Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Aug;87(15):5598–5602. doi: 10.1073/pnas.87.15.5598

Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis.

J Ladapo 1, W B Whitman 1
PMCID: PMC54374  PMID: 11607093

Abstract

A procedure was developed for the enrichment of auxotrophs in the antibiotic-insensitive archaebacterium Methanococcus. After mutagenesis with ethyl methanesulfonate, growing cells were selectively killed upon exposure to the base analogs 6-azauracil and 8-azahypoxanthine for 48 hr. Using this method, eight independent acetate autotrophs of Methanococcus maripaludis were isolated. Six of the auxotrophs had an absolute growth requirement for acetate and contained 1-16% of the wild-type levels of CO dehydrogenase. Three of these six also contained 14-29% of the wild-type levels of pyruvate oxidoreductase and 12-30% of the wild-type levels of pyruvate synthase. Two spontaneous revertants of these latter auxotrophs regained the ability to grow normally in the absence of acetate and wild-type levels of CO dehydrogenase, acetyl-CoA synthase, pyruvate oxidoreductase, and pyruvate synthase. Likewise, a spontaneous revertant of an auxotroph with reduced levels of CO dehydrogenase and wild-type levels of pyruvate oxidoreductase regained the ability to grow normally in the absence of acetate and wild-type levels of CO dehydrogenase and acetyl-CoA synthase. Two additional auxotrophs grew poorly in the absence of acetate but contained wild-type levels of CO dehydrogenase and pyruvate oxidoreductase. These results provide direct genetic evidence for the Ljungdahl-Wood pathway [Ljungdahl, L. G. (1986) Annu. Rev. Microbiol. 40, 415-450; Wood, H. G., Ragsdale, S. W. & Pezacka, E. (1986) Trends Biochem. Sci. 11, 14-18] of autotrophic acetyl-CoA biosynthesis in the methanogenic archaebacteria. Moreover, it suggests that the acetyl-CoA and pyruvate synthases may share a common protein or coenzyme component, be linked genetically, or be regulated by a common system.

Full text

PDF
5598

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bott M., Thauer R. K. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur J Biochem. 1987 Oct 15;168(2):407–412. doi: 10.1111/j.1432-1033.1987.tb13434.x. [DOI] [PubMed] [Google Scholar]
  2. Bowen T. L., Whitman W. B. Incorporation of Exogenous Purines and Pyrimidines by Methanococcus voltae and Isolation of Analog-Resistant Mutants. Appl Environ Microbiol. 1987 Aug;53(8):1822–1826. doi: 10.1128/aem.53.8.1822-1826.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DeMoll E., Grahame D. A., Harnly J. M., Tsai L., Stadtman T. C. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J Bacteriol. 1987 Sep;169(9):3916–3920. doi: 10.1128/jb.169.9.3916-3920.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Escalante-Semerena J. C., Wolfe R. S. Tetrahydromethanopterin-dependent methanogenesis from non-physiological C1 donors in Methanobacterium thermoautotrophicum. J Bacteriol. 1985 Feb;161(2):696–701. doi: 10.1128/jb.161.2.696-701.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grahame D. A., Stadtman T. C. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme. J Biol Chem. 1987 Mar 15;262(8):3706–3712. [PubMed] [Google Scholar]
  6. Jain M. K., Zeikus J. G. Methods for Isolation of Auxotrophic Mutants of Methanobacterium ivanovii and Initial Characterization of Acetate Auxotrophs. Appl Environ Microbiol. 1987 Jun;53(6):1387–1390. doi: 10.1128/aem.53.6.1387-1390.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krzycki J. A., Zeikus J. G. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol. 1984 Apr;158(1):231–237. doi: 10.1128/jb.158.1.231-237.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Ljungdahl L. G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol. 1986;40:415–450. doi: 10.1146/annurev.mi.40.100186.002215. [DOI] [PubMed] [Google Scholar]
  10. Lu W. P., Harder S. R., Ragsdale S. W. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J Biol Chem. 1990 Feb 25;265(6):3124–3133. [PubMed] [Google Scholar]
  11. Länge S., Fuchs G. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. Eur J Biochem. 1987 Feb 16;163(1):147–154. doi: 10.1111/j.1432-1033.1987.tb10748.x. [DOI] [PubMed] [Google Scholar]
  12. Mevarech M., Werczberger R. Genetic transfer in Halobacterium volcanii. J Bacteriol. 1985 Apr;162(1):461–462. doi: 10.1128/jb.162.1.461-462.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nelson M. J., Ferry J. G. Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol. 1984 Nov;160(2):526–532. doi: 10.1128/jb.160.2.526-532.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pezacka E., Wood H. G. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase. J Biol Chem. 1986 Feb 5;261(4):1609–1615. [PubMed] [Google Scholar]
  15. Ragsdale S. W., Ljungdahl L. G. Hydrogenase from Acetobacterium woodii. Arch Microbiol. 1984 Nov;139(4):361–365. doi: 10.1007/BF00408380. [DOI] [PubMed] [Google Scholar]
  16. Rawal N., Kelkar S. M., Altekar W. Ribulose 1,5-bisphosphate dependent CO2 fixation in the halophilic archaebacterium, Halobacterium mediterranei. Biochem Biophys Res Commun. 1988 Oct 14;156(1):451–456. doi: 10.1016/s0006-291x(88)80862-3. [DOI] [PubMed] [Google Scholar]
  17. Rouvière P. E., Wolfe R. S. Component A3 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum delta H: resolution into two components. J Bacteriol. 1989 Sep;171(9):4556–4562. doi: 10.1128/jb.171.9.4556-4562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schäfer S., Götz M., Eisenreich W., Bacher A., Fuchs G. 13C-NMR study of autotrophic CO2 fixation in Thermoproteus neutrophilus. Eur J Biochem. 1989 Sep 1;184(1):151–156. doi: 10.1111/j.1432-1033.1989.tb15001.x. [DOI] [PubMed] [Google Scholar]
  19. Shieh J. S., Whitman W. B. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol. 1987 Nov;169(11):5327–5329. doi: 10.1128/jb.169.11.5327-5329.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shieh J., Mesbah M., Whitman W. B. Pseudoauxotrophy of Methanococcus voltae for acetate, leucine, and isoleucine. J Bacteriol. 1988 Sep;170(9):4091–4096. doi: 10.1128/jb.170.9.4091-4096.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shieh J., Whitman W. B. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis. J Bacteriol. 1988 Jul;170(7):3072–3079. doi: 10.1128/jb.170.7.3072-3079.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith M. R., Lequerica J. L. Methanosarcina mutant unable to produce methane or assimilate carbon from acetate. J Bacteriol. 1985 Nov;164(2):618–625. doi: 10.1128/jb.164.2.618-625.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Terlesky K. C., Barber M. J., Aceti D. J., Ferry J. G. EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J Biol Chem. 1987 Nov 15;262(32):15392–15395. [PubMed] [Google Scholar]
  24. Whitman W. B., Ankwanda E., Wolfe R. S. Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol. 1982 Mar;149(3):852–863. doi: 10.1128/jb.149.3.852-863.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES