Abstract
A procedure was developed for the enrichment of auxotrophs in the antibiotic-insensitive archaebacterium Methanococcus. After mutagenesis with ethyl methanesulfonate, growing cells were selectively killed upon exposure to the base analogs 6-azauracil and 8-azahypoxanthine for 48 hr. Using this method, eight independent acetate autotrophs of Methanococcus maripaludis were isolated. Six of the auxotrophs had an absolute growth requirement for acetate and contained 1-16% of the wild-type levels of CO dehydrogenase. Three of these six also contained 14-29% of the wild-type levels of pyruvate oxidoreductase and 12-30% of the wild-type levels of pyruvate synthase. Two spontaneous revertants of these latter auxotrophs regained the ability to grow normally in the absence of acetate and wild-type levels of CO dehydrogenase, acetyl-CoA synthase, pyruvate oxidoreductase, and pyruvate synthase. Likewise, a spontaneous revertant of an auxotroph with reduced levels of CO dehydrogenase and wild-type levels of pyruvate oxidoreductase regained the ability to grow normally in the absence of acetate and wild-type levels of CO dehydrogenase and acetyl-CoA synthase. Two additional auxotrophs grew poorly in the absence of acetate but contained wild-type levels of CO dehydrogenase and pyruvate oxidoreductase. These results provide direct genetic evidence for the Ljungdahl-Wood pathway [Ljungdahl, L. G. (1986) Annu. Rev. Microbiol. 40, 415-450; Wood, H. G., Ragsdale, S. W. & Pezacka, E. (1986) Trends Biochem. Sci. 11, 14-18] of autotrophic acetyl-CoA biosynthesis in the methanogenic archaebacteria. Moreover, it suggests that the acetyl-CoA and pyruvate synthases may share a common protein or coenzyme component, be linked genetically, or be regulated by a common system.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bott M., Thauer R. K. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur J Biochem. 1987 Oct 15;168(2):407–412. doi: 10.1111/j.1432-1033.1987.tb13434.x. [DOI] [PubMed] [Google Scholar]
- Bowen T. L., Whitman W. B. Incorporation of Exogenous Purines and Pyrimidines by Methanococcus voltae and Isolation of Analog-Resistant Mutants. Appl Environ Microbiol. 1987 Aug;53(8):1822–1826. doi: 10.1128/aem.53.8.1822-1826.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeMoll E., Grahame D. A., Harnly J. M., Tsai L., Stadtman T. C. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J Bacteriol. 1987 Sep;169(9):3916–3920. doi: 10.1128/jb.169.9.3916-3920.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escalante-Semerena J. C., Wolfe R. S. Tetrahydromethanopterin-dependent methanogenesis from non-physiological C1 donors in Methanobacterium thermoautotrophicum. J Bacteriol. 1985 Feb;161(2):696–701. doi: 10.1128/jb.161.2.696-701.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grahame D. A., Stadtman T. C. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme. J Biol Chem. 1987 Mar 15;262(8):3706–3712. [PubMed] [Google Scholar]
- Jain M. K., Zeikus J. G. Methods for Isolation of Auxotrophic Mutants of Methanobacterium ivanovii and Initial Characterization of Acetate Auxotrophs. Appl Environ Microbiol. 1987 Jun;53(6):1387–1390. doi: 10.1128/aem.53.6.1387-1390.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krzycki J. A., Zeikus J. G. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol. 1984 Apr;158(1):231–237. doi: 10.1128/jb.158.1.231-237.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ljungdahl L. G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol. 1986;40:415–450. doi: 10.1146/annurev.mi.40.100186.002215. [DOI] [PubMed] [Google Scholar]
- Lu W. P., Harder S. R., Ragsdale S. W. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J Biol Chem. 1990 Feb 25;265(6):3124–3133. [PubMed] [Google Scholar]
- Länge S., Fuchs G. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide. Eur J Biochem. 1987 Feb 16;163(1):147–154. doi: 10.1111/j.1432-1033.1987.tb10748.x. [DOI] [PubMed] [Google Scholar]
- Mevarech M., Werczberger R. Genetic transfer in Halobacterium volcanii. J Bacteriol. 1985 Apr;162(1):461–462. doi: 10.1128/jb.162.1.461-462.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. J., Ferry J. G. Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol. 1984 Nov;160(2):526–532. doi: 10.1128/jb.160.2.526-532.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pezacka E., Wood H. G. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase. J Biol Chem. 1986 Feb 5;261(4):1609–1615. [PubMed] [Google Scholar]
- Ragsdale S. W., Ljungdahl L. G. Hydrogenase from Acetobacterium woodii. Arch Microbiol. 1984 Nov;139(4):361–365. doi: 10.1007/BF00408380. [DOI] [PubMed] [Google Scholar]
- Rawal N., Kelkar S. M., Altekar W. Ribulose 1,5-bisphosphate dependent CO2 fixation in the halophilic archaebacterium, Halobacterium mediterranei. Biochem Biophys Res Commun. 1988 Oct 14;156(1):451–456. doi: 10.1016/s0006-291x(88)80862-3. [DOI] [PubMed] [Google Scholar]
- Rouvière P. E., Wolfe R. S. Component A3 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum delta H: resolution into two components. J Bacteriol. 1989 Sep;171(9):4556–4562. doi: 10.1128/jb.171.9.4556-4562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schäfer S., Götz M., Eisenreich W., Bacher A., Fuchs G. 13C-NMR study of autotrophic CO2 fixation in Thermoproteus neutrophilus. Eur J Biochem. 1989 Sep 1;184(1):151–156. doi: 10.1111/j.1432-1033.1989.tb15001.x. [DOI] [PubMed] [Google Scholar]
- Shieh J. S., Whitman W. B. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J Bacteriol. 1987 Nov;169(11):5327–5329. doi: 10.1128/jb.169.11.5327-5329.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shieh J., Mesbah M., Whitman W. B. Pseudoauxotrophy of Methanococcus voltae for acetate, leucine, and isoleucine. J Bacteriol. 1988 Sep;170(9):4091–4096. doi: 10.1128/jb.170.9.4091-4096.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shieh J., Whitman W. B. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis. J Bacteriol. 1988 Jul;170(7):3072–3079. doi: 10.1128/jb.170.7.3072-3079.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. R., Lequerica J. L. Methanosarcina mutant unable to produce methane or assimilate carbon from acetate. J Bacteriol. 1985 Nov;164(2):618–625. doi: 10.1128/jb.164.2.618-625.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terlesky K. C., Barber M. J., Aceti D. J., Ferry J. G. EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J Biol Chem. 1987 Nov 15;262(32):15392–15395. [PubMed] [Google Scholar]
- Whitman W. B., Ankwanda E., Wolfe R. S. Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol. 1982 Mar;149(3):852–863. doi: 10.1128/jb.149.3.852-863.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]