, Chinot O. Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF†. Ann Oncol. 2014;25:1442–1447. doi: 10.1093/annonc/mdu148. [DOI] [PubMed] [Google Scholar]
  • 73.Landry JC, Feng Y, Prabhu RS, Cohen SJ, Staley CA, Whittington R, Sigurdson ER, Nimeiri H, Verma U, Benson AB. Phase II trial of preoperative radiation with concurrent capecitabine, oxaliplatin, and bevacizumab followed by surgery and postoperative 5-fluorouracil, leucovorin, oxaliplatin (FOLFOX), and bevacizumab in patients with locally advanced rectal cancer: 5-year clinical outcomes ECOG–ACRIN Cancer Research Group E3204. Oncologist. 2015;20:615–616. doi: 10.1634/theoncologist.2015-0106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Lee NY, Zhang Q, Pfister DG, Kim J, Garden AS, Mechalakos J, Hu K, Le QT, Colevas AD, Glisson BS, Chan AT, Ang KK. Addition of bevacizumab to standard chemoradiation for locoregionally advanced nasopharyngeal carcinoma (RTOG 0615): a phase 2 multi-institutional trial. Lancet Oncol. 2012;13:172–180. doi: 10.1016/S1470-2045(11)70303-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Salazar R, Capdevila J, Laquente B, Manzano JL, Pericay C, Villacampa MM, López C, Losa F, Safont MJ, Gómez A, Alonso V, Escudero P, Gallego J, Sastre J, Grávalos C, Biondo S, Palacios A, Aranda E. A randomized phase II study of capecitabine-based chemoradiation with or without bevacizumab in resectable locally advanced rectal cancer: clinical and biological features. BMC Cancer. 2015;15:60. doi: 10.1186/s12885-015-1053-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Yao M, Galanopoulos N, Lavertu P, Fu P, Gibson M, Argiris A, Rezaee R, Zender C, Wasman J, Machtay M, Savvides P. Phase II study of bevacizumab in combination with docetaxel and radiation in locally advanced squamous cell carcinoma of the head and neck. Head Neck. 2015;37:1665–1671. doi: 10.1002/hed.23813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Hainsworth JD, Shih KC, Shepard GC, Tillinghast GW, Brinker BT, Spigel DR. Phase II study of concurrent radiation therapy, temozolomide, and bevacizumab followed by bevacizumab/everolimus as first-line treatment for patients with glioblastoma. Clin Adv Hematol Oncol. 2012;10:240–246. [PubMed] [Google Scholar]
  • 78.Viswanathan AN, Lee H, Berkowitz R, Berlin S, Campos S, Feltmate C, Horowitz N, Muto M, Sadow CA, Matulonis U. A prospective feasibility study of radiation and concurrent bevacizumab for recurrent endometrial cancer. Gynecol Oncol. 2014;132:55–60. doi: 10.1016/j.ygyno.2013.10.031. [DOI] [PubMed] [Google Scholar]
  • 79.Crane CH, Ellis LM, Abbruzzese JL, Amos C, Xiong HQ, Ho L, Evans DB, Tamm EP, Ng C, Pisters PWT, Charnsangavej C, Delclos ME, O’Reilly M, Lee JE, Wolff RA. Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol. 2006;24:1145–1151. doi: 10.1200/JCO.2005.03.6780. [DOI] [PubMed] [Google Scholar]
  • 80.Czito BG, Bendell JC, Willett CG, Morse MA, Blobe GC, Tyler DS, Thomas J, Ludwig KA, Mantyh CR, Ashton J, Yu D, Hurwitz HI. Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: phase I trial results. Int J Radiat Oncol Biol Phys. 2007;68:472–478. doi: 10.1016/j.ijrobp.2007.02.001. [DOI] [PubMed] [Google Scholar]
  • 81.Dellas K, Höhler T, Reese T, Würschmidt F, Engel E, Rödel C, Wagner W, Richter M, Arnold D, Dunst J. Phase II trial of preoperative radiochemotherapy with concurrent bevacizumab, capecitabine and oxaliplatin in patients with locally advanced rectal cancer. Radiat Oncol. 2013;8:90. doi: 10.1186/1748-717X-8-90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Kennecke H, Berry S, Wong R, Zhou C, Tankel K, Easaw J, Rao S, Post J, Hay J. Pre-operative bevacizumab, capecitabine, oxaliplatin and radiation among patients with locally advanced or low rectal cancer: a phase II trial. Eur J Cancer. 2012;48:37–45. doi: 10.1016/j.ejca.2011.05.016. [DOI] [PubMed] [Google Scholar]
  • 83.Spigel DR, Bendell JC, McCleod M, Shipley DL, Arrowsmith E, Barnes EK, Infante JR, Burris HA, Greco FA, Hainsworth JD. Phase II study of bevacizumab and chemoradiation in the preoperative or adjuvant treatment of patients with stage II/III rectal cancer. Clin Colorectal Cancer. 2012;11:45–52. doi: 10.1016/j.clcc.2011.04.002. [DOI] [PubMed] [Google Scholar]
  • 84.Xiao J, Chen Z, Li W, Yang Z, Huang Y, Zheng J, Deng Y, Wang L, Ren D, Peng J, Lan P, Wang J. Sandwich-like neoadjuvant therapy with bevacizumab for locally advanced rectal cancer: a phase II trial. Cancer Chemother Pharmacol. 2015;76:21–27. doi: 10.1007/s00280-015-2763-2. [DOI] [PubMed] [Google Scholar]
  • 85.Petrelli F, Sgroi G, Sarti E, Barni S. Increasing the interval between neoadjuvant chemoradiotherapy and surgery in rectal cancer: a meta-analysis of published studies. Ann Surg. 2016;263:458–464. doi: 10.1097/SLA.0000000000000368. [DOI] [PubMed] [Google Scholar]
  • 86.Resch G, De Vries A, Öfner D, Eisterer W, Rabl H, Jagoditsch M, Gnant M, Thaler J, Austrian Breast and Colorectal Cancer Study Group Preoperative treatment with capecitabine, bevacizumab and radiotherapy for primary locally advanced rectal cancer—a two stage phase II clinical trial. Radiother Oncol. 2012;102:10–13. doi: 10.1016/j.radonc.2011.06.008. [DOI] [PubMed] [Google Scholar]
  • 87.Yoo DS, Kirkpatrick JP, Craciunescu O, Broadwater G, Peterson BL, Carroll MD, Clough R, MacFall JR, Hoang J, Scher RL, Esclamado RM, Dunphy FR, Ready NE, Brizel DM. Prospective trial of synchronous bevacizumab, erlotinib, and concurrent chemoradiation in locally advanced head and neck cancer. Clin Cancer Res. 2012;18:1404–1414. doi: 10.1158/1078-0432.CCR-11-1982. [DOI] [PubMed] [Google Scholar]
  • 88.Brade AM, Ng S, Brierley J, Kim J, Dinniwell R, Ringash J, Wong RR, Cho C, Knox J, Dawson LA. Phase 1 trial of sorafenib and stereotactic body radiation therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2016;94:580–587. doi: 10.1016/j.ijrobp.2015.11.048. [DOI] [PubMed] [Google Scholar]
  • 89.Goody RB, Brade AM, Wang L, Craig T, Brierley J, Dinniwell R, Wong RK, Cho C, Kim J, Kassam Z, Ringash J, Knox JJ, and Dawson LA (2017) Phase I trial of radiation therapy and sorafenib in unresectable liver metastases. Radiother Oncol. doi:10.1016/j.radonc.2017.01.018 [DOI] [PubMed]
  • 90.Dawson L, Brade A, Cho C, Kim J, Brierly J, Dinniwell R, Wong R, Ringash J, Cummings R, Knox J. Phase I study of sorafenib and SBRT for advanced hepatocellular carcinoma. Int J Rad Oncol. 2012;84:S10. [Google Scholar]
  • 91.Chen SW, Lin LC, Kuo YC, Liang JA, Kuo CC, Chiou JF. Phase 2 study of combined sorafenib and radiation therapy in patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2014;88:1041–1047. doi: 10.1016/j.ijrobp.2014.01.017. [DOI] [PubMed] [Google Scholar]
  • 92.Hainsworth JD, Ervin T, Friedman E, Priego V, Murphy PB, Clark BL, Lamar RE. Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer. 2010;116:3663–3669. doi: 10.1002/cncr.25275. [DOI] [PubMed] [Google Scholar]
  • 93.Swaminath A, Knox JJ, Brierley JD, Dinniwell R, Wong R, Kassam Z, Kim J, Coolens C, Brock KK, Dawson LA. Changes in liver volume observed following sorafenib and liver radiation therapy. Int J Radiat Oncol Biol Phys. 2016;94:729–737. doi: 10.1016/j.ijrobp.2015.12.015. [DOI] [PubMed] [Google Scholar]
  • 94.Inoue T, Kinoshita H, Komai Y, Kawabata T, Kawa G, Uemura Y, Matsuda T. Two cases of gastrointestinal perforation after radiotherapy in patients receiving tyrosine kinase inhibitor for advanced renal cell carcinoma. World J Surg Oncol. 2012;10:167. doi: 10.1186/1477-7819-10-167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Jakob J, Simeonova A, Kasper B, Ronellenfitsch U, Wenz F, Hohenberger P. Combined radiation therapy and sunitinib for preoperative treatment of soft tissue sarcoma. Ann Surg Oncol. 2015;22:2839–2845. doi: 10.1245/s10434-015-4680-3. [DOI] [PubMed] [Google Scholar]
  • 96.Jakob J, Simeonova A, Kasper B, Ronellenfitsch U, Rauch G, Wenz F, Hohenberger P. Combined sunitinib and radiation therapy for preoperative treatment of soft tissue sarcoma: results of a phase I trial of the German interdisciplinary sarcoma group (GISG-03) Radiat Oncol. 2016;11:77. doi: 10.1186/s13014-016-0654-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Haas RL, Gelderblom H, Sleijfer S, van Boven HH, Scholten A, Dewit L, Borst G, van der Hage J, Kerst JM, Nout RA, Hartgrink HH, de Pree I, Verhoef C, Steeghs N, van Coevorden F. A phase I study on the combination of neoadjuvant radiotherapy plus pazopanib in patients with locally advanced soft tissue sarcoma of the extremities. Acta Oncol. 2015;54:1195–1201. doi: 10.3109/0284186X.2015.1037404. [DOI] [PubMed] [Google Scholar]
  • 98.Yoon SS, Duda DG, Karl DL, Kim TM, Kambadakone AR, Chen YL, Rothrock C, Rosenberg AE, Nielsen GP, Kirsch DG, Choy E, Harmon DC, Hornicek FJ, Dreyfuss J, Ancukiewicz M, Sahani DV, Park PJ, Jain RK, Delaney TF. Phase II study of neoadjuvant bevacizumab and radiotherapy for resectable soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 2011;81:1081–1090. doi: 10.1016/j.ijrobp.2010.07.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Lewin J, Khamly KK, Young RJ, Mitchell C, Hicks RJ, Toner GC, Ngan SY, Chander S, Powell GJ, Herschtal A, Te Marvelde L, Desai J, Choong PF, Stacker SA, Achen MG, Ferris N, Fox S, Slavin J, Thomas DM. A phase Ib/II translational study of sunitinib with neoadjuvant radiotherapy in soft-tissue sarcoma. Br J Cancer. 2014;111:2254–2261. doi: 10.1038/bjc.2014.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Horgan AM, Darling G, Wong R, Guindi M, Liu G, Jonker DJ, Lister J, Xu W, MacKay HM, Dinniwell R, Kim J, Pierre A, Shargall Y, Asmis TR, Agboola O, Seely AJ, Ringash J, Wells J, Marginean EC, Haider M, Knox JJ. Adjuvant sunitinib following chemoradiotherapy and surgery for locally advanced esophageal cancer: a phase II trial. Dis Esophagus. 2016;29:1152–1158. doi: 10.1111/dote.12444. [DOI] [PubMed] [Google Scholar]
  • 101.Cabezas-Camarero S, Puente J, Manzano A, Corona JA, González-Larriba JL, Bernal-Becerra I, Sotelo M, Díaz-Rubio E. Renal cell cancer metastases to esophagus and stomach successfully treated with radiotherapy and pazopanib. Anticancer Drugs. 2015;26:112–116. doi: 10.1097/CAD.0000000000000150. [DOI] [PubMed] [Google Scholar]
  • 102.Bao Y, Peng F, Zhou QC, Yu ZH, Li JC, Cheng ZB, Chen L, Hu X, Chen YY, Wang J, Wang Y, Ma HL, Xu ZM, Lu RB, Deng XW, Chen M. Phase II trial of recombinant human endostatin in combination with concurrent chemoradiotherapy in patients with stage III non-small-cell lung cancer. Radiother Oncol. 2015;114:161–166. doi: 10.1016/j.radonc.2014.11.039. [DOI] [PubMed] [Google Scholar]
  • 103.Jiang XD, Dai P, Wu J, Song DA, Yu JM. Effect of recombinant human endostatin on radiosensitivity in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83:1272–1277. doi: 10.1016/j.ijrobp.2011.09.050. [DOI] [PubMed] [Google Scholar]
  • 104.Sun XJ, Deng QH, Yu XM, Ji YL, Zheng YD, Jiang H, Xu YP, Ma SL. A phase II study of Endostatin in combination with paclitaxel, carboplatin, and radiotherapy in patients with unresectable locally advanced non-small cell lung cancer. BMC Cancer. 2016;16:266. doi: 10.1186/s12885-016-2234-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Kroeze SG, Fritz C, Hoyer M, Lo SS, Ricardi U, Sahgal A, Stahel R, Stupp R, Guckenberger M. Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: a systematic review. Cancer Treat Rev. 2017;53:25–37. doi: 10.1016/j.ctrv.2016.11.013. [DOI] [PubMed] [Google Scholar]
  • 106.Omuro A, Beal K, Gutin P, Karimi S, Correa DD, Kaley TJ, DeAngelis LM, Chan TA, Gavrilovic IT, Nolan C, Hormigo A, Lassman AB, Mellinghoff I, Grommes C, Reiner AS, Panageas KS, Baser RE, Tabar V, Pentsova E, Sanchez J, Barradas-Panchal R, Zhang J, Faivre G, Brennan CW, Abrey LE, Huse JT. Phase II study of bevacizumab, temozolomide, and hypofractionated stereotactic radiotherapy for newly diagnosed glioblastoma. Clin Cancer Res. 2014;20:5023–5031. doi: 10.1158/1078-0432.CCR-14-0822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Carlson JA, Reddy K, Gaspar LE, Ney D, Kavanagh BD, Damek D, Lillehei K, Chen C. Hypofractionated-intensity modulated radiotherapy (hypo-IMRT) and temozolomide (TMZ) with or without bevacizumab (BEV) for newly diagnosed glioblastoma multiforme (GBM): a comparison of two prospective phase II trials. J Neurooncol. 2015;123:251–257. doi: 10.1007/s11060-015-1791-4. [DOI] [PubMed] [Google Scholar]
  • 108.Avallone A, Pecori B, Bianco F, Aloj L, Tatangelo F, Romano C, Granata V, Marone P, Leone A, Botti G, Petrillo A, Caracò C, Iaffaioli VR, Muto P, Romano G, Comella P, Budillon A, Delrio P. Critical role of bevacizumab scheduling in combination with pre-surgical chemo-radiotherapy in MRI-defined high-risk locally advanced rectal cancer: results of the BRANCH trial. Oncotarget. 2015;6:30394–30407. doi: 10.18632/oncotarget.4724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Lévy C, Allouache D, Lacroix J, Dugué AE, Supiot S, Campone M, Mahe M, Kichou S, Leheurteur M, Hanzen C, Dieras V, Kirova Y, Campana F, Le Rhun E, Gras L, Bachelot T, Sunyach MP, Hrab I, Geffrelot J, Gunzer K, Constans JM, Grellard JM, Clarisse B, Paoletti X. REBECA: a phase I study of bevacizumab and whole-brain radiation therapy for the treatment of brain metastasis from solid tumours. Ann Oncol. 2014;25:2351–2356. doi: 10.1093/annonc/mdu465. [DOI] [PubMed] [Google Scholar]
  • 110.Rezai P, Yaghmai V, Tochetto SM, Galizia MS, Miller FH, Mulcahy MF, Small W. Change in the growth rate of localized pancreatic adenocarcinoma in response to gemcitabine, bevacizumab, and radiation therapy on MDCT. Int J Radiat Oncol Biol Phys. 2011;81:452–459. doi: 10.1016/j.ijrobp.2010.05.060. [DOI] [PubMed] [Google Scholar]
  • 111.Spigel DR, Hainsworth JD, Yardley DA, Raefsky E, Patton J, Peacock N, Farley C, Burris HA, Greco FA. Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol. 2010;28:43–48. doi: 10.1200/JCO.2009.24.7353. [DOI] [PubMed] [Google Scholar]
  • 112.Hainsworth JD, Spigel DR, Greco FA, Shipley DL, Peyton J, Rubin M, Stipanov M, Meluch A. Combined modality treatment with chemotherapy, radiation therapy, bevacizumab, and erlotinib in patients with locally advanced squamous carcinoma of the head and neck: a phase II trial of the Sarah Cannon oncology research consortium. Cancer J. 2011;17:267–272. doi: 10.1097/PPO.0b013e3182329791. [DOI] [PubMed] [Google Scholar]
  • 113.Blaszkowsky LS, Ryan DP, Szymonifka J, Borger DR, Zhu AX, Clark JW, Kwak EL, Mamon HJ, Allen JN, Vasudev E, Shellito PC, Cusack JC, Berger DL, Hong TS. Phase I/II study of neoadjuvant bevacizumab, erlotinib and 5-fluorouracil with concurrent external beam radiation therapy in locally advanced rectal cancer. Ann Oncol. 2014;25:121–126. doi: 10.1093/annonc/mdt516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Jakob J, Rauch G, Wenz F, Hohenberger P. Phase I trial of concurrent sunitinib and radiation therapy as preoperative treatment for soft tissue sarcoma. BMJ Open. 2013;3:e003626. doi: 10.1136/bmjopen-2013-003626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Landry JC, Feng Y, Cohen SJ, Staley CA, Whittington R, Sigurdson ER, Nimeiri H, Verma U, Prabhu RS, Benson AB. Phase 2 study of preoperative radiation with concurrent capecitabine, oxaliplatin, and bevacizumab followed by surgery and postoperative 5-fluorouracil, leucovorin, oxaliplatin (FOLFOX), and bevacizumab in patients with locally advanced rectal cancer: ECOG 3204. Cancer. 2013;119:1521–1527. doi: 10.1002/cncr.27890. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Angiogenesis are provided here courtesy of Springer

RESOURCES