Skip to main content
Journal of Bone and Joint Infection logoLink to Journal of Bone and Joint Infection
. 2017 Feb 5;2(2):114–121. doi: 10.7150/jbji.17699

Candida Prosthetic Joint Infection. A Review of Treatment Methods

Fernando Cobo 1,, Javier Rodríguez-Granger 1, Antonio Sampedro 1, Luis Aliaga-Martínez 2, José María Navarro-Marí 1
PMCID: PMC5441142  PMID: 28540147

Abstract

Fungal microorganisms are still a rare cause of bone and joint infections. We report a new case of knee prosthetic joint infection due to Candida albicans in a patient with a previous two-stage right knee arthroplasty for septic arthritis due to S. epidermidis occurred several months ago. Moreover, the treatment in 76 cases of Candida prosthetic joint infection has been discussed. Forty patients were female and mean age at diagnosis was 65.7 (± SD 18) yrs. No risk factors for candidal infection were found in 25 patients. Infection site was the knee in 38 patients and hip in 36; pain was present in 44 patients and swelling in 24. The most frequent species was C. albicans, followed by C. parapsilosis. Eleven patients were only treated with antifungal drugs being the outcome favourable in all of them. Two-stage exchange arthroplasty was performed in 30 patients, and resection arthroplasty in other 30; in three patients one-stage exchange arthroplasty was done. A favourable outcome was found in 58 patients after antifungal plus surgical treatment, in 11 after antifungal treatment alone and in one after surgery alone. The type of treatment is still not clearly defined and an algorithm for treatment in fungal PJI should be established, but various types of surgical procedures may be applied.

Keywords: Prosthetic joint infection, Candida albicans, arthroplasty, infection, antifungal drugs, surgical treatment

Introduction

Prosthetic joint infection (PJI) involves the joint prosthesis and contiguous tissue and is one of the main reasons for total arthroplasty failure 1, 2. A wide range of microorganisms may cause PJI, most often Gram-positive bacteria, especially staphylococcal species, and Gram-negative pathogens 3. However, other microorganisms can also be responsible for PJI, including fungi, particularly Candida species. PJI due to Candida is rare and represents a therapeutic challenge because no specific guidelines have been already established and published case reports vary widely in therapeutic approach 4. Currently, the gold standard for treatment consists in a two-stage revision surgery 4, 5, although it is doubtful whether multiple procedures are able to provide any improvements and it is also unknown if other techniques such as one-stage exchange may be successful.

Here, we describe one patient seen at the Orthopaedics and Trauma Department of the Hospital Universitario Virgen de las Nieves (Granada, Spain) with PJI due to C. albicans which is being treated with antifungal drugs alone. Moreover, we have reviewed the medical literature searching case reports with Candida PJI discussing about the treatment methods applied.

Case Report

A 66-year-old man had a right knee arthroplasty due to osteoarthritis suffered for several years. In January 2015, the patient underwent a two-stage right knee arthroplasty for septic arthritis due to S. epidermidis, as well as treatment with vancomycin + gentamycin. He was immunocompromised due to a splenectomy performed several years ago. In July 2016, the patient was attended at the Emergency Department of our Hospital due to pain, inflammation and joint leak for two weeks. The physical examination revealed inflammatory signs and swelling on the knee. The complete blood count, chemical profile and urinalysis were normal, except for a C-reactive protein (CRP) of 100 mg/L. A joint fluid (JF) was drawn by puncture from the affected knee and sent to the microbiology laboratory. The sample was inoculated after centrifugation in aerobic and anaerobic blood agar (BD Columbia Agar 5% Sheepblood®, Becton Dickinson), chocolate agar (BD Choco Agar, Becton Dickinson) and thioglycollate broth (BDTM Fluid Thioglycollate Medium), all incubated at 37º C. Previously, 1 mL of the JF was inoculated into an aerobic blood culture bottle (BACTEC, 9240 BD, Becton Dickinson, Franklin Lakes, NJ, USA), being positive after 24 hours of incubation. Pathogen growth was observed on aerobic blood agar and chocolate agar. Identification of C. albicans and susceptibility to this strain were then tested using the Vitek system (BioMérieux, Mercy L'Etoile, France) as well as mass spectrometry (Bruker Biotyper, Billerica, MA, USA). The isolate was susceptible to anidulafungin (0.015 µg/ml), micafungin (<0.008 µg/ml) caspofungin (0.06 µg/ml), voriconazole (<0.008 µg/ml), itraconazole (0,03 µg/ml) fluconazole (0,125 µg/ml), and amphotericin B (1 µg/ml). Breakpoints from CLSI were used for the majority of antifungal drugs, but only from EUCAST for amphotericin B 6, 7. No blood cultures were taken at this stage. The patient rejected a prosthesis exchange, so a surgical procedure was then done with local debridement of the lesion, and five intraoperative periprosthetic tissue samples were taken from different locations, following recommendations of Kamme and Lindberg 8. In the laboratory, each sample (1 cm2) was placed in 3 ml of sterile saline solution and vortexed for 30 seconds. Then, the sample was inoculated in aerobic and anaerobic blood agar (BD Columbia Agar 5% Sheepblood®, Becton Dickinson), chocolate agar (BD Choco Agar, Becton Dickinson) and thioglycolate broth (BDTM Fluid Thioglycollate Medium, Becton Dickinson), all incubated at 37º C., and chromogenic candida agar (CandiSelect TM, Bio-Rad, Redmond, WA, USA) incubated at 30º C. After 18 hours of incubation, microorganism growth was again observed and further identified as C. albicans.

Treatment with caspofungin (50 mg/day) was administered for 14 days, and the patient was then discharged under oral suppressive treatment with fluconazole (200 mg/12 h.) for 6 months. At 2 months of follow-up, the patient remained clinically stable, and laboratory findings were normal. At the moment, the patient has rejected prosthesis reimplantation and is currently waiting for a 6 months of antifungal treatment.

Literature Review

We describe one patient recently seen at the Orthopaedics and Trauma Department of the Hospital Universitario Virgen de las Nieves (Granada, Spain) with PJI due to C. albicans.

Using the key words “fungal prosthetic joint infection” and “candida prosthetic joint infection” we searched MEDLINE (National Library of Medicine, Bethesda, MD), Web of Science, CINAHL, and Cochrane systematic review databases for case reports of this condition. We also checked the references cited in the papers for additional case reports published before 1966.

We traced 75 cases caused by Candida species and described in sufficient detail. These cases, along with our patient, are the basis of the present report. Among others, data on treatment, outcome and follow-up were recorded. A patient was considered to have Candida infection and was then included when a positive preoperative aspiration culture and/or a positive intraoperative culture were obtained. We did not include cases with Candida infection accompanied by another pathogen or cases with insufficient details for comparisons (clinical and laboratory data).

The basis for this review was recently published 9, but we have added three new cases of Candida PJI. Table 1 summarizes the treatment, outcome and follow-up of all cases here reviewed.

Table 1.

Treatment, outcome and follow-up of 76 patients with Candida species PJI.

Reference/
author
Treatment
Antifungal treatment Surgical treatment
Outcome Follow-up (months)
51/Zhu Y Amphotericin B
Voriconazole
NR Cure 3
52/Reddy KJ Fluconazole
Amphotericin B ICS
TEA Cure 24
46/Artiaco S Fluconazole
Miconazole
Drainage of abscess Cure 12
37/Lidder S Amphotericin B TEA Cure 24
34/Ueng SWN Fluconazole
Amphotericin B ICS
TEA Cure NR
34/Ueng SWN Fluconazole TEA Cure NR
34/Ueng SWN Fluconazole TEA Cure NR
34/Ueng SWN Fluconazole
Amphotericin B ICS
TEA Cure NR
34/Ueng SWN Fluconazole
Amphotericin B ICS
TEA Cure NR
34/Ueng SWN Fluconazole RA NR NR
34/Ueng SWN Fluconazole RA NR NR
34/Ueng SWN Fluconazole RA Dead NR
42/Anagnostakos K Caspofungin TEA Cure 28
42/Anagnostakos K Fluconazole TEA Cure 22
42/Anagnostakos K Fluconazole TEA Cure 70
42/Anagnostakos K Fluconazole TEA Cure 15
42/Anagnostakos K Fluconazole TEA Cure 36
42/Anagnostakos K Fluconazole TEA Cure 47
47/Bartalesi F Voriconazole
Caspofungin + amphotericin B
Amphotericin B
TEA Cure 48
35/Wu MH Fluconazole
Amphotericin B ICS
RA Cure 12
11/ Kelesidis T Fluconazole NR Cure 12
12/Graw B Fluconazole TEA Cure
Dead (UD)
240
13/Bland CM Liposomal amphotericin B + micafungin + fluconazole RA NR NR
43/Dumaine V Caspofungin + flucytosine
Fluconazole + flucytosine
RA
Arthrodesis
Cure 15
53/Lejko-Zupanc T Liposomal amphotericin B + fluconazole
Caspofungin
RA Cure 36
54/Fabry K Voriconazole (3 days)
Oral voriconazole (7 months)
NR Cure
Dead (UD)
24
27 (/2004) Gaston G Voriconazole
Amphotericin B
Amphotericin B ICS
RA Amputation 6
48/Lazzarini L Amphotericin B RA Cure 48
15/Wyman J Fluconazole
Amphotericin B
TEA Cure 36
16/Phelan DM Amphotericin B
Ketoconazole
Fluconazole
TEA Cure 73
16/Phelan DM NR TEA Cure 51
16/Phelan DM Amphotericin B
Fluconazole
TEA Cure 70
16/Phelan DM Fluconazole
Fluconazole ICS
TEA Cure 17
55/Açkgöz CZ Fluconazole RA
Arthrodesis
Cure 7.5
38/Bruce ASW Fluconazole
Fluconazole IB
TEA Cure 84
38/Bruce ASW Fluconazole
Fluconazole IB
TEA Cure
Dead (UD)
48
56/Marra F Fluconazole
Amphotericin B ICS
RA (twice) E. coli infection
NR final outcome
NR
44/Merrer J Fluconazole NR Cure
Dead (UD)
11
36/Yang SH Fluconazole TEA Cure 48
39/Ramamohan N Amphotericin B + 5-flucytosine TEA Cure 24
57/Badrul B Fluconazole TEA MRSA infection
Cure
60
49/Wada M Fluconazole NR Cure 36
17/Brooks DH Amphotericin B
Fluconazole
NR Cure 24
40/Selmon GPF Amphotericin B
Itraconazole + fluconazole
OEA Cure 48
18/Simonian PT Ketoconazole NR Cure 72
50/Fukasawa N Fluconazole NR P. aeruginosa
infection
Cure
24
19/Cushing RD Fluconazole NR Cure 12
58/Nayeri F 5-flucytosine + amphotericin B
5-flucytosine + itraconazole
RA Cure 22
20/Hennesy MJ Amphotericin B
5-flucytosine
TEA Cure 24
21/Cardinal E Amphotericin B RA Cure
Dead (UD)
NR
21/Cardinal E Amphotericin B RA Cure
Dead (UD)
12
21/Cardinal E Fluconazole RA Cure 6
22/White A Fluconazole
Amnphotericin B
Itraconazole
RA Cure 24
23/Tunkel AR Amphotericin B
Ketoconazole
Fluconazole
RA Amputation NR
41/Paul J Amphotericin B + 5-fluorocytosine
Ketoconazole
RA
Arthrodesis
Cure 24
24/Evans RP Amphotericin B TEA Cure 24
24/Evans RP Amphotericin B TEA S. aureus infection
Cure
60
25/Darouiche RO Amphotericin B RA Cure 8
25/Darouiche RO Amphotericin B RA Cure 1.5
25/Darouiche RO Amphotericin B
Ketoconazole
RA
Arthrodesis
Cure 36
25/Darouiche RO Amphotericin B RA Cure 5
26/Lambertus M Amphotericin B RA S. epidermidis infection
Cure
24
26 /Lambertus M Amphotericin B
Ketoconazole
RA
Arthrodesis
Cure 14
27/Levine M Amphotericin B RA
Arthrodesis
Cure 24
28/Iskander MK Amphotericin B
Ketoconazole
RA
Arthrodesis
Cure NR
29/Koch AE Amphotericin B
5-flucytosine
Ketoconazole
RA
Arthrodesis
Cure 21
30/Lim EVA Amphotericin B RA Cure 28
31/Younkin S 5-fluocytosine + amphotericin B TEA Cure 24
32/Lichtman EA Amphotericin B
Ketoconazole
RA Cure 3
33/Goodman JS Amphotericin B RA Cure NR
33/Goodman JS Amphotericin B TEA
RA
Arthrodesis
Cure 12
10/MacGregor RR Amphotericin B + 5-flucytosine RA Cure 12
45/Jenny JY Caspofungine + 5-flucytosine
Voriconazole + 5-flucytosine
OEA Cure 24
45/Jenny JY Voriconazole + 5-flucytosine
Fluconazole + 5-flucytosine
OEA Cure 36
9/Cobo F Caspofungin
Fluconazole
No surgical treatment Cure 6
PR/Cobo F Caspofungin 14 days
Fluconazole (expected 6 months)
No surgical treatment No relapse 3

UD: unrelated disease; NR: not reported; PR: present report; TEA: two-stage exchange arthroplasty; RA: Resection arthroplasty; OEA: one-stage exchange arthroplasty

ICS: impregnated cement spacer; IB: impregnated beads

General Characteristics

There were 40 (52.6%) women, while the sex was not reported in two patients. The mean age of patients was 65.7 (± SD 18) yrs (range 35-93 yrs). Thirty-five cases were from the USA 10-33, 10 from Taiwan 34-36, six from the United Kingdom 37-41, six from Germany 42, four from France 43-45, three from Italy 46-48, two each from Japan 49, 50 and Spain [9, and present report], and one each from China 51, India 52, Slovenia 53, Belgium 54, Turkey 55, Canada 56, Malaysia 57 and Sweden 58. No risk factors for candidal infection were found in 25 patients (32.8%). The joint involved was the knee in 38 (50%), the hip in 36 (47.3%) and the shoulder in two cases. Pain was reported by 44 (57.8%) patients, and the second most frequent symptom was swelling in 24 (31.5%) patients. Symptoms were not reported for 18 (23.6%) patients.

The most frequently isolated Candida species was C. albicans, found in 36 (47.3%), followed by C. parapsilosis in 17 (22.3%), C. glabrata in 12 (15.7%) and C. tropicalis in 8 (10.5%), with infection by both C. albicans and C. glabrata in one patient 40. Candida species were diagnosed by culture of joint fluid (JF) aspirate in 33 cases (43.4%), culture of intraoperative sample (IoS) in 18 (23.6%) and culture of both JF and IoS samples in 19 (25%). Blood cultures were taken only in eight (10.5%) patients, and were positive for Candida in four of these (50%).

Antifungal treatment

Seventy-five (98.6%) patients underwent antifungal treatment, with a single drug in 46 cases (60.5%), with two drugs in 16 cases (21%) and more than two in 13 (17.1%). Twenty-nine of the patients with monotherapy (63%) were treated with fluconazole and 14 (30.4%) with amphotericin B. One patient treated with amphotericin B alone suffered recurrence of the infection 33, while another patient treated with fluconazole alone died as a consequence of the infection 34.

Application of antifungal spacer cement was applied in ten (13.1%) patients (seven with amphotericin B and three with fluconazole).

Surgical treatment

Surgery was performed in 65 (85.5%) patients, 30 of whom (39.4%) underwent two-stage exchange arthroplasty; resection of arthroplasty without reimplantation was undertaken in other 30 (39.4%). One-stage exchange arthroplasty was undergone in 3 (3.9%) patients, and other procedures in two patients. Surgical treatment was not reported in 11 (14.4%) patients.

Outcome

The final outcome was not reported in four patients. A favourable outcome was found in 58 (76.3%) patients after antifungal plus surgical treatment, in 11 (14.4%) after antifungal treatment alone and in one after surgery alone. A patient experienced recurrence of infection with fluconazole therapy, but his outcome was positive with miconazole plus drainage of fluid abscess 46.

Regarding to the type of surgery, all patients who underwent a two-stage exchange arthroplasty cured, although two of them suffered a bacterial infection 24, 57. From the patients treated with resection arthroplasty, one dead after fluconazole treatment 34, two suffered amputation 14, 23 and two were found to have a bacterial infection 26, 56. All three patients treated with one-stage exchange arthroplasty cured 40, 45. Our two patients are currently well with antifungal treatment only, and no relapse of disease has been observed in the short follow-up.

Discussion

PJI caused by Candida species is still a rare disease. However, the incidence is expected to rise because of the increasing number of patients implanted worldwide with joint arthroplasties 59, 60.

Risk factors for candidal infection, including immunosuppression, systemic disease and/or long-term antibiotics use, may play an essential role in the development of invasive candidal infections although other factors could be involved in triggering the infection, specially the presence of biofilm on bioprosthetic surfaces. Biofilm formation is considered the most prevalent growth form of microorganisms 61 and plays a key role in the development of clinical infections 62. The majority of C. albicans infections are associated with biofilm formation on the host or on the surfaces of medical devices or prostheses 63. Other factors, such as the adherence of C. albicans and their hydrolytic enzyme secretion may also have a strong influence on the development of PJI 64, and their modification may serve as possible targets for antifungal drugs against these infections.

Pain and swelling are the main symptoms of PJI due to Candida species, although the onset of symptoms can be insidious and development of the disease can be slow. Because symptoms are mild and there is frequently no diagnostic suspicion of PJI caused by Candida, the diagnosis can often be delayed. Another important problem is to elucidate whether the presence of Candida species in samples can be considered as a contaminant or not, because there is still no standard definition of PJI.

The treatment of choice for PJI caused by Candida species has not yet been established. The use of antifungal agents locally (mixed with cement) or systemically administered is a challenging issue. Locally, amphotericin B appears to be the ideal drug, but some studies have reported several problems 65, 66, while there is no report on the use of novel antifungal drugs. However, this option has not been usually used, because from 76 cases reviewed, antifungal spacers were applied in only 10 (the majority of them with amphotericin B). In all cases the outcome was positive, but curiously in two patients with resection arthroplasty plus amphotericin B impregnated cement spacer application, an amputation 14 and a bacterial infection 56 was observed.

For systemic administration, lipid formulations of amphotericin B and fluconazole are the drugs of choice for this type of infection, and echinocandins may be an option 67.

Various authors have analysed the activity of some antifungal drugs against Candida biofilms. Two reports described resistance to fluconazole in these structures 68, 69, while another study found that it interfered with the development of C. albicans biofilms 70. On the other hand, lipid formulations of amphotericin B have shown activity against C. albicans biofilms 70. Anidulafungin was more active than amphotericin B against C. albicans biofilms of 24-h maturation, but amphotericin B was more active than anidulafungin against C. albicans biofilms of 48-h maturation 71.

In this review, various types of antifungal drugs have been used for treatment, and the majority of them with a positive result. In table 1, it can see that eleven patients (14.4%) were treated only with antifungal drugs [9, 11, 17-19, 44, 49, 50, 51, 54, and present report]; all these patients obtained a positive outcome, although the follow-up range from 3 to 72 months. According to these results, a correct and long treatment with antifungal drugs may be a good option, but due to the heterogeneity of the studies further research is required on this important issue, although it is highly recommended that these patients should be treated with drugs selected after antifungal susceptibility tests. In addition, a longer follow-up of these patients should be performed.

A two-stage arthroplasty exchange is currently considered the best approach in terms of eradication of the infection and preservation of the joint function in PJI caused by Candida species 4, 5. Furthermore, when infection is chronic, this type of surgery is generally also recommended 72. However, the success rate of this technique is controversial. One study reported a success rate of 93% for short-term infection control with 6 months of oral antifungal drugs after reimplantation 73, while another found that two-thirds of patients with PJ resection for fungal infection underwent reimplantation and that the infection was abolished in less than half of them 4.

On the other hand, resection arthroplasty was performed in around half of patients here reviewed (n=30). From these patients, in five of them the outcome was not initially favourable, and in three of them the final outcome was not reported. These results indicate that this procedure should not be the initial approach, also due to the important joint functional loss.

Regarding the third surgical method, some years ago Selmon et al reported a case with a positive outcome after a one-stage exchange arthroplasty 40. Moreover, some authors have recently reported favourable outcome after one-stage exchange in selected cases of fungal PJI 45, 74. In these cases, the responsible microorganism was identified post-operatively, with delayed specific antifungal treatment. In spite of this fact, the scientific evidence about these cases suggests that this technique may be appropriate in terms of eradication of infection, although the number of cases is still scarce. Further research should be done in order to establish the possible indications of one-stage exchange arthroplasty in cases of Candida PJI.

In summary, PJIs caused by Candida species are rare but fastidious infections that require a high index of suspicion because of their mild symptoms and insidious evolution. The diagnosis must be confirmed microbiologically and antifungal susceptibility testing of Candida strains is also highly recommended. The treatment is still not clearly defined and, although the association of long-term antifungal use with two-stage exchange arthroplasty is currently the gold standard to eradicate the infection, the analysis of the data of this review suggests the possibility of using one-stage exchange arthroplasty or antifungal treatment alone in order to obtain a favourable outcome for these patients. The next challenge for the scientific community is to establish the adequate algorithm for treatment in fungal PJI.

Informed consent

The patient described in this case report gave her informed consent for the inclusion in this publication.

References

  • 1.Vessely MB, Whaley AL, Harmsen WS, Schleck CD, Berry DJ. Long-term survivorship and failure modes of 1000 cemented condylar total knee arthroplasties. Clin Orthop Relat Res. 2006;452:28–34. doi: 10.1097/01.blo.0000229356.81749.11. [DOI] [PubMed] [Google Scholar]
  • 2.Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I. et al. Total hip arthroplasties: what are the reasons for revision? Int Orthop. 2008;32:597–604. doi: 10.1007/s00264-007-0364-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27:302–345. doi: 10.1128/CMR.00111-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Azzam K, Parvizi J, Jungkind D, Hanssen A, Fehring T, Springer B. et al. Microbiological, clinical, and surgical features of fungal prosthetic joint infections: a multi-institutional experience. J Bone Joint Surg Am. 2009;91(Suppl 6):142–9. doi: 10.2106/JBJS.I.00574. [DOI] [PubMed] [Google Scholar]
  • 5.Kuiper JW, van den Bekerom MP, van der Stappen J. et al. 2-stage revision recommended for treatment of fungal hip and knee prosthetic joint infections. Acta Orthop. 2013;84:517–523. doi: 10.3109/17453674.2013.859422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; 4th informational supplement; CLSI document M27-S4. Wayne, PA: Clinical and Laboratory Standards Institute; 2012. [Google Scholar]
  • 7.EUCAST. European Committee on Antimicrobial Susceptibility Testing. Antifungal agents. Breakpoints tables for interpretation of MICs. Version 8.0. 2015.
  • 8.Kamme C, Lindberg L. Aerobic and anaerobic bacteria in deep infections after total hip arthroplasty: differential diagnosis between infectious and non-infectious loosening. Clin Orthop Relat Res. 1981;154:201–7. [PubMed] [Google Scholar]
  • 9.Cobo F, Rodríguez-Granger J, López EM, Jiménez G, Sampedro A, Aliaga-Martínez L. et al. Candida-induced prosthetic joint infection. A literature review including 72 cases and a case report. Infect Dis (Lond.) 2017;49:81–94. doi: 10.1080/23744235.2016.1219456. [DOI] [PubMed] [Google Scholar]
  • 10.MacGregor RR, Schimmer BM, Steinberg ME. Results of combined amphotericin B-5-fluorocytosine therapy for prosthetic knee joint infected with Candida parapsilosis. J Rheumatol. 1979;6:451–5. [PubMed] [Google Scholar]
  • 11.Kelesidis T, Tsiodras S. Candida albicans prothetic hip infection in elderly patients: is fluconazole monotherapy an option? Scand J Infect Dis. 2010;42:12–21. doi: 10.3109/00365540903253510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Graw B, Woolson S, Huddleston JI. Candida infection in total knee arthroplasty with successful reimplantation. J Knee Surg. 2010;23:169–74. doi: 10.1055/s-0030-1267470. [DOI] [PubMed] [Google Scholar]
  • 13.Bland CM, Thomas S. Micafungin plus fluconazole in an infected knee with retained hardware due to Candida albicans. Ann Pharmacother. 2009;43:528–31. doi: 10.1345/aph.1L508. [DOI] [PubMed] [Google Scholar]
  • 14.Gaston G, Ogden J. Candida glabrata periprothetic infection: a case report and literature review. J Arthroplasty. 2004;19:927–30. doi: 10.1016/j.arth.2004.04.012. [DOI] [PubMed] [Google Scholar]
  • 15.Wyman J, McGough R, Limbird R. Fungal infection of a total knee prosthesis: successful treatment using articulating cement spacers and staged reimplantation. Orthopedics. 2002;25:1391–4. doi: 10.3928/0147-7447-20021201-19. [DOI] [PubMed] [Google Scholar]
  • 16.Phelan DM, Osmon DR, Keating MR, Hanssen AD. Delayed reimplantation arthroplasty for candidal prosthetic joint infection: a report of 4 cases and review of the literature. Clin Infect Dis. 2002;34:930–8. doi: 10.1086/339212. [DOI] [PubMed] [Google Scholar]
  • 17.Brooks DH, Pupparo F. Successful salvage of a primary total knee arthroplasty infected with Candida parapsilosis. J Arthroplasty. 1998;13:707–12. doi: 10.1016/s0883-5403(98)80017-x. [DOI] [PubMed] [Google Scholar]
  • 18.Simonian PT, Brause BD, Wickiewicz TL. Candida infection after total knee arthroplasty: management without resection or amphotricin B. J Arthroplasty. 1997;12:825–9. doi: 10.1016/s0883-5403(97)90015-2. [DOI] [PubMed] [Google Scholar]
  • 19.Cushing RD, Fulgenzi WR. Synovial fluid levels of fluconazole in a patient with Candida parapsilosis prosthetic joint infection who had an excellent clinical response. J Arthroplasty. 1997;12:950. doi: 10.1016/s0883-5403(97)90166-2. [DOI] [PubMed] [Google Scholar]
  • 20.Hennessy MJ. Infection of a total knee arthroplasty by Candida parapsilosis. A case report of successful treatment by joint reimplantation with a literature review. Am J Knee Surg. 1996;9:133–6. [PubMed] [Google Scholar]
  • 21.Cardinal E, Braunstein EM, Capello WN, Heck DA. Candida albicans infection of prosthetic joints. Orthopedics. 1996;19:247–51. doi: 10.3928/0147-7447-19960301-14. [DOI] [PubMed] [Google Scholar]
  • 22.White A, Goetz MB. Candida parapsilosis prosthetic joint infection unresponsive to treatment with fluconazole. Clin Infect Dis. 1995;20:1068–9. doi: 10.1093/clinids/20.4.1068. [DOI] [PubMed] [Google Scholar]
  • 23.Tunkel AR, Thomas CY, Wispelway B. Candida prosthetic arthritis: report of a case treated with fluconazole and review of the literature. Am J Med. 1993;94:100–3. doi: 10.1016/0002-9343(93)90127-b. [DOI] [PubMed] [Google Scholar]
  • 24.Evans RP, Nelson CL. Staged reimplantation of a total hip prosthesis after infection with Candida albicans. A report of two cases. J Bone Joint Surg Am. 1990;72:1551–3. [PubMed] [Google Scholar]
  • 25.Darouiche RO, Hamill RJ, Musher DM, Young EJ, Harris RL. Periprosthetic candidal infections following arthroplasty. Rev Infect Dis. 1989;11:89–96. doi: 10.1093/clinids/11.1.89. [DOI] [PubMed] [Google Scholar]
  • 26.Lambertus M, Thodarson D, Goetz MB. Fungal prosthetic arthritis: presentation of two cases and review of the literature. Rev Infect Dis. 1988;10:1038–43. doi: 10.1093/clinids/10.5.1038. [DOI] [PubMed] [Google Scholar]
  • 27.Levine M, Rehm SJ, Wilde AH. Infection with Candida albicans of a total knee arthroplasty. Case report and review of the literature. Clin Orthop Relat Res. 1988;226:235–9. [PubMed] [Google Scholar]
  • 28.Iskander MK, Khan MA. Candida albicans infection of a prosthetic knee replacement. J Rheumatol. 1988;15:1594–5. [PubMed] [Google Scholar]
  • 29.Koch AE. Candida albicans infection of a prosthetic knee replacement: a report and review of the literature. J Rheumatol. 1988;15:362–5. [PubMed] [Google Scholar]
  • 30.Lim EVA, Stern PJ. Candida infection after implant arthroplasty. J Bone Joint Surg. 1986;68:143–5. [PubMed] [Google Scholar]
  • 31.Younkin S, McCollister Evarts C, Steigbidel RT. Candida parapsilosis infection of a total hip-joint replacement: successful reimplantation after treatment with amphotericin B and 5-fluorocytosine. A case report. J Bone Joint Surg. 1984;66:142–3. [PubMed] [Google Scholar]
  • 32.Lichtman EA. Candida infection of a prosthetic shoulder joint. Skeletal Radiol. 1983;10:176–7. doi: 10.1007/BF00357775. [DOI] [PubMed] [Google Scholar]
  • 33.Goodman JS, Seibert DG, Reahl GE Jr, Geckler RW. Fungal infection of prosthetic joints: a report of two cases. J Rheumatol. 1983;10:494–5. [PubMed] [Google Scholar]
  • 34.Ueng SWN, Lee CY, Hu CC, Hsieh PH, Chang Y. What is the success of treatment of hip and knee candidal periprosthetic joint infection? Clin Orthop Relat Res. 2013;471:3002–9. doi: 10.1007/s11999-013-3007-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Wu MH, Hsu KY. Candidal arthritis in revision knee arthroplasty successfully treated with sequential parenteral-oral fluconazole and amphotericin B-loaded cement spacer. Knee Surg Sports Traumatol Arthrose. 2011;19:273–6. doi: 10.1007/s00167-010-1211-4. [DOI] [PubMed] [Google Scholar]
  • 36.Yang SH, Pao JL, Hang YS. Staged reimplantation of total knee arthroplasty after Candida infection. J Arthroplasty. 2001;16:529–32. doi: 10.1054/arth.2001.21458. [DOI] [PubMed] [Google Scholar]
  • 37.Lidder S, Tasleem A, Masterson S, Carrington RWJ. Candida tropicalis: diagnostic dilemmas for an unusual prosthetic hip infection. J R Army Med Corps. 2013;0:1–3. doi: 10.1136/jramc-2013-000053. [DOI] [PubMed] [Google Scholar]
  • 38.Bruce ASW, Kerry RM, Norman P, Stockley I. Fluconazole-impregnated beads in the management of fungal infection of prosthetic joints. J Bone Joint Surg Br. 2001;83:183–4. doi: 10.1302/0301-620x.83b2.11444. [DOI] [PubMed] [Google Scholar]
  • 39.Ramamohan N, Zeineh N, Grigoris P, Butcher I. Candida glabrata infection after total hip arthroplasty. J Infect. 2001;42:74–6. doi: 10.1053/jinf.2000.0763. [DOI] [PubMed] [Google Scholar]
  • 40.Selmon GP, Slater RN, Shepperd JA, Wright EP. Successful 1-stage exchange total knee arthroplasty for fungal infection. J Arthroplasty. 1998;13:114–5. doi: 10.1016/s0883-5403(98)90086-9. [DOI] [PubMed] [Google Scholar]
  • 41.Paul J, White SH, Nicholls KM, Crook DW. Prosthetic joint infection due to Candida parapsilosis in the UK: case report and literature review. Eur J Clin Microbiol Infect Dis. 1992;11:847–9. doi: 10.1007/BF01960889. [DOI] [PubMed] [Google Scholar]
  • 42.Anagnostakos K, Kelm J, Schmitt E, Jung J. Fungal periprosthetic hip and knee joint infections. Clinical experience with a 2-stage treatment protocol. J Arthroplasty. 2012;27:293–8. doi: 10.1016/j.arth.2011.04.044. [DOI] [PubMed] [Google Scholar]
  • 43.Dumaine V, Eyrolle L, Braixench MT, Paugam A, Larousserie F, Padoin C. et al. Successful treatment of prosthetic knee Candida glabrata infection with caspofungin combined with flucytosine. Int J Antimicrob Agents. 2008;31:398–9. doi: 10.1016/j.ijantimicag.2007.12.001. [DOI] [PubMed] [Google Scholar]
  • 44.Merrer J, Dupont B, Nieszkowska A, De Jonghe B, Outin H. Candida albicans prothetic arthritis treated with fluconazole alone. J Infect. 2001;42:208–9. doi: 10.1053/jinf.2001.0819. [DOI] [PubMed] [Google Scholar]
  • 45.Jenny JY, Goukodadja O, Boeri C, Gaudias J. May one-stage exchange for Candida albicans peri-prosthetic infection be successful? Orthop Traumatol Surg Res. 2016;102:127–9. doi: 10.1016/j.otsr.2015.10.001. [DOI] [PubMed] [Google Scholar]
  • 46.Artiaco S, Ferrero A, Boggio F, Colzani G. Pseudotumor of the hip due to fungal prosthetic joint infection. Case Rep Orthop; 2013. p. 502728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Bartalesi F, Fallani S, Salomoni E, Marcucci M, Meli M, Pecile P. et al. Candida glabrata prosthetic hip infection. Am J Orthop. 2012;41:500–5. [PubMed] [Google Scholar]
  • 48.Lazzarini L, Manfrin V, De Lalla F. Candidal prosthetic hip infection in a patient with previous candidal septic arthritis. J Arthroplasty. 2004;19:248–52. doi: 10.1016/s0883-5403(03)00407-8. [DOI] [PubMed] [Google Scholar]
  • 49.Wada M, Baba H, Imura S. Prosthetic knee Candida parapsilosis infection. J Arthroplasty. 1998;13:479–82. doi: 10.1016/s0883-5403(98)90019-5. [DOI] [PubMed] [Google Scholar]
  • 50.Fukasawa N, Shirakura K. Candida arthritis after total knee arthroplasty- a case of successful treatment without prosthesis removal. Acta Orthop Scand. 1997;68:306–7. doi: 10.3109/17453679708996709. [DOI] [PubMed] [Google Scholar]
  • 51.Zhu Y, Yue C, Huang Z, Pei F. Candida glabrata infection following total hip arthroplasty: a case report. Exp Ther Med. 2014;7:352–4. doi: 10.3892/etm.2013.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Reddy KJ, Shah JD, Kale RV, Reddy TJ. Fungal prosthetic joint infection after total knee arthroplasty. Indian J Orthop. 2013;47:526–529. doi: 10.4103/0019-5413.118213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Lejko-Zupanc T, Mozina E, Vrevc F. Caspofungin as treatment for Candida glabrata hip infection. Int J Antimicrob Agents. 2005;25:272–7. doi: 10.1016/j.ijantimicag.2005.01.005. [DOI] [PubMed] [Google Scholar]
  • 54.Fabry K, Verheyden F, Nelen G. Infection of a total knee prosthesis by Candida glabrata: a case report. Acta Orthop Belg. 2005;71:119–21. [PubMed] [Google Scholar]
  • 55.Açkgöz ZC, Sayli U, Avci S, Dogruel H, Gamberzade S. An extremely uncommon infection: Candida glabrata arthritis after total knee arthroplasty. Scand J Infect Dis. 2002;34:394–6. doi: 10.1080/00365540110080232. [DOI] [PubMed] [Google Scholar]
  • 56.Marra F, Robbins GM, Masri BA, Duncan C, Wasan KM, Kwong EH. et al. Amphotericin B-loaded bone cement to treat osteomyelitis caused by Candida albicans. Can J Surg. 2001;44:383–6. [PMC free article] [PubMed] [Google Scholar]
  • 57.Badrul B, Rusian G. Candida albicans infection of a prosthetic knee replacement: a case report. Med J Malaysia. 2000;55(Suppl C):93–6. [PubMed] [Google Scholar]
  • 58.Nayeri F, Cameron R, Chryssanthou E, Johansson L, Söderström C. Candida glabrata prosthetic infection following pyelonephritis and septicaemia. Scand J Infect Dis. 1997;29:635–8. doi: 10.3109/00365549709035912. [DOI] [PubMed] [Google Scholar]
  • 59.Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–5. doi: 10.2106/JBJS.F.00222. [DOI] [PubMed] [Google Scholar]
  • 60.Dale H, Fenstad AM, Hallan G, Havelin LI, Furnes O, Overgaard S. et al. Increasing risk of prosthetic joint infection after total hip arthroplasty. Acta Orthop. 2012;83:449–58. doi: 10.3109/17453674.2012.733918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol. 2009;47:681–9. doi: 10.3109/13693780802549594. [DOI] [PubMed] [Google Scholar]
  • 62.Davey ME, O'Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64:847–867. doi: 10.1128/mmbr.64.4.847-867.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog Dis; 2016. DOI: http://dx.doi.org/10.1093/femspd/ftw018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011;19:241–7. doi: 10.1016/j.tim.2011.02.003. [DOI] [PubMed] [Google Scholar]
  • 65.Marra F, Robbins GM, Masri BA, Duncan C, Wasan KM, Kwong EH. et al. Amphotericin B-loaded bone cement to treat osteomyelitis caused by Candida albicans. Can J Surg. 2001;44:383–6. [PMC free article] [PubMed] [Google Scholar]
  • 66.Goss B, Lutton C, Weinrauch P, Jabur M, Gillett G, Crawford R. Elution and mechanical properties of antifungal bone cement. J Arthroplasty. 2007;22:902–8. doi: 10.1016/j.arth.2006.09.013. [DOI] [PubMed] [Google Scholar]
  • 67.Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE. et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35. doi: 10.1086/596757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46:1773–80. doi: 10.1128/AAC.46.6.1773-1780.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Melo AS, Bizerra FC, Freymüller E, Arthington-Skaggs BA, Colombo AL. Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Medical Mycology. 2011;49:253–262. doi: 10.3109/13693786.2010.530032. [DOI] [PubMed] [Google Scholar]
  • 70.Nogueira Gomes P, da Silva WJ, Cordeiro Pousa C, Orsini Narvaes EA, Del Bel Cury AA. Bioactivity and cellular structure of Candida albicans and Candida glabrata biofilms grown in the presence of fluconazole. Arch Oral Biol. 2011;56:1274–81. doi: 10.1016/j.archoralbio.2011.04.006. [DOI] [PubMed] [Google Scholar]
  • 71.Valentín A, Cantón E, Pemán J, Quindós G. Actividad in vitro de la anfotericina B y la anidulafungina sobre biopelículas de Candida albicans y Candida tropicalis. Rev Iberoam Micol. 2007;24:272–7. doi: 10.1016/s1130-1406(07)70055-4. [DOI] [PubMed] [Google Scholar]
  • 72.Parvizi J, Gehrke T, Chen AF. Proceedings of the international consensus on periprosthetic joint infection. Bone Joint J. 2013;95B:1450–2. doi: 10.1302/0301-620X.95B11.33135. [DOI] [PubMed] [Google Scholar]
  • 73.Hwang BH, Yoon JY, Nam CH, Jung KA, Lee SC, Han CD. et al. Fungal peri-prosthetic joint infection after primary total knee replacement. J Bone Joint Surg Br. 2012;94:656–9. doi: 10.1302/0301-620X.94B5.28125. [DOI] [PubMed] [Google Scholar]
  • 74.Klatte TO, Kendoff D, Kamath AF, Jonen V, Rueger JM, Frommelt L, Gebauer M, Gehrke T. Single-stage revision for fungal peri-prosthetic joint infection. Bone Joint J. 2014;96B:492–6. doi: 10.1302/0301-620X.96B4.32179. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bone and Joint Infection are provided here courtesy of Copernicus Publications (Copernicus GmbH)

RESOURCES