Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2017 Feb 1;8(6):401–438. doi: 10.1007/s13238-017-0372-z

Structure-based assessment of disease-related mutations in human voltage-gated sodium channels

Weiyun Huang 1,2,3, Minhao Liu 2, S Frank Yan 4,, Nieng Yan 1,2,3,
PMCID: PMC5445024  PMID: 28150151

Abstract

Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

Electronic supplementary material

The online version of this article (doi:10.1007/s13238-017-0372-z) contains supplementary material, which is available to authorized users.

Keywords: Nav channels, channelopathy, Nav1.7, structure modeling, pain

INTRODUCTION

Voltage-gated sodium (Nav) channels are essential for the rapid depolarization phase of action potential and play a key role in the electrical signaling in most excitable cells. Structurally, Nav channels are composed of one α subunit and one or more β subunits. The α subunit contains two functionally distinct structural entities, namely, the voltage-sensing domains (VSDs) and the ion-conducting pore domain (Catterall, 2012b, 2014). The β subunits, which bind to α subunit covalently or non-covalently, modulate membrane trafficking, voltage dependence, and channel gating kinetics (Catterall, 2012b, 2014). In mammals, Nav channels have nine known α members distributed in different excitable tissues. Specifically, Nav1.1, Nav1.2, Nav1.3, and Nav1.6 are the primary sodium channels in central nervous system (CNS), Nav1.4 is primarily expressed in skeletal muscle, Nav1.5 is mainly expressed in heart, and Nav1.7, Nav1.8, and Nav1.9 are mainly distributed in peripheral nervous system (Plummer and Meisler, 1999; Goldin, 2001; Catterall et al., 2005).

All α subunits share nearly identical structure topology—a canonical voltage-gated ion channel fold with four homologous repeats, each containing six transmembrane segments S1–S6. Specifically, S5–S6 segments form the pore domain that conducts selective sodium filtering, while S1–S4 segments constitute the voltage-sensing domain that controls voltage-dependent gating (Catterall, 2000). The voltage sensors in the VSDs are featured by a number of positively charged amino acids (arginine or lysine) located at every third position in the S4 segment. Upon membrane depolarization, movements of these charged residues in the S4 segment are coupled to the opening of the pore domain and the subsequent influx of sodium ions across cell membrane. The pore domain is structurally organized with a four-fold pseudo-symmetry. The pore (P) loops, which are supported by the P1 helix (corresponding to the P helix in potassium channel) and P2 helix between S5 and S6 segments in each repeat, constitute the selectivity filter (SF) (Corry and Thomas, 2012). Four amino acid residues (aspartate, glutamate, lysine, and alanine, DEKA, in repeats I, II, III, and IV, respectively) in the P loops are crucial for sodium selectivity. Mutating these residues to glutamates confers calcium selectivity, suggesting that the side chains of these amino acids are likely to interact directly with the sodium ions to determine ion selectivity (Heinemann et al., 1992; Sun et al., 1997).

Nav channels inactivate rapidly. A cluster of hydrophobic amino acids (isoleucine, phenylalanine, methionine, and threonine), namely the IFMT motif, located in the cytosolic regions of domain III and domain IV, are required for rapid inactivation. This is demonstrated by the fact that rapid inactivation could be achieved by titrating small peptides containing the IFMT motif (Vassilev et al., 1988; West et al., 1992).

Sodium channelopathies are a group of diseases caused by defective Nav channels, either, in most cases, of congenital nature or acquired nature (Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) (George, 2005; Catterall, 2012a; Kim, 2014). For example, Nav1.1 is primarily expressed in the soma of neuronal cells in the CNS, and mutations of Nav1.1 cause GEFS+2 (generalized epilepsy with febrile seizures plus 2) (Catterall et al., 2010). Moreover, mutations of Nav1.1 are also the main causes of EIEE6 (epileptic encephalopathy, early infantile, 6) and ICEGTC (intractable childhood epilepsy with generalized tonic-clonic seizures) (Escayg and Goldin, 2010). Nav1.5 is the major sodium channel expressed in heart. Nav1.5 mutations may lead to various cardiac diseases such as LQT3 (long QT syndrome 3), BRGDA1 (Brugada syndrome 1), and SSS1 (sick sinus syndrome 1) (Olson et al., 2005; Song and Shou, 2012; Veerman et al., 2015). Nav1.7 is preferentially expressed in the sympathetic neurons, olfactory epithelium, and dorsal root ganglion sensory neurons, and plays a cardinal role in pain transmission (Djouhri et al., 2003; Dib-Hajj et al., 2013). Gain-of-function mutations of Nav1.7 are implicated in two distinct paroxysmal pain syndromes—IEM (primary erythermalgia) and PEPD (paroxysmal extreme pain disorder), while loss-of-function mutations of Nav1.7 inflict people with CIP (indifference to pain, congenital, autosomal recessive) (Lampert et al., 2010; Dib-Hajj et al., 2013). In all, Nav channel mutations play a central role in the pathophysiology of sodium channelopathies. Pharmacologic modulation of Nav channels may thereby represent a viable therapeutic approach for the treatment of many neurological disorders such as epilepsy, arrhythmia, and pain.

Table 1.

Structural mapping of disease-related mutations identified in human Nav1.7

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.7 Q10R IEM N-terminus Q10
hNav1.7 I62V FEB N-terminus I62
hNav1.7 I136V IEM DI S1 I136
hNav1.7 P149Q FEB DI S1-S2 P149
hNav1.7 R185H PEPD DI S3 R185
hNav1.7 R185H SFN DI S3 R185
hNav1.7 S211P IEM DI S3-S4 S211
hNav1.7 F216S IEM DI S4 F216
hNav1.7 I228M DS DI S4 I228
hNav1.7 I228M SFN DI S4 I228
hNav1.7 I234T IEM DI S5 I234
hNav1.7 S241T IEM DI S5 S241
hNav1.7 L245V IEM DI S5 L245
hNav1.7 N395K IEM DI S6 N395
hNav1.7 V400M IEM DI S6 V400
hNav1.7 E406K IEM DI S6 E406
hNav1.7 S490N FEB DI - DII S490
hNav1.7 E519K DS DI - DII E519
hNav1.7 P610T IEM DI - DII P610
hNav1.7 G616R IEM DI - DII G616
hNav1.7 D623N SFN DI - DII D623
hNav1.7 N641Y FEB DI - DII N641
hNav1.7 K666R FEB DI - DII K666
hNav1.7 K666R DS DI - DII K666
hNav1.7 I695M DS DI - DII I695
hNav1.7 C710Y DS DI - DII C710
hNav1.7 I731K SFN DI - DII I731
hNav1.7 I750V SFN DII S1 I750
hNav1.7 I750V DS DII S1 I750
hNav1.7 I750V FEB DII S1 I750
hNav1.7 L834R IEM DII S4 L834
hNav1.7 I859T IEM DII S5 I859
hNav1.7 G867D IEM DII S5 G867
hNav1.7 L869F IEM DII S5 L869
hNav1.7 L869H IEM DII S5 L869
hNav1.7 A874P IEM DII S5 A874
hNav1.7 V883G IEM DII S5 V883
hNav1.7 Q886E IEM DII S5 Q886
hNav1.7 R907Q CIP DII S5-S6 R907
hNav1.7 M943L SFN DII S5-S6 M943
hNav1.7 V1002L SFN DII - DIII V1002
hNav1.7 R1007C PEPD DII - DIII R1007
hNav1.7 L1134F DS DII - DIII L1134
hNav1.7 E1171Q DS DII - DIII E1171
hNav1.7 A1247E CIP DIII S2 A1247
hNav1.7 L1278V DS DIII S3-S4 L1278
hNav1.7 V1309D PEPD DIII S4-S5 V1309
hNav1.7 V1309F PEPD DIII S4-S5 V1309
hNav1.7 V1310F PEPD DIII S4-S5 V1310
hNav1.7 P1319L IEM DIII S4-S5 P1319
hNav1.7 F1460V IEM DIII S6 F1460
hNav1.7 I1472T PEPD DIII - DIV I1472
hNav1.7 F1473V PEPD DIII - DIV F1473
hNav1.7 T1475I PEPD DIII - DIV T1475
hNav1.7 M1543I SFN DIV S2 M1543
hNav1.7 G1618R PEPD DIV S4 G1618
hNav1.7 L1623P PEPD DIV S4 L1623
hNav1.7 M1638K PEPD DIV S5 M1638
hNav1.7 A1643E PEPD DIV S5 A1643
hNav1.7 A1643E IEM DIV S5 A1643
hNav1.7 A1643G IEM DIV S5 A1643
hNav1.7 A1643T IEM DIV S5 A1643
hNav1.7 W1786R CIP C-terminus W1786

IEM: Primary erythermalgia; PEPD: Paroxysmal extreme pain disorder; CIP: Indifference to pain, congenital, autosomal recessive; DS: Dravet syndrome; SFN: Small fiber neuropathy; FEB: Febrile seizures

Table 2.

Structural mapping of disease-related mutations identified in human Nav1.1

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.1 R27T GEFS+2 N-terminus Q25
hNav1.1 S74P GEFS+2 N-terminus S72
hNav1.1 D188V GEFS+2 DI S3 D186
hNav1.1 F218L GEFS+2 DI S4 F216
hNav1.1 T254I GEFS+2 DI S5 T252
hNav1.1 S291G GEFS+2 DI S5-S6 S279
hNav1.1 R377Q GEFS+2 DI S5-S6 R356
hNav1.1 Y388H GEFS+2 DI S5-S6 Y367
hNav1.1 Y790C GEFS+2 DII S1-S2 H766
hNav1.1 R859C GEFS+2 DII S4 R835
hNav1.1 R859H GEFS+2 DII S4 R835
hNav1.1 T875M GEFS+2 DII S4-S5 T851
hNav1.1 I899T GEFS+2 DII S5 I875
hNav1.1 N935H GEFS+2 DII S5-S6 N911
hNav1.1 R946H GEFS+2 DII S5-S6 R922
hNav1.1 M960T GEFS+2 DII S5-S6 M936
hNav1.1 M973V GEFS+2 DII S6 M949
hNav1.1 M976I GEFS+2 DII S6 M952
hNav1.1 I978M GEFS+2 DII S6 I954
hNav1.1 W1204R GEFS+2 DII - DIII W1178
hNav1.1 W1204S GEFS+2 DII - DIII W1178
hNav1.1 L1230F GEFS+2 DIII S1 L1204
hNav1.1 K1249N GEFS+2 DIII S2 K1223
hNav1.1 T1250M GEFS+2 DIII S2 I1224
hNav1.1 K1270T GEFS+2 DIII S2 K1244
hNav1.1 L1309F GEFS+2 DIII S3-S4 L1283
hNav1.1 V1353L GEFS+2 DIII S5 V1327
hNav1.1 V1366I GEFS+2 DIII S5 V1340
hNav1.1 N1414D GEFS+2 DIII S5-S6 N1388
hNav1.1 V1428A GEFS+2 DIII S5-S6 V1402
hNav1.1 R1596H GEFS+2 DIV S2-S3 R1570
hNav1.1 R1648H GEFS+2 DIV S4 R1622
hNav1.1 I1656M GEFS+2 DIV S5 I1630
hNav1.1 R1657C GEFS+2 DIV S5 R1631
hNav1.1 A1685V GEFS+2 DIV S5 A1659
hNav1.1 F1687S GEFS+2 DIV S5 F1661
hNav1.1 P1739L GEFS+2 DIV S5-S6 P1713
hNav1.1 D1742G GEFS+2 DIV S5-S6 D1716
hNav1.1 F1765L GEFS+2 DIV S6 Y1739
hNav1.1 E1795K GEFS+2 C-terminus E1769
hNav1.1 M1852T GEFS+2 C-terminus M1826
hNav1.1 V1857L GEFS+2 C-terminus V1831
hNav1.1 D1866Y GEFS+2 C-terminus D1840
hNav1.1 I1867T GEFS+2 C-terminus I1841
hNav1.1 G58V EIEE6 N-terminus G56
hNav1.1 L61F EIEE6 N-terminus L59
hNav1.1 F63L EIEE6 N-terminus F61
hNav1.1 I68T EIEE6 N-terminus I66
hNav1.1 E78D EIEE6 N-terminus E76
hNav1.1 D79H EIEE6 N-terminus D77
hNav1.1 D79N EIEE6 N-terminus D77
hNav1.1 Y84C EIEE6 N-terminus Y82
hNav1.1 F90S EIEE6 N-terminus F88
hNav1.1 I91T EIEE6 N-terminus I89
hNav1.1 A98P EIEE6 N-terminus T96
hNav1.1 R101Q EIEE6 N-terminus R99
hNav1.1 R101W EIEE6 N-terminus R99
hNav1.1 S103G EIEE6 N-terminus N101
hNav1.1 T105I EIEE6 N-terminus T103
hNav1.1 L108R EIEE6 N-terminus L106
hNav1.1 T112I EIEE6 N-terminus S110
hNav1.1 R118S EIEE6 N-terminus R116
hNav1.1 I124N EIEE6 N-terminus I122
hNav1.1 H127D EIEE6 N-terminus H125
hNav1.1 T162P EIEE6 DI S2 T160
hNav1.1 I171K EIEE6 DI S2 V169
hNav1.1 I171R EIEE6 DI S2 V169
hNav1.1 A175T EIEE6 DI S2-23 A173
hNav1.1 A175V EIEE6 DI S2-S3 A173
hNav1.1 G177E EIEE6 DI S2-S3 G175
hNav1.1 C179R EIEE6 DI S2-S3 C177
hNav1.1 W190R EIEE6 DI S3 W188
hNav1.1 N191K EIEE6 DI S3 N189
hNav1.1 N191Y EIEE6 DI S3 N189
hNav1.1 D194G EIEE6 DI S3 D192
hNav1.1 D194N EIEE6 DI S3 D192
hNav1.1 T199R EIEE6 DI S3 V197
hNav1.1 T217K EIEE6 DI S3-S4 T215
hNav1.1 A223E EIEE6 DI S4 A221
hNav1.1 T226M EIEE6 DI S4 T224
hNav1.1 T226R EIEE6 DI S4 T224
hNav1.1 I227S EIEE6 DI S4 I225
hNav1.1 I227T EIEE6 DI S4 I225
hNav1.1 G232S EIEE6 DI S4-S5 G230
hNav1.1 L233R EIEE6 DI S5 L231
hNav1.1 A239T EIEE6 DI S5 A237
hNav1.1 A239V EIEE6 DI S5 A237
hNav1.1 S243Y EIEE6 DI S5 S241
hNav1.1 I252N EIEE6 DI S5 I250
hNav1.1 S259R EIEE6 DI S5 S257
hNav1.1 G265W EIEE6 DI S5 G263
hNav1.1 C277R EIEE6 DI S5-S6 C275
hNav1.1 W280C EIEE6 DI S5-S6 N278
hNav1.1 W280R EIEE6 DI S5-S6 N278
hNav1.1 P281A EIEE6 DI S5-S6 S279
hNav1.1 P281L EIEE6 DI S5-S6 S279
hNav1.1 P281S EIEE6 DI S5-S6 S279
hNav1.1 E289V EIEE6 DI S5-S6 E287
hNav1.1 T297I EIEE6 DI S5-S6
hNav1.1 R322I EIEE6 DI S5-S6 R301
hNav1.1 S340F EIEE6 DI S5-S6 T319
hNav1.1 A342V EIEE6 DI S5-S6 S321
hNav1.1 G343D EIEE6 DI S5-S6 G322
hNav1.1 C345R EIEE6 DI S5-S6 C324
hNav1.1 C351W EIEE6 DI S5-S6 C330
hNav1.1 G355D EIEE6 DI S5-S6 G334
hNav1.1 R356G EIEE6 DI S5-S6 R335
hNav1.1 N357I EIEE6 DI S5-S6 N336
hNav1.1 P358T EIEE6 DI S5-S6 P357
hNav1.1 N359S EIEE6 DI S5-S6 D338
hNav1.1 T363P EIEE6 DI S5-S6 T342
hNav1.1 T363R EIEE6 DI S5-S6 T342
hNav1.1 D366E EIEE6 DI S5-S6 D345
hNav1.1 L378Q EIEE6 DI S5-S6 L357
hNav1.1 M379R EIEE6 DI S5-S6 M358
hNav1.1 F383L EIEE6 DI S5-S6 Y362
hNav1.1 W384R EIEE6 DI S5-S6 M363
hNav1.1 R393C EIEE6 DI S5-S6 R372
hNav1.1 R393H EIEE6 DI S5-S6 R372
hNav1.1 R393S EIEE6 DI S5-S6 R372
hNav1.1 M400V EIEE6 DI S5-S6 M379
hNav1.1 F403L EIEE6 DI S6 F383
hNav1.1 F403V EIEE6 DI S6 F382
hNav1.1 V406F EIEE6 DI S6 V385
hNav1.1 L409W EIEE6 DI S6 L388
hNav1.1 Y413N EIEE6 DI S6 Y392
hNav1.1 Y426C EIEE6 DI S6 Y405
hNav1.1 Y426N EIEE6 DI S6 Y405
hNav1.1 S525F EIEE6 DI - DII S505
hNav1.1 S626G EIEE6 DI - DII S606
hNav1.1 D674G EIEE6 DI - DII D651
hNav1.1 N762D EIEE6 DI - DII Y738
hNav1.1 L783P EIEE6 DII S1 L759
hNav1.1 M785T EIEE6 DII S1-S2 M761
hNav1.1 T812I EIEE6 DII S2 A788
hNav1.1 T812R EIEE6 DII S2 A788
hNav1.1 L842R EIEE6 DII S3 L818
hNav1.1 S843R EIEE6 DII S3 S819
hNav1.1 E846K EIEE6 DII S3 E822
hNav1.1 R859C EIEE6 DII S4 R835
hNav1.1 R862Q EIEE6 DII S4 R838
hNav1.1 R865G EIEE6 DII S4 R841
hNav1.1 T875K EIEE6 DII S4-S5 T851
hNav1.1 T875M EIEE6 DII S4-S5 T851
hNav1.1 L876I EIEE6 DII S5 L852
hNav1.1 L890P EIEE6 DII S5 L866
hNav1.1 V896F EIEE6 DII S5 V872
hNav1.1 V896L EIEE6 DII S5 V872
hNav1.1 F902C EIEE6 DII S5 F878
hNav1.1 C927F EIEE6 DII S5-S6 C903
hNav1.1 R931C EIEE6 DII S5-S6 R907
hNav1.1 W932C EIEE6 DII S5-S6 W908
hNav1.1 H933P EIEE6 DII S5-S6 H909
hNav1.1 M934I EIEE6 DII S5-S6 M910
hNav1.1 H939P EIEE6 DII S5-S6 H915
hNav1.1 H939Q EIEE6 DII S5-S6 H915
hNav1.1 H939Y EIEE6 DII S5-S6 H915
hNav1.1 S940F EIEE6 DII S5-S6 S916
hNav1.1 L942P EIEE6 DII S5-S6 L918
hNav1.1 I943N EIEE6 DII S5-S6 I919
hNav1.1 V944A EIEE6 DII S5-S6 V920
hNav1.1 V944E EIEE6 DII S5-S6 V920
hNav1.1 F945L EIEE6 DII S5-S6 F921
hNav1.1 R946C EIEE6 DII S5-S6 R922
hNav1.1 R946H EIEE6 DII S5-S6 R922
hNav1.1 R946S EIEE6 DII S5-S6 R922
hNav1.1 C949S EIEE6 DII S5-S6 C925
hNav1.1 C949Y EIEE6 DII S5-S6 C925
hNav1.1 G950E EIEE6 DII S5-S6 G926
hNav1.1 G950R EIEE6 DII S5-S6 G926
hNav1.1 W952G EIEE6 DII S5-S6 W928
hNav1.1 E954K EIEE6 DII S5-S6 E930
hNav1.1 M956K EIEE6 DII S5-S6 M932
hNav1.1 W957L EIEE6 DII S5-S6 W933
hNav1.1 C959R EIEE6 DII S5-S6 C935
hNav1.1 M960V EIEE6 DII S5-S6 M936
hNav1.1 M973K EIEE6 DII S6 M949
hNav1.1 M976I EIEE6 DII S6 M952
hNav1.1 G979V EIEE6 DII S6 G955
hNav1.1 N985I EIEE6 DII S6 N961
hNav1.1 L986F EIEE6 DII S6 L962
hNav1.1 L986P EIEE6 DII S6 L962
hNav1.1 F987L EIEE6 DII S6 F963
hNav1.1 S993R EIEE6 DII - DIII S969
hNav1.1 D998G EIEE6 DII - DIII D974
hNav1.1 E1068K EIEE6 DII - DIII E1045
hNav1.1 L1207P EIEE6 DII - DIII I1181
hNav1.1 R1208K EIEE6 DII - DIII R1182
hNav1.1 T1210K EIEE6 DII - DIII T1184
hNav1.1 E1221K EIEE6 DIII S1 E1195
hNav1.1 L1230F EIEE6 DIII S1 L1204
hNav1.1 S1231R EIEE6 DIII S1 S1205
hNav1.1 S1231T EIEE6 DIII S1 S1205
hNav1.1 G1233R EIEE6 DIII S1 G1207
hNav1.1 E1238D EIEE6 DIII S1-S2 E1212
hNav1.1 D1239G EIEE6 DIII S1-S2 D1213
hNav1.1 D1239Y EIEE6 DIII S1-S2 D1213
hNav1.1 R1245Q EIEE6 DIII S1-S2 K1219
hNav1.1 A1255D EIEE6 DIII S2 A1229
hNav1.1 T1260P EIEE6 DIII S2 T1234
hNav1.1 F1263L EIEE6 DIII S2 F1237
hNav1.1 L1265P EIEE6 DIII S2 L1239
hNav1.1 E1266A EIEE6 DIII S2 E1240
hNav1.1 G1275V EIEE6 DIII S2-S3 G1249
hNav1.1 W1284S EIEE6 DIII S3 W1258
hNav1.1 L1287P EIEE6 DIII S3 L1261
hNav1.1 D1288N EIEE6 DIII S3 D1262
hNav1.1 R1316G EIEE6 DIII S4 R1290
hNav1.1 R1316S EIEE6 DIII S4 R1290
hNav1.1 A1320V EIEE6 DIII S4 A1294
hNav1.1 A1326P EIEE6 DIII S4 A1300
hNav1.1 S1328P EIEE6 DIII S4-S5 S1302
hNav1.1 V1335M EIEE6 DIII S4-S5 V1309
hNav1.1 A1339V EIEE6 DIII S4-S5 A1313
hNav1.1 I1344M EIEE6 DIII S4-S5 I1318
hNav1.1 V1350G EIEE6 DIII S5 V1324
hNav1.1 L1355P EIEE6 DIII S5 L1329
hNav1.1 W1358R EIEE6 DIII S5 W1332
hNav1.1 W1358S EIEE6 DIII S5 W1332
hNav1.1 N1367K EIEE6 DIII S5 N1341
hNav1.1 A1370P EIEE6 DIII S5-S6 A1344
hNav1.1 N1378H EIEE6 DIII S5-S6 N1352
hNav1.1 N1378T EIEE6 DIII S5-S6 N1352
hNav1.1 F1385V EIEE6 DIII S5-S6 F1359
hNav1.1 V1390M EIEE6 DIII S5-S6 V1364
hNav1.1 N1391S EIEE6 DIII S5-S6 P1365
hNav1.1 H1393P EIEE6 DIII S5-S6 R1367
hNav1.1 T1394I EIEE6 DIII S5-S6 S1368
hNav1.1 C1396G EIEE6 DIII S5-S6 C1370
hNav1.1 C1396Y EIEE6 DIII S5-S6 C1370
hNav1.1 N1414Y EIEE6 DIII S5-S6 N1388
hNav1.1 D1416G EIEE6 DIII S5-S6 D1390
hNav1.1 N1417S EIEE6 DIII S5-S6 N1391
hNav1.1 V1418G EIEE6 DIII S5-S6 V1392
hNav1.1 Y1422C EIEE6 DIII S5-S6 Y1396
hNav1.1 L1423F EIEE6 DIII S5-S6 L1397
hNav1.1 L1426R EIEE6 DIII S5-S6 L1400
hNav1.1 Q1427P EIEE6 DIII S5-S6 Q1401
hNav1.1 F1431I EIEE6 DIII S5-S6 F1405
hNav1.1 G1433E EIEE6 DIII S5-S6 G1407
hNav1.1 G1433R EIEE6 DIII S5-S6 G1407
hNav1.1 G1433V EIEE6 DIII S5-S6 G1407
hNav1.1 W1434R EIEE6 DIII S5-S6 W1408
hNav1.1 I1437M EIEE6 DIII S5-S6 I1411
hNav1.1 A1441P EIEE6 DIII S5-S6 A1415
hNav1.1 Q1450K EIEE6 DIII S5-S6 Q1424
hNav1.1 Q1450R EIEE6 DIII S5-S6 Q1424
hNav1.1 P1451L EIEE6 DIII S5-S6 P1425
hNav1.1 P1451S EIEE6 DIII S5-S6 P1425
hNav1.1 Y1453C EIEE6 DIII S5-S6 Y1427
hNav1.1 E1454K EIEE6 DIII S5-S6 E1428
hNav1.1 L1461I EIEE6 DIII S6 I1435
hNav1.1 Y1462C EIEE6 DIII S6 Y1436
hNav1.1 Y1462H EIEE6 DIII S6 Y1436
hNav1.1 F1463S EIEE6 DIII S6 F1437
hNav1.1 G1470W EIEE6 DIII S6 G1444
hNav1.1 F1472S EIEE6 DIII S6 F1446
hNav1.1 L1475S EIEE6 DIII S6 L1449
hNav1.1 N1476K EIEE6 DIII S6 N1450
hNav1.1 D1484G EIEE6 DIII S6 D1458
hNav1.1 N1485Y EIEE6 DIII S6 N1459
hNav1.1 E1503K EIEE6 DIII - DIV E1477
hNav1.1 L1514S EIEE6 DIII - DIV L1488
hNav1.1 V1538I EIEE6 DIII - DIV V1512
hNav1.1 D1544A EIEE6 DIV S1 D1518
hNav1.1 D1544G EIEE6 DIV S1 D1518
hNav1.1 I1545V EIEE6 DIV S1 I1519
hNav1.1 M1555R EIEE6 DIV S1 M1529
hNav1.1 E1561K EIEE6 DIV S1-S2 E1535
hNav1.1 V1579E EIEE6 DIV S2 V1553
hNav1.1 G1586E EIEE6 DIV S2 G1560
hNav1.1 C1588R EIEE6 DIV S2 C1562
hNav1.1 L1592H EIEE6 DIV S2 L1566
hNav1.1 L1592P EIEE6 DIV S2 L1566
hNav1.1 R1596C EIEE6 DIV S2-S3 R1570
hNav1.1 R1596L EIEE6 DIV S2-S3 R1570
hNav1.1 N1605S EIEE6 DIV S3 N1579
hNav1.1 D1608G EIEE6 DIV S3 D1582
hNav1.1 D1608Y EIEE6 DIV S3 D1582
hNav1.1 V1612I EIEE6 DIV S3 V1586
hNav1.1 V1630L EIEE6 DIV S3-S4 V1604
hNav1.1 V1630M EIEE6 DIV S3-S4 V1604
hNav1.1 V1637E EIEE6 DIV S4 V1611
hNav1.1 I1638N EIEE6 DIV S4 I1612
hNav1.1 I1638T EIEE6 DIV S4 I1612
hNav1.1 R1639G EIEE6 DIV S4 R1613
hNav1.1 R1642S EIEE6 DIV S4 R1616
hNav1.1 R1645Q EIEE6 DIV S4 R1619
hNav1.1 R1648C EIEE6 DIV S4 R1622
hNav1.1 R1648H EIEE6 DIV S4 R1622
hNav1.1 A1653E EIEE6 DIV S4-S5 A1627
hNav1.1 T1658M EIEE6 DIV S5 T1632
hNav1.1 T1658R EIEE6 DIV S5 T1632
hNav1.1 L1660P EIEE6 DIV S5 L1634
hNav1.1 F1661S EIEE6 DIV S5 F1635
hNav1.1 A1662V EIEE6 DIV S5 A1636
hNav1.1 M1664K EIEE6 DIV S5 M1638
hNav1.1 L1667P EIEE6 DIV S5 L1641
hNav1.1 P1668A EIEE6 DIV S5 P1642
hNav1.1 P1668L EIEE6 DIV S5 P1642
hNav1.1 N1672I EIEE6 DIV S5 N1646
hNav1.1 I1673T EIEE6 DIV S5 I1647
hNav1.1 G1674R EIEE6 DIV S5 G1648
hNav1.1 L1675R EIEE6 DIV S5 L1649
hNav1.1 L1677F EIEE6 DIV S5 L1651
hNav1.1 I1683T EIEE6 DIV S5 I1657
hNav1.1 Y1684D EIEE6 DIV S5 Y1658
hNav1.1 A1685D EIEE6 DIV S5 A1659
hNav1.1 G1688W EIEE6 DIV S5 G1662
hNav1.1 F1692S EIEE6 DIV S5 F1666
hNav1.1 Y1694C EIEE6 DIV S5-S6 Y1668
hNav1.1 F1707V EIEE6 DIV S5-S6 F1681
hNav1.1 S1713N EIEE6 DIV S5-S6 S1687
hNav1.1 M1714K EIEE6 DIV S5-S6 M1688
hNav1.1 M1714R EIEE6 DIV S5-S6 M1688
hNav1.1 C1716R EIEE6 DIV S5-S6 C1690
hNav1.1 T1721R EIEE6 DIV S5-S6 T1695
hNav1.1 G1725C EIEE6 DIV S5-S6 G1699
hNav1.1 W1726R EIEE6 DIV S5-S6 W1700
hNav1.1 D1727G EIEE6 DIV S5-S6 D1701
hNav1.1 C1741R EIEE6 DIV S5-S6 C1715
hNav1.1 G1749E EIEE6 DIV S5-S6 G1723
hNav1.1 C1756G EIEE6 DIV S5-S6 C1730
hNav1.1 G1762E EIEE6 DIV S6 G1736
hNav1.1 I1763N EIEE6 DIV S6 I1737
hNav1.1 I1770F EIEE6 DIV S6 I1744
hNav1.1 I1770N EIEE6 DIV S6 I1744
hNav1.1 I1770T EIEE6 DIV S6 I1744
hNav1.1 I1771F EIEE6 DIV S6 I1745
hNav1.1 I1771N EIEE6 DIV S6 I1745
hNav1.1 S1773F EIEE6 DIV S6 S1747
hNav1.1 M1780T EIEE6 DIV S6 M1754
hNav1.1 Y1781C EIEE6 DIV S6 Y1755
hNav1.1 Y1781H EIEE6 DIV S6 Y1755
hNav1.1 I1782M EIEE6 DIV S6 I1756
hNav1.1 I1782S EIEE6 DIV S6 I1756
hNav1.1 A1783T EIEE6 DIV S6 A1757
hNav1.1 A1783V EIEE6 DIV S6 A1757
hNav1.1 E1787K EIEE6 DIV S6 E1761
hNav1.1 N1788K EIEE6 DIV S6 N1862
hNav1.1 A1792T EIEE6 C-terminus A1766
hNav1.1 F1808I EIEE6 C-terminus F1782
hNav1.1 W1812G EIEE6 C-terminus W1786
hNav1.1 W1812S EIEE6 C-terminus W1786
hNav1.1 F1831S EIEE6 C-terminus F1805
hNav1.1 A1832P EIEE6 C-terminus A1806
hNav1.1 L1835F EIEE6 C-terminus L1809
hNav1.1 M1852K EIEE6 C-terminus M1826
hNav1.1 P1855L EIEE6 C-terminus P1829
hNav1.1 G1880E EIEE6 C-terminus G1854
hNav1.1 E1881D EIEE6 C-terminus E1855
hNav1.1 T1909I EIEE6 C-terminus T1883
hNav1.1 I1922T EIEE6 C-terminus I1896
hNav1.1 F90S ICEGTC N-terminus F88
hNav1.1 R101Q ICEGTC N-terminus R99
hNav1.1 F178S ICEGTC DI S2-S3 F176
hNav1.1 I252M ICEGTC DI S5 I250
hNav1.1 H290R ICEGTC DI S5-S6 S288
hNav1.1 R393H ICEGTC DI S5-S6 R372
hNav1.1 T808S ICEGTC DII S2 T784
hNav1.1 V896I ICEGTC DII S5 V872
hNav1.1 V944A ICEGTC DII S5-S6 R920
hNav1.1 G979R ICEGTC DII S6 G955
hNav1.1 V983A ICEGTC DII S6 V959
hNav1.1 N1011I ICEGTC DII - DIII N987
hNav1.1 R1213Q ICEGTC DII - DIII K1187
hNav1.1 Y1254C ICEGTC DIII S2 Y1228
hNav1.1 R1325T ICEGTC DIII S4 R1299
hNav1.1 S1328P ICEGTC DIII S4-S5 S1302
hNav1.1 F1357L ICEGTC DIII S5 F1331
hNav1.1 V1366I ICEGTC DIII S5 V1340
hNav1.1 C1376R ICEGTC DIII S5-S6 C1350
hNav1.1 A1429D ICEGTC DIII S5-S6 A1403
hNav1.1 Y1462H ICEGTC DIII S6 Y1436
hNav1.1 M1511K ICEGTC DIII - DIV M1485
hNav1.1 V1611F ICEGTC DIV S3 V1585
hNav1.1 M1619V ICEGTC DIV S3 M1593
hNav1.1 P1632S ICEGTC DIV S3-S4 P1606
hNav1.1 Y1684S ICEGTC DIV S5 Y1658
hNav1.1 T1709I ICEGTC DIV S5-S6 T1683
hNav1.1 A1724P ICEGTC DIV S5-S6 A1698
hNav1.1 Y1781C ICEGTC DIV S6 Y1755
hNav1.1 F1808L ICEGTC C-terminus F1782
hNav1.1 R1861W ICEGTC C-terminus R1835
hNav1.1 T1174S FHM3 DII - DIII S1148
hNav1.1 Q1489H FHM3 DIII S6 Q1463
hNav1.1 Q1489K FHM3 DIII S6 Q1463
hNav1.1 F1499L FHM3 DIII - DIV F1473
hNav1.1 L1649Q FHM3 DIV S4 L1623
hNav1.1 M145T FEB3A DI S1 M143
hNav1.1 E1308D FEB3A DIII S3-S4 D1282

GEFS+2: Generalized epilepsy with febrile seizures plus 2; EIEE6: Epileptic encephalopathy, early infantile, 6; ICEGTC: Intractable childhood epilepsy with generalized tonic-clonic seizures; FHM3: Migraine, familial hemiplegic, 3; FEB3A: Febrile seizures, familial, 3A

Table 3.

Structural mapping of disease-related mutations identified in human Nav1.2

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.2 E169G EIEE11 DI S2 E166
hNav1.2 R188W BFIS3 DI S3 R185
hNav1.2 V208E BFIS3 DI S3-S4 V205
hNav1.2 N212D EIEE11 DI S3-S4 N209
hNav1.2 V213D EIEE11 DI S3-S4 V210
hNav1.2 R223Q BFIS3 DI S4 R220
hNav1.2 T236S EIEE11 DI S5 T233
hNav1.2 M252V BFIS3 DI S5 M249
hNav1.2 V261M BFIS3 DI S5 V258
hNav1.2 A263T EIEE11 DI S5 A260
hNav1.2 A263V EIEE11 DI S5 A260
hNav1.2 D322N DS DI - DII D298
hNav1.2 F328V DS DI - DII Y305
hNav1.2 E430Q BFIS3 DI - DII E407
hNav1.2 D649N DS DI - DII D623
hNav1.2 R853Q EIEE11 DII S4 R838
hNav1.2 N876T EIEE11 DII S5 N861
hNav1.2 V892I BFIS3 DII S5 V877
hNav1.2 E999K EIEE11 DII - DIII D984
hNav1.2 N1001K BFIS3 DII - DIII N986
hNav1.2 L1003I BFIS3 DII - DIII L988
hNav1.2 E1211K EIEE11 DIII S1 E1195
hNav1.2 R1312T EIEE11 DIII S4 R1296
hNav1.2 R1312T DS DIII S4 R1296
hNav1.2 R1319Q BFIS3 DIII S4-S5 R1303
hNav1.2 M1323V EIEE11 DIII S4-S5 M1307
hNav1.2 V1326L EIEE11 DIII S4-S5 V1310
hNav1.2 V1326D EIEE11 DIII S4-S5 V1310
hNav1.2 L1330F BFIS3 DIII S4-S5 L1314
hNav1.2 S1336Y EIEE11 DIII S4-S5 S1320
hNav1.2 M1338T EIEE11 DIII S5 M1322
hNav1.2 L1342P BFIS3 DIII S5 L1326
hNav1.2 I1473M EIEE11 DIII S6 I1457
hNav1.2 L1563V BFIS3 DIV S2 L1547
hNav1.2 Y1589C BFIS3 DIV S2-S3 Y1573
hNav1.2 I1596S BFIS3 DIV S3 I1580
hNav1.2 T1623N EIEE11 DIV S3-S4 T1607
hNav1.2 R1629L EIEE11 DIV S4 R1613
hNav1.2 L1660Y EIEE11 DIV S5 L1644
hNav1.2 R1918H BFIS3 C-terminus R1902

BFIS3: Seizures, benign familial infantile 3; EIEE11: Epileptic encephalopathy, early infantile, 11; DS: Dravet syndrome

Table 4.

Structural mapping of disease-related mutations identified in human Nav1.3

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.3 K354Q CPE DI - DII K332
hNav1.3 R357Q CPE DI - DII R335
hNav1.3 D815N CPE DII S2-S3 D799
hNav1.3 E1160K CPE DII - DIII M1146
hNav1.3 M1372V CPE DIII S5-S6 R1358
hNav1.3 G1862C CPE C-terminus G1851

CPE: Cryptogenic partial epilepsy

Table 5.

Structural mapping of disease-related mutations identified in human Nav1.4

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.4 Q270K PMC DI S5 Q265
hNav1.4 I693T PMC DII S5 I858
hNav1.4 T704M PMC DII S5 T870
hNav1.4 S804F PMC DII - DIII S970
hNav1.4 A1152D PMC DIII S4-S5 A1313
hNav1.4 A1156T PMC DIII S4-S5 A1317
hNav1.4 V1293I PMC DIII S6 V1455
hNav1.4 G1306A PMC DIII S6 G1468
hNav1.4 G1306E PMC DIII S6 G1468
hNav1.4 G1306V PMC DIII S6 G1468
hNav1.4 T1313M PMC DIII - DIV T1475
hNav1.4 L1433R PMC DIV S3 L1595
hNav1.4 L1436P PMC DIV S3 L1598
hNav1.4 R1448C PMC DIV S4 R1610
hNav1.4 R1448H PMC DIV S4 R1610
hNav1.4 R1448L PMC DIV S4 R1610
hNav1.4 G1456E PMC DIV S4 G1618
hNav1.4 F1473S PMC DIV S5 F1635
hNav1.4 V1589M PMC DIV S6 V1751
hNav1.4 F1705I PMC C-terminus F1867
hNav1.4 R222W HOKPP2 DI S4 E217
hNav1.4 R669H HOKPP2 DII S4 R835
hNav1.4 R672C HOKPP2 DII S4 R838
hNav1.4 R672G HOKPP2 DII S4 R838
hNav1.4 R672H HOKPP2 DII S4 R838
hNav1.4 R672S HOKPP2 DII S4 R838
hNav1.4 R1129Q HOKPP2 DIII S4 R1290
hNav1.4 R1132Q HOKPP2 DIII S4 R1293
hNav1.4 R1135C HOKPP2 DIII S4 R1296
hNav1.4 R1135H HOKPP2 DIII S4 R1299
hNav1.4 P1158S HOKPP2 DIII S4-S5 P1319
hNav1.4 T704M HYPP DII S5 T870
hNav1.4 V781I HYPP DII S6 V947
hNav1.4 A1156T HYPP DIII S4-S5 A1317
hNav1.4 L1433R HYPP DIV S3 L1595
hNav1.4 M1592V HYPP DIV S6 M1754
hNav1.4 R675G NKPP DII S4 R841
hNav1.4 R675Q NKPP DII S4 R841
hNav1.4 R675W NKPP DII S4 R841
hNav1.4 V781I NKPP DII S6 V947
hNav1.4 R1129Q NKPP DIII S4 R1290
hNav1.4 M1592V NKPP DIV S6 M1754
hNav1.4 I141V MYOSCN4A DI S1 I136
hNav1.4 R225W MYOSCN4A DI S4 R220
hNav1.4 N440K MYOSCN4A DI S6 N395
hNav1.4 V445M MYOSCN4A DI - DII V440
hNav1.4 E452K MYOSCN4A DI - DII E447
hNav1.4 I588V MYOSCN4A DII S1 I754
hNav1.4 F671S MYOSCN4A DII S4 F837
hNav1.4 A715T MYOSCN4A DII S5 A881
hNav1.4 S804N MYOSCN4A DII - DIII S970
hNav1.4 A1156T MYOSCN4A DIII S4-S5 A1317
hNav1.4 P1158L MYOSCN4A DIII S4-S5 P1319
hNav1.4 I1160V MYOSCN4A DIII S4-S5 I1321
hNav1.4 N1297K MYOSCN4A DIII S6 I1457
hNav1.4 G1306E MYOSCN4A DIII S6 G1468
hNav1.4 G1306V MYOSCN4A DIII S6 G1468
hNav1.4 I1310N MYOSCN4A DIII - DIV I1472
hNav1.4 M1476I MYOSCN4A DIV S5 M1638
hNav1.4 A1481D MYOSCN4A DIV S5 A1643
hNav1.4 Q1633E MYOSCN4A C-terminus Q1795
hNav1.4 R104H CMS16 N-terminus R99
hNav1.4 M203K CMS16 DI S3 F198
hNav1.4 R225W CMS16 DI S4 R220
hNav1.4 S246L CMS16 DI S5 S241
hNav1.4 P382T CMS16 DI S5-S6 P337
hNav1.4 D1069N CMS16 DIII S2 D1230
hNav1.4 R1135C CMS16 DIII S4-S5 R1299
hNav1.4 C1209F CMS16 DIII S5-S6 C1370
hNav1.4 V1442E CMS16 DIV S3-S4 V1604
hNav1.4 R1454W CMS16 DIV S4 R1616
hNav1.4 R1457H CMS16 DIV S4 R1619

PMC: Paramyotonia congenita of von Eulenburg; HOKPP2: Periodic paralysis hypokalemic 2; HYPP: Periodic paralysis hyperkalemic; NKPP: Periodic paralysis normokalemic; MYOSCN4A: Myotonia SCN4A-related; CMS16: Myasthenic syndrome, congenital, 16

Table 6.

Structural mapping of disease-related mutations identified in human Nav1.5

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.5 E161K PFHB1A DI S2 E156
hNav1.5 R225W PFHB1A DI S4 R220
hNav1.5 G298S PFHB1A DI S4-S5
hNav1.5 T512I PFHB1A DI - DII V518
hNav1.5 G514C PFHB1A DI - DII G520
hNav1.5 G752R PFHB1A DII S2-S3 G779
hNav1.5 R1232W PFHB1A DIII S1-S2 K1219
hNav1.5 D1275N PFHB1A DIII S3 D1262
hNav1.5 D1595N PFHB1A DIII D3-S4 D1582
hNav1.5 T1620K PFHB1A DIV S3-S4 T1607
hNav1.5 G9V LQT3 N-terminus G8
hNav1.5 R18Q LQT3 N-terminus K17
hNav1.5 R27H LQT3 N-terminus R26
hNav1.5 E30G LQT3 N-terminus E29
hNav1.5 R43Q LQT3 N-terminus K40
hNav1.5 E48K LQT3 N-terminus D43
hNav1.5 P52S LQT3 N-terminus P47
hNav1.5 R53Q LQT3 N-terminus K48
hNav1.5 R104G LQT3 N-terminus R99
hNav1.5 S115G LQT3 N-terminus S110
hNav1.5 V125L LQT3 N-terminus I125
hNav1.5 L212P LQT3 DI S3-S4 L207
hNav1.5 R222Q LQT3 DI S4 R217
hNav1.5 R225Q LQT3 DI S4 R220
hNav1.5 R225W LQT3 DI S4 R220
hNav1.5 V240M LQT3 DI S5 V235
hNav1.5 Q245K LQT3 DI S5 Q240
hNav1.5 V247L LQT3 DI S5 L242
hNav1.5 N275K LQT3 DI S5-S6 N270
hNav1.5 G289S LQT3 DI S5-S6 E284
hNav1.5 R340W LQT3 DI S5-S6 T329
hNav1.5 R367C LQT3 DI S5-S6 R356
hNav1.5 T370M LQT3 DI S5-S6 T359
hNav1.5 I397T LQT3 DI S6 I386
hNav1.5 L404Q LQT3 DI S6 L393
hNav1.5 N406K LQT3 DI S6 N395
hNav1.5 L409V LQT3 DI S6 L398
hNav1.5 V411M LQT3 DI S6 V400
hNav1.5 A413E LQT3 DI S6 A402
hNav1.5 A413T LQT3 DI S6 A402
hNav1.5 E462A LQT3 DI - DII E464
hNav1.5 E462K LQT3 DI - DII E464
hNav1.5 F530V LQT3 DI - DII F555
hNav1.5 R535Q LQT3 DI - DII R562
hNav1.5 R569W LQT3 DI - DII E596
hNav1.5 S571I LQT3 DI - DII R598
hNav1.5 A572D LQT3 DI - DII S599
hNav1.5 A572S LQT3 DI - DII S599
hNav1.5 A572V LQT3 DI - DII S599
hNav1.5 Q573E LQT3 DI - DII S600
hNav1.5 G579R LQT3 DI - DII S606
hNav1.5 G615E LQT3 DI - DII N641
hNav1.5 L619F LQT3 DI - DII L615
hNav1.5 P637L LQT3 DI - DII
hNav1.5 G639R LQT3 DI - DII K666
hNav1.5 P648L LQT3 DI - DII L675
hNav1.5 E654K LQT3 DI - DII N681
hNav1.5 L673P LQT3 DI - DII V700
hNav1.5 R680H LQT3 DI - DII Q708
hNav1.5 R689C LQT3 DI - DII R716
hNav1.5 R689H LQT3 DI - DII R716
hNav1.5 P701L LQT3 DI - DII P728
hNav1.5 T731I LQT3 DII S1 T758
hNav1.5 Q750R LQT3 DII S2 A777
hNav1.5 D772N LQT3 DII S2-S3 D799
hNav1.5 F816Y LQT3 DII S4 F843
hNav1.5 I848F LQT3 DII S5 I875
hNav1.5 S941N LQT3 DII - DIII S970
hNav1.5 Q960K LQT3 DII - DIII Q989
hNav1.5 R965L LQT3 DII - DIII R994
hNav1.5 R971C LQT3 DII - DIII N1000
hNav1.5 C981F LQT3 DII - DIII
hNav1.5 A997S LQT3 DII - DIII E1023
hNav1.5 C1004R LQT3 DII - DIII Y1037
hNav1.5 E1053K LQT3 DII - DIII E1095
hNav1.5 T1069M LQT3 DII - DIII D1111
hNav1.5 A1100V LQT3 DII - DIII
hNav1.5 D1114N LQT3 DII - DIII
hNav1.5 D1166N LQT3 DII - DIII A1153
hNav1.5 R1193Q LQT3 DII - DIII N1180
hNav1.5 Y1199S LQT3 DII - DIII Y1186
hNav1.5 E1225K LQT3 DIII S1-S2 E1212
hNav1.5 E1231K LQT3 DIII S1-S2 R1218
hNav1.5 F1250L LQT3 DIII S2 F1237
hNav1.5 L1283M LQT3 DIII S3 L1270
hNav1.5 E1295K LQT3 DIII S3-S4 D1282
hNav1.5 T1304M LQT3 DIII S4 T1291
hNav1.5 N1325S LQT3 DIII S4-S5 N1312
hNav1.5 A1326S LQT3 DIII S4-S5 A1313
hNav1.5 A1330P LQT3 DIII S4-S5 A1317
hNav1.5 A1330T LQT3 DIII S4-S5 A1317
hNav1.5 P1332L LQT3 DIII S4-S5 P1319
hNav1.5 S1333Y LQT3 DIII S4-S5 S1320
hNav1.5 I1334V LQT3 DIII S4-S5 I1321
hNav1.5 L1338V LQT3 DIII S5 L1325
hNav1.5 R1432S LQT3 DIII S5-S6 V1419
hNav1.5 S1458Y LQT3 DIII S6 S1445
hNav1.5 N1472S LQT3 DIII S6 N1459
hNav1.5 F1473C LQT3 DIII S6 F1460
hNav1.5 G1481E LQT3 DIII - DIV G1468
hNav1.5 F1486L LQT3 DIII - DIV F1473
hNav1.5 M1487L LQT3 DIII - DIV M1474
hNav1.5 T1488R LQT3 DIII - DIV T1475
hNav1.5 E1489D LQT3 DIII - DIV E1476
hNav1.5 K1493R LQT3 DIII - DIV K1480
hNav1.5 Y1495S LQT3 DIII - DIV Y1482
hNav1.5 M1498V LQT3 DIII - DIV M1485
hNav1.5 L1501V LQT3 DIII - DIV L1488
hNav1.5 K1505N LQT3 DIII - DIV K1492
hNav1.5 V1532I LQT3 DIV S1 I1519
hNav1.5 L1560F LQT3 DIV S2 L1547
hNav1.5 I1593M LQT3 DIV S3 I1580
hNav1.5 F1594S LQT3 DIV S3 F1581
hNav1.5 D1595N LQT3 DIV S3 D1582
hNav1.5 F1596I LQT3 DIV S3 F1583
hNav1.5 S1609W LQT3 DIV S3 A1596
hNav1.5 T1620K LQT3 DIV S3-S4 T1607
hNav1.5 R1623L LQT3 DIV S4 R1610
hNav1.5 R1623Q LQT3 DIV S4 R1610
hNav1.5 R1626H LQT3 DIV S4 R1613
hNav1.5 R1626P LQT3 DIV S4 R1613
hNav1.5 R1644C LQT3 DIV S5 R1631
hNav1.5 R1644H LQT3 DIV S5 R1631
hNav1.5 T1645M LQT3 DIV S5 T1632
hNav1.5 L1650F LQT3 DIV S5 L1637
hNav1.5 M1652R LQT3 DIV S5 M1639
hNav1.5 M1652T LQT3 DIV S5 M1639
hNav1.5 I1660V LQT3 DIV S5 I1647
hNav1.5 V1667I LQT3 DIV S5 V1654
hNav1.5 T1723N LQT3 DIV S5-S6 S1710
hNav1.5 R1739W LQT3 DIV S5-S6 E1727
hNav1.5 L1761F LQT3 DIV S6 L1749
hNav1.5 L1761H LQT3 DIV S6 L1749
hNav1.5 V1763M LQT3 DIV S6 V1751
hNav1.5 M1766L LQT3 DIV S6 M1754
hNav1.5 Y1767C LQT3 DIV S6 Y1755
hNav1.5 I1768V LQT3 DIV S6 I1756
hNav1.5 V1777M LQT3 C-terminus V1765
hNav1.5 T1779M LQT3 C-terminus T1767
hNav1.5 E1784K LQT3 C-terminus E1772
hNav1.5 D1790G LQT3 C-terminus D1778
hNav1.5 Y1795C LQT3 C-terminus Y1783
hNav1.5 Y1795YD LQT3 C-terminus Y1783
hNav1.5 D1819N LQT3 C-terminus A1807
hNav1.5 L1825P LQT3 C-terminus L1813
hNav1.5 R1826H LQT3 C-terminus L1814
hNav1.5 D1839G LQT3 C-terminus D1827
hNav1.5 R1897W LQT3 C-terminus K1885
hNav1.5 E1901Q LQT3 C-terminus E1889
hNav1.5 S1904L LQT3 C-terminus S1892
hNav1.5 Q1909R LQT3 C-terminus Q1897
hNav1.5 R1913H LQT3 C-terminus R1901
hNav1.5 A1949S LQT3 C-terminus F1934
hNav1.5 V1951L LQT3 C-terminus N1936
hNav1.5 Y1977N LQT3 C-terminus Y1958
hNav1.5 F2004L LQT3 C-terminus D1982
hNav1.5 F2004V LQT3 C-terminus D1982
hNav1.5 R2012C LQT3 C-terminus
hNav1.5 R18Q BRGDA1 N-terminus K17
hNav1.5 R27H BRGDA1 N-terminus R26
hNav1.5 N70K BRGDA1 N-terminus D65
hNav1.5 D84N BRGDA1 N-terminus D79
hNav1.5 F93S BRGDA1 N-terminus F88
hNav1.5 I94S BRGDA1 N-terminus I89
hNav1.5 V95I BRGDA1 N-terminus V90
hNav1.5 R104Q BRGDA1 N-terminus R99
hNav1.5 R104W BRGDA1 N-terminus R99
hNav1.5 N109K BRGDA1 N-terminus P104
hNav1.5 R121Q BRGDA1 N-terminus R116
hNav1.5 R121W BRGDA1 N-terminus R116
hNav1.5 K126E BRGDA1 N-terminus K121
hNav1.5 L136P BRGDA1 DI S1 L131
hNav1.5 V146M BRGDA1 DI S1 I141
hNav1.5 E161K BRGDA1 DI S2 E156
hNav1.5 E161Q BRGDA1 DI S2 E156
hNav1.5 K175N BRGDA1 DI S2 K170
hNav1.5 A178G BRGDA1 DI S2-S3 A173
hNav1.5 C182R BRGDA1 DI S2-S3 C177
hNav1.5 A185V BRGDA1 DI S2-S3 E180
hNav1.5 T187I BRGDA1 DI S3 T182
hNav1.5 A204V BRGDA1 DI S3 A199
hNav1.5 L212Q BRGDA1 DI S3-S4 L207
hNav1.5 T220I BRGDA1 DI S4 T215
hNav1.5 R222Q BRGDA1 DI S4 R217
hNav1.5 V223L BRGDA1 DI S4 V218
hNav1.5 R225W BRGDA1 DI S4 R220
hNav1.5 A226V BRGDA1 DI S4 A221
hNav1.5 I230V BRGDA1 DI S4 T225
hNav1.5 V232I BRGDA1 DI S4 V227
hNav1.5 V240M BRGDA1 DI S5 V235
hNav1.5 Q270K BRGDA1 DI S5 Q265
hNav1.5 L276Q BRGDA1 DI S5-S6 L271
hNav1.5 H278D BRGDA1 DI S5-S6 H273
hNav1.5 R282C BRGDA1 DI S5-S6 R277
hNav1.5 R282H BRGDA1 DI S5-S6 R277
hNav1.5 V294M BRGDA1 DI S5-S6 I289
hNav1.5 V300I BRGDA1 DI S5-S6
hNav1.5 L315P BRGDA1 DI S5-S6 Y304
hNav1.5 G319S BRGDA1 DI S5-S6 G308
hNav1.5 T320N BRGDA1 DI S5-S6 S319
hNav1.5 L325R BRGDA1 DI S5-S6 L314
hNav1.5 P336L BRGDA1 DI S5-S6 P325
hNav1.5 G351D BRGDA1 DI S5-S6 G340
hNav1.5 G351V BRGDA1 DI S5-S6 G340
hNav1.5 T353I BRGDA1 DI S5-S6 T342
hNav1.5 D356N BRGDA1 DI S5-S6 D345
hNav1.5 R367C BRGDA1 DI S5-S6 R356
hNav1.5 R367H BRGDA1 DI S5-S6 R356
hNav1.5 R367L BRGDA1 DI S5-S6 R356
hNav1.5 M369K BRGDA1 DI S5-S6 M358
hNav1.5 W374G BRGDA1 DI S5-S6 W363
hNav1.5 R376H BRGDA1 DI S5-S6 N365
hNav1.5 G386E BRGDA1 DI S5-S6 G375
hNav1.5 G386R BRGDA1 DI S5-S6 G375
hNav1.5 V396A BRGDA1 DI S6 V385
hNav1.5 V396L BRGDA1 DI S6 V385
hNav1.5 N406S BRGDA1 DI S6 N395
hNav1.5 E439K BRGDA1 DI - DII D428
hNav1.5 D501G BRGDA1 DI - DII D507
hNav1.5 G514C BRGDA1 DI - DII G520
hNav1.5 R526H BRGDA1 DI - DII R540
hNav1.5 F532C BRGDA1 DI - DII A546
hNav1.5 F543L BRGDA1 DI - DII F570
hNav1.5 G552R BRGDA1 DI - DII G579
hNav1.5 L567Q BRGDA1 DI - DII P594
hNav1.5 G615E BRGDA1 DI - DII N641
hNav1.5 L619F BRGDA1 DI - DII L615
hNav1.5 R620C BRGDA1 DI - DII E647
hNav1.5 T632M BRGDA1 DI - DII G659
hNav1.5 P640A BRGDA1 DI - DII K667
hNav1.5 A647D BRGDA1 DI - DII L674
hNav1.5 P648L BRGDA1 DI - DII L675
hNav1.5 R661W BRGDA1 DI - DII R688
hNav1.5 H681P BRGDA1 DI - DII Q708
hNav1.5 C683G BRGDA1 DI - DII C710
hNav1.5 P701L BRGDA1 DI - DII P728
hNav1.5 P717L BRGDA1 DI - DII P744
hNav1.5 A735E BRGDA1 DII S1-S2 A762
hNav1.5 A735V BRGDA1 DII S1-S2 A762
hNav1.5 E746K BRGDA1 DII S2 K773
hNav1.5 G752R BRGDA1 DII S2 G779
hNav1.5 G758E BRGDA1 DII S2 G785
hNav1.5 M764R BRGDA1 DII S2 M791
hNav1.5 D772N BRGDA1 DII S2-S3 D799
hNav1.5 P773S BRGDA1 DII S2-S3 P800
hNav1.5 V789I BRGDA1 DII S3 V816
hNav1.5 R808P BRGDA1 DII S4 R835
hNav1.5 R814Q BRGDA1 DII S4 R841
hNav1.5 L839P BRGDA1 DII S6 L866
hNav1.5 F851L BRGDA1 DII S6 F878
hNav1.5 E867Q BRGDA1 DII S5-S6 E894
hNav1.5 R878C BRGDA1 DII S5-S6 R907
hNav1.5 R878H BRGDA1 DII S5-S6 R907
hNav1.5 H886P BRGDA1 DII S5-S6 H915
hNav1.5 F892I BRGDA1 DII S5-S6 F921
hNav1.5 R893C BRGDA1 DII S5-S6 R922
hNav1.5 R893H BRGDA1 DII S5-S6 R922
hNav1.5 C896S BRGDA1 DII S5-S6 C925
hNav1.5 E901K BRGDA1 DII S5-S6 E930
hNav1.5 S910L BRGDA1 DII S5-S6 A939
hNav1.5 C915R BRGDA1 DII S5-S6 C944
hNav1.5 L917R BRGDA1 DII S6 I946
hNav1.5 N927S BRGDA1 DII S6 N956
hNav1.5 L928P BRGDA1 DII S6 L957
hNav1.5 L935P BRGDA1 DII S6 L964
hNav1.5 R965C BRGDA1 DII - DIII R994
hNav1.5 R965H BRGDA1 DII - DIII R994
hNav1.5 A997T BRGDA1 DII - DIII Q1026
hNav1.5 R1023H BRGDA1 DII - DIII H1050
hNav1.5 E1053K BRGDA1 DII - DIII E1095
hNav1.5 D1055G BRGDA1 DII - DIII D1097
hNav1.5 S1079Y BRGDA1 DII - DIII
hNav1.5 A1113V BRGDA1 DII - DIII
hNav1.5 S1140T BRGDA1 DII - DIII S1128
hNav1.5 R1193Q BRGDA1 DII - DIII N1180
hNav1.5 S1219N BRGDA1 DIII S1 S1206
hNav1.5 E1225K BRGDA1 DIII S1-S2 E1212
hNav1.5 Y1228H BRGDA1 DIII S1-S2 Y1215
hNav1.5 R1232Q BRGDA1 DIII S1-S2 K1219
hNav1.5 R1232W BRGDA1 DIII S1-S2 K1219
hNav1.5 K1236N BRGDA1 DIII S2 K1223
hNav1.5 L1339P BRGDA1 DIII S2 L1226
hNav1.5 E1240Q BRGDA1 DIII S2 E1227
hNav1.5 D1243N BRGDA1 DIII S2 D1230
hNav1.5 V1249D BRGDA1 DIII S2 I1236
hNav1.5 E1253G BRGDA1 DIII S2 E1240
hNav1.5 G1262S BRGDA1 DIII S2-S3 G1249
hNav1.5 W1271C BRGDA1 DIII S3 W1258
hNav1.5 D1275N BRGDA1 DIII S3 D1262
hNav1.5 A1288G BRGDA1 DIII S3-S4 A1275
hNav1.5 F1293S BRGDA1 DIII S3-S4 Y1280
hNav1.5 L1311P BRGDA1 DIII S4 L1298
hNav1.5 G1319V BRGDA1 DIII S4-S5 G1306
hNav1.5 V1323G BRGDA1 DIII S4-S5 V1310
hNav1.5 P1332L BRGDA1 DIII S4-S5 P1319
hNav1.5 F1344L BRGDA1 DIII S5 F1331
hNav1.5 F1344S BRGDA1 DIII S5 F1331
hNav1.5 L1346I BRGDA1 DIII S5 L1333
hNav1.5 L1346P BRGDA1 DIII S5 L1333
hNav1.5 M1351R BRGDA1 DIII S5 M1338
hNav1.5 V1353M BRGDA1 DIII S5 V1340
hNav1.5 G1358W BRGDA1 DIII S5-S6 G1345
hNav1.5 K1359N BRGDA1 DIII S5-S6 K1346
hNav1.5 F1360C BRGDA1 DIII S5-S6 F1347
hNav1.5 C1363Y BRGDA1 DIII S5-S6 C1350
hNav1.5 S1382I BRGDA1 DIII S5-S6 E1369
hNav1.5 V1405L BRGDA1 DIII S5-S6 V1392
hNav1.5 V1405M BRGDA1 DIII S5-S6 V1392
hNav1.5 G1406E BRGDA1 DIII S5-S6 G1393
hNav1.5 G1406R BRGDA1 DIII S5-S6 G1393
hNav1.5 G1408R BRGDA1 DIII S5-S6 G1395
hNav1.5 Y1409C BRGDA1 DIII S5-S6 Y1396
hNav1.5 L1412F BRGDA1 DIII S5-S6 L1399
hNav1.5 K1419E BRGDA1 DIII S5-S6 K1406
hNav1.5 G1420R BRGDA1 DIII S5-S6 G1407
hNav1.5 A1427S BRGDA1 DIII S5-S6 A1414
hNav1.5 A1428V BRGDA1 DIII S5-S6 A1415
hNav1.5 R1432G BRGDA1 DIII S5-S6 V1419
hNav1.5 R1432S BRGDA1 DIII S5-S6 V1419
hNav1.5 G1433V BRGDA1 DIII S5-S6 N1420
hNav1.5 P1438L BRGDA1 DIII S5-S6 P1425
hNav1.5 E1441Q BRGDA1 DIII S5-S6 E1428
hNav1.5 I1448L BRGDA1 DIII S6 I1435
hNav1.5 I1448T BRGDA1 DIII S6 I1435
hNav1.5 Y1449C BRGDA1 DIII S6 Y1436
hNav1.5 V1451D BRGDA1 DIII S6 V1438
hNav1.5 N1463Y BRGDA1 DIII S6 N1450
hNav1.5 V1468F BRGDA1 DIII S6 V1455
hNav1.5 Y1494N BRGDA1 DIII - DIV Y1481
hNav1.5 L1501V BRGDA1 DIII - DIV L1488
hNav1.5 G1502S BRGDA1 DIII - DIV G1489
hNav1.5 R1512W BRGDA1 DIII - DIV R1499
hNav1.5 I1521K BRGDA1 DIII - DIV I1508
hNav1.5 V1525M BRGDA1 DIII - DIV V1512
hNav1.5 K1527R BRGDA1 DIII - DIV N1514
hNav1.5 E1548K BRGDA1 DIV S1-S2 E1535
hNav1.5 A1569P BRGDA1 DIV S2 I1556
hNav1.5 F1571C BRGDA1 DIV S2 F1558
hNav1.5 E1574K BRGDA1 DIV S2 E1561
hNav1.5 L1582P BRGDA1 DIV S2-S3 L1569
hNav1.5 R1583C BRGDA1 DIV S2-S3 R1570
hNav1.5 R1583H BRGDA1 DIV S2-S3 R1570
hNav1.5 V1604M BRGDA1 DIV S3 V1591
hNav1.5 Q1613L BRGDA1 DIV S3-S4 E1600
hNav1.5 T1620M BRGDA1 DIV S3-S4 T1607
hNav1.5 R1623Q BRGDA1 DIV S4 R1610
hNav1.5 R1629Q BRGDA1 DIV S4 R1616
hNav1.5 G1642E BRGDA1 DIV S5 G1629
hNav1.5 R1644C BRGDA1 DIV S5 R1631
hNav1.5 A1649V BRGDA1 DIV S5 A1636
hNav1.5 I1660V BRGDA1 DIV S5 I1647
hNav1.5 G1661R BRGDA1 DIV S5 G1648
hNav1.5 V1667I BRGDA1 DIV S5 V1654
hNav1.5 S1672Y BRGDA1 DIV S5 A1659
hNav1.5 A1680T BRGDA1 DIV S5-S6 A1667
hNav1.5 A1698T BRGDA1 DIV S5-S6 G1685
hNav1.5 T1709M BRGDA1 DIV S5-S6 T1696
hNav1.5 T1709R BRGDA1 DIV S5-S6 T1696
hNav1.5 G1712S BRGDA1 DIV S5-S6 G1699
hNav1.5 D1714G BRGDA1 DIV S5-S6 D1701
hNav1.5 N1722D BRGDA1 DIV S5-S6 N1709
hNav1.5 C1728R BRGDA1 DIV S5-S6 C1715
hNav1.5 C1728W BRGDA1 DIV S5-S6 C1715
hNav1.5 G1740R BRGDA1 DIV S5-S6 G1728
hNav1.5 G1743E BRGDA1 DIV S5-S6 G1731
hNav1.5 G1743R BRGDA1 DIV S5-S6 G1731
hNav1.5 V1764F BRGDA1 DIV S6 V1752
hNav1.5 T1779M BRGDA1 C-terminus T1767
hNav1.5 E1784K BRGDA1 C-terminus E1772
hNav1.5 Y1795H BRGDA1 C-terminus Y1783
hNav1.5 Y1795YD BRGDA1 C-terminus Y1783
hNav1.5 Q1832E BRGDA1 C-terminus K1820
hNav1.5 C1850S BRGDA1 C-terminus C1838
hNav1.5 V1861I BRGDA1 C-terminus V1849
hNav1.5 K1872N BRGDA1 C-terminus R1860
hNav1.5 V1903L BRGDA1 C-terminus V1891
hNav1.5 A1924T BRGDA1 C-terminus I1912
hNav1.5 G1935S BRGDA1 C-terminus G1920
hNav1.5 E1938K BRGDA1 C-terminus D1923
hNav1.5 V1951L BRGDA1 C-terminus N1936
hNav1.5 I1968S BRGDA1 C-terminus T1949
hNav1.5 F2004L BRGDA1 C-terminus D1982
hNav1.5 F2004V BRGDA1 C-terminus D1982
hNav1.5 T220I SSS1 DI S4 T215
hNav1.5 A735V SSS1 DII S1-S2 A762
hNav1.5 P1298L SSS1 DIII S3-S4 P1285
hNav1.5 G1408R SSS1 DIII S5-S6 G1395
hNav1.5 D1792N SSS1 C-terminus E1780
hNav1.5 S1710L VF1 DIV S5-S6 S1697
hNav1.5 F532C SIDS DI - DII F557
hNav1.5 S941N SIDS DII - DIII S970
hNav1.5 G1084S SIDS DII - DIII
hNav1.5 S1333Y SIDS DIII S4-S5 S1320
hNav1.5 F1705S SIDS DIV S5-S6 F1692
hNav1.5 D1275N ATRST1 DIII S3 D1262
hNav1.5 D1275N CMD1E DIII S3 D1262
hNav1.5 M138I ATFB10 DI S1 M133
hNav1.5 E428K ATFB10 DI - DII K417
hNav1.5 H445D ATFB10 DI - DII Q434
hNav1.5 N470K ATFB10 DI - DII S472
hNav1.5 A572D ATFB10 DI - DII S599
hNav1.5 E655K ATFB10 DI - DII D682
hNav1.5 E1053K ATFB10 DII - DIII E1095
hNav1.5 T1131I ATFB10 DII - DIII E1140
hNav1.5 R1826C ATFB10 C-terminus L1814
hNav1.5 V1951M ATFB10 C-terminus N1936
hNav1.5 N1987K ATFB10 C-terminus E1967
hNav1.5 R222Q MEPPC DI S4 R217

PFHB1A: Progressive familial heart block 1A; LQT3: Long QT syndrome 3; BRGDA1: Brugada syndrome 1; SSS1: Sick sinus syndrome 1; VF1: Familial paroxysmal ventricular fibrillation 1; SIDS: Sudden infant death syndrome; ATRST1: Atrial standstill 1; CMD1E: Cardiomyopathy, dilated 1E; ATFB10: Atrial fibrillation, familial, 10; MEPPC: Multifocal ectopic Purkinje-related premature contraction

Table 7.

Structural mapping of disease-related mutations identified in human Nav1.6

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.6 D58N EIEE13 N-terminus D52
hNav1.6 F210L EIEE13 DI S3-S4 F204
hNav1.6 G214D EIEE13 DI S3-S4 G208
hNav1.6 N215R EIEE13 DI S3-S4 N209
hNav1.6 V216D EIEE13 DI S3-S4 V210
hNav1.6 R223G EIEE13 DI S4 R217
hNav1.6 F260S EIEE13 DI S5 F254
hNav1.6 L407F EIEE13 DI S6 L398
hNav1.6 V410L EIEE13 DI - DII V401
hNav1.6 E479V EIEE13 DI - DII E464
hNav1.6 R530W EIEE13 DI - DII H515
hNav1.6 R662C EIEE13 DI - DII Q643
hNav1.6 T767I EIEE13 DII S1 T758
hNav1.6 F846S EIEE13 DII S4 F837
hNav1.6 R850Q EIEE13 DII S4 R841
hNav1.6 L875Q EIEE13 DII S5 L866
hNav1.6 A890T EIEE13 DII S5 A881
hNav1.6 V960D EIEE13 DII S6 V951
hNav1.6 N984K EIEE13 DII - DIII N975
hNav1.6 I1327V EIEE13 DIII S4-S5 I1321
hNav1.6 L1331V EIEE13 DIII S5 L1325
hNav1.6 G1451S EIEE13 DIII S6 G1444
hNav1.6 G1451S EIEE13 DIII S6 G1444
hNav1.6 N1466K EIEE13 DIII S6 N1459
hNav1.6 N1466T EIEE13 DIII S6 N1459
hNav1.6 I1479V EIEE13 DIII - DIV I1472
hNav1.6 E1483K EIEE13 DIII - DIV E1476
hNav1.6 I1583T EIEE13 DIV S2-S3 V1576
hNav1.6 V1592L EIEE13 DIV S3 V1585
hNav1.6 S1596C EIEE13 DIV S3 S1589
hNav1.6 I1605R EIEE13 DIV S3 L1598
hNav1.6 R1617Q EIEE13 DIV S4 R1610
hNav1.6 L1621W EIEE13 DIV S4 L1614
hNav1.6 A1650T EIEE13 DIV S5 A1643
hNav1.6 P1719R EIEE13 DIV S5-S6 P1713
hNav1.6 N1768D EIEE13 DIV S6 N1762
hNav1.6 Q1801E EIEE13 C-terminus Q1795
hNav1.6 E1870D EIEE13 C-terminus E1864
hNav1.6 R1872W EIEE13 C-terminus R1866
hNav1.6 R1872Q EIEE13 C-terminus R1866
hNav1.6 R1872L EIEE13 C-terminus R1866
hNav1.6 N1877S EIEE13 C-terminus N1871

EIEE13: Epileptic encephalopathy, early infantile, 13

Table 8.

Structural mapping of disease-related mutations identified in human Nav1.8

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.8 L554P SFN DI - DII
hNav1.8 M650K SFN DI - DII Y729
hNav1.8 A1304T SFN DIII S5 A1344
hNav1.8 G1662S SFN DIV S5-S6 G1699
hNav1.8 I1706V SFN DIV S6 I1744

SFN: Small fiber neuropathy

Table 9.

Structural mapping of disease-related mutations identified in human Nav1.9

Related proteins Mutations Diseases Structural position Map on hNav1.7
hNav1.9 R222H FEPS3 DI S4 R214
hNav1.9 R222S FEPS3 DI S4 R214
hNav1.9 R225C FEPS3 DI S4 R217
hNav1.9 I381T FEPS3 DI S6 V383
hNav1.9 G699R FEPS3 DII S5 G864
hNav1.9 A808G FEPS3 DII S6 A965
hNav1.9 L811P HSAN7 DII S6 L968
hNav1.9 L1158P FEPS3 DIII S4 L1301
hNav1.9 V1184A HSAN7 DIII S5 V1327

FEPS3: Episodic pain syndrome, familial, 3; HSAN7: Neuropathy, hereditary sensory and autonomic, 7

Table 10.

Summary of sodium channelopathies

Related proteins Diseases
hNav1.1 GEFS+2: Generalized epilepsy with febrile seizures plus 2
EIEE6: Epileptic encephalopathy, early infantile, 6
ICEGTC: Intractable childhood epilepsy with generalized tonic-clonic seizures
FHM3: Migraine, familial hemiplegic, 3
FEB3A: Febrile seizures, familial, 3A
hNav1.2 BFIS3: Seizures, benign familial infantile 3
EIEE11: Epileptic encephalopathy, early infantile, 11
DS: Dravet syndrome
hNav1.3 CPE: Cryptogenic partial epilepsy
hNav1.4 PMC: Paramyotonia congenita of von Eulenburg
HOKPP2: Periodic paralysis hypokalemic 2
HYPP: Periodic paralysis hyperkalemic
NKPP: Periodic paralysis normokalemic
MYOSCN4A: Myotonia SCN4A-related
CMS16: Myasthenic syndrome, congenital, 16
hNav1.5 PFHB1A: Progressive familial heart block 1A
LQT3: Long QT syndrome 3
BRGDA1: Brugada syndrome 1
SSS1: Sick sinus syndrome 1
VF1: Familial paroxysmal ventricular fibrillation 1
SIDS: Sudden infant death syndrome
ATRST1: Atrial standstill 1
CMD1E: Cardiomyopathy, dilated 1E
ATFB10: Atrial fibrillation, familial, 10
MEPPC: Multifocal ectopic Purkinje-related premature contraction
hNav1.6 EIEE13: Epileptic encephalopathy, early infantile, 13
hNav1.7 IEM: Primary erythermalgia
PEPD: Paroxysmal extreme pain disorder
CIP: Indifference to pain, congenital, autosomal recessive
DS: Dravet syndrome
SFN: Small fiber neuropathy
FEB: Febrile eizures
hNav1.8 SFN: Small fiber neuropathy
hNav1.9 FEPS3: Episodic pain syndrome, familial, 3
HSAN7: Neuropathy, hereditary sensory and autonomic, 7

Despite significant advancement in the understanding of Nav channel functions and their relevance to diseases, structural characterization of mammalian Nav channels at atomic level has been challenging, partly due to the substantial technical hurdles in producing mammalian Nav channel proteins in sufficient amount with acceptable purity. The two published bacterial Nav channel crystal structures, NavAb (Payandeh et al., 2011) and NavRh (Zhang et al., 2012), in their full-length have greatly improved our understanding of how those channels conduct and select sodium ions on a structural basis. This is further enhanced by the recently published cryo-electron microscopy (cryo-EM) structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 (Wu et al., 2015; Wu et al., 2016), which, given the significant similarities between Cav and Nav channels, provides an excellent base model for studying the structure and function of the mammalian Nav channels in lieu of the elusive Nav channel structure (Wu et al., 2015; Wu et al., 2016). In this Resource article, we have built a structure model of the human sodium channel Nav1.7 based on the Cav1.1 cryo-EM structure (PDB code: 5GJV). Disease-related mutations of various Nav channels are systematically mapped onto this Nav1.7 structural model. As expected, most mutations are located in the VSDs and the pore domain, which corroborate the functional disturbance associated with the various conditions. The human Nav1.7 structure model may also provide a useful tool for the structure-based design of drugs that are able to therapeutically target the Nav channels.

STRUCTURE MODEL OF HUMAN SODIUM CHANNEL Nav1.7

Homology models of the mammalian Nav channels have been previously constructed based on the crystal structures of the eukaryotic potassium channels or the prokaryotic sodium channels (Tikhonov and Zhorov, 2012; Yang et al., 2012). However, the relevance of such models has been in question, since the eukaryotic sodium channels are known to be heterotetrameric while the prokaryotic sodium channels and the potassium channels are of homotetrameric nature.

We sought to build a homology-based structural model for human Nav1.7 because of the tremendous interest in drug development targeting this channel. The sequence identity and similarity between human Nav1.7 and rabbit Cav1.1 are 21 and 35%, respectively (Please refer to the online Supplementary Fig. 2 of Wu et al., 2016). Importantly, the key amino acids within the VSDs and the pore domains are highly conserved (Wu et al., 2015; Wu et al., 2016). The cryo-EM structure of rabbit Cav1.1 was then used as the template for homology modeling of human Nav1.7. The primary sequence of human Nav1.7 was aligned with rabbit Cav1.1 in MOE with manual adjustment when necessary. The structure model of human Nav1.7 was created with the Homology Model module in MOE using the GB/VI scoring function with AMBER12:EHT force field (MOE, 2016).

The human Nav1.7 model structure resembles the structure of rCav1.1 in general (Fig. 1A). However, the model exhibits pronounced differences from the calcium channel and bacterial sodium channels particularly in selectivity filter. The SF of Nav1.7 consists of four different amino acid residues DEKA (Fig. 1B). In contrast, the Cav1.1 SF is constituted by four repeated essential glutamic acids, EEEE, while NavAb and NavRh contain TLESWS or TLSSWE in each protomer, respectively. This human Nav1.7 structure model represents the first one-chain sodium channel model with asymmetric repeats and is expected to shed new light on the mammalian sodium channel functions.

Figure 1.

Figure 1

Homology model structure of human Nav1.7 sodium channel. (A) Intra-membrane view and extracellular view of the structure model of Nav1.7. The four domains are colored green, light blue, cyan, and gray for domain I, II, III, and IV, respectively. (B) The pore domain of Nav1.7 structure model. The S5–S6 segments of Nav1.7 are shown and the four selectivity filter amino acids are shown as sticks (left). A close-up view of the four SF residues, D361 in domain I, E927 in domain II, K1406 in domain III, and A1698 in domain IV (right)

MAPPING OF DISEASE-RELEVANT MUTATIONS ONTO THE Nav1.7 STRUCTURE MODEL

Human Nav1.7 sodium channel is preferentially expressed in the sensory neurons of dorsal root ganglia and sympathetic ganglia neurons, particularly within the nociceptors, which is essential for perceiving pain (Djouhri et al., 2003; Dib-Hajj et al., 2013). To date, about 60 mutations of Nav1.7 have been found to cause human pain syndromes including IEM, PEPD, CIP, SFN (small fiber neuropathy), DS (Dravet syndrome), and FEB (febrile seizure) (Fig. 2 and Table 1). We mapped all the reported Nav1.7 mutations onto this Nav1.7 structure model (Fig. 2). Nineteen out of 22 IEM mutations are located in the highly conserved regions of VSDs and the pore domain except for the Q10R, P610T, and G616R mutations (Fig. 2). Electrophysiology study showed that IEM mutations cause a prominent shift of the activation voltage toward a more negative region or delay deactivation, which results in neuron hyperexcitability (Choi et al., 2006; Lampert et al., 2006; Choi et al., 2009; Lampert et al., 2010). For example, mutation of A1643 within the S5 segment of domain IV to glycine (A1643G) generates a significant hyperpolarizing shift (Yang et al., 2016). Our structural analysis shows that only two IEM mutations F216S and L834R are located in the S4 positively charged segment that is directly responsible for transmembrane voltage sensing and channel activation. How other IEM mutations influence voltage sensing and channel functions is yet to be elucidated.

Figure 2.

Figure 2

Amino acid locations of Nav1.7 disease-related mutations on the Nav1.7 structure model. (A) The topology of human Nav1.7 sodium channel. Cylinders represent the transmembrane segments, which are colored in gray except that the S4 voltage-sensing segments are colored in yellow. The lines represent the soluble regions between the transmembrane segments or the N/C-terminus. The two P helices between S5 and S6 segments are shown in cylinders. Mutations of Nav1.7 are discriminately mapped on the topology scheme of Nav1.7 by different colors, namely, IEM (blue), PEPD (red), CIP (cyan), DS (purple), SFN (green), and FEB (pink). (B) Intra-membrane view and intracellular views of the Nav1.7 structure model. Mapping of disease-related mutations onto the Nav1.7 structure model is highlighted by different colors. Summary of Nav1.7 mutations is shown in different gray boxes

The PEPD mutations are mostly characterized (nine out of 11) within the S4 segment, S4-S5 linker region, and the cytosolic regions of domain III and domain IV of Nav1.7 except for R185H and R1007C (Fig. 2A and Table 1). Specifically, I1472T, F1473V, and T1475I are within the IFMT motif (Fig. 2A), indicating that they may disturb channel inactivation. Indeed, IFMT mutations usually impair fast inactivation with consequently persistent currents (Fertleman et al., 2006). The V1309D, V1309F, and V1310F mutations are located in the S4-S5 linker region of domain III and they have been shown to cause moderate destabilization of fast inactivation (Jarecki et al., 2008). The G1618R mutation, located within the S4 segment of domain IV, impairs inactivation and retains a persistent current compared to the wild-type (WT) channel (Choi et al., 2011), while another domain IV S4 segment mutation, L1623P, significantly increases ramp current and shortens recovery time from inactivation (Suter et al., 2015). Moreover, electrophysiology study showed that M1638K mutation (within the S5 segment of domain IV) generates faster recovery from inactivation than the WT channel, producing greater currents and reducing the threshold with increased number of action potentials (Fertleman et al., 2006; Dib-Hajj et al., 2008). Another PEPD mutation, A1643E, also located in the S5 segment of domain IV, impedes channel full inactivation, which results in persistent inward currents (Estacion et al., 2008).

The CIP patients, characterized by lack of nociceptive perception, are mostly inflicted by Nav1.7 nonsense mutations, which result in premature protein truncations and inability to produce functional sodium channels. Only three mutations of Nav1.7, namely R907Q, A1247E, and W1786R, have been reported to be associated with CIP (Fig. 2 and Table 1). Diseases such as DS, SFN, and FEB are also known to be caused by Nav1.7 mutations (Fig. 2 and Table 1). For example, all eight SFN mutations have been characterized. Specifically, I228M, I731K, I750V, and M1543I mutations impair slow inactivation, D623N impedes slow and fast inactivation, while R185H, M943L, and V1002L mutations enhance resurgent currents (Faber et al., 2012a). On the other hand, Nav1.7 mutations that are associated with DS (nine mutations) and FEB (six mutations) have not been well characterized.

MAPPING OF OTHER HUMAN SODIUM CHANNEL DISEASE-RELATED MUTATIONS ONTO THE Nav1.7 STRUCTURE MODEL

Members of the human Nav channel family share high sequence similarity and mutations of these Nav channels are known to cause a vast variety of channelopathies. In order to better understand the role of those mutations in disturbing normal channel functions on a structural level, we mapped the disease-related mutations of other human Nav channels onto the Nav1.7 structure model based on the sequence alignment reported in Wu et al., 2016 (Fig. 3).

Figure 3.

Figure 3

Mapping of Nav channel disease-related mutations onto the Nav1.7 structure model. The Nav1.7 channel is shown in cartoon from the intra-membrane view. The Cα atoms of the disease-related amino acids are shown in spheres. Mapped mutations from nine Nav sodium channels to the Nav1.7 structure model are differentiated by distinct colors, Nav1.1 (A, blue), Nav1.2 (B, cyan), Nav1.3 (C, magenta), Nav1.4 (D, purple blue), Nav1.5 (E, pale cyan), Nav1.6 (F, orange), Nav1.7 (G, red), Nav1.8 (H, green), and Nav1.9 (I, salmon)

Among all the nine Nav channels, Nav1.1 and Nav1.5 have the largest numbers of reported mutations (more than 400 each) (Fig. 3A and 3E), while Nav1.3, Nav1.8, and Nav1.9 have the least numbers (less than 10 each) (Fig. 3C, 3H, and 3I). Notably, mutations in Nav1.1, Nav1.2, Nav1.3, and Nav1.6 mainly cause epilepsies; those in Nav1.4 are related to myopathies; in Nav1.5 result in cardiac channelopathies; and in Nav1.7, Nav1.8, and Nav1.9 are associated with pain-related diseases (Fig. 3 and Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Mapping of all Nav channel mutations onto the Nav1.7 structure model revealed that more than 80% of mutations are located in the VSDs and pore domains (Fig. 4A and 4B). Notably, disease-causing mutations are somewhat equally distributed in all four Nav channel domains, which account for more than 20 sodium channelopathies (Fig. 4C). Furthermore, mutations are also distributed in various regions of the pore domains, suggesting that they may disturb Nav channel functions by altering sodium ion selectivity and conductivity (Fig. 4D).

Figure 4.

Figure 4

Mutations that cause sodium channelopathies are plotted on the Nav1.7 sodium channel model. (A) The amino acid residues related with sodium channelopathies are mapped on the Nav1.7 structure model. All mutated residues are shown in spheres and colored for Nav1.1 (blue), Nav1.2 (cyan), Nav1.3 (magenta), Nav1.4 (purple blue), Nav1.5 (pale cyan), Nav1.6 (orange), Nav1.7 (red), Nav1.8 (green), and Nav1.9 (salmon). (B) The distribution of sodium channelopathy-related mutations on the transmembrane regions of the Nav1.7 structure model. Mutations of the VSDs and the pore domain are shown from the intra-membrane and intracellular views. (C) The mutation distributions for the four domains. S1–S6 segments are shown in cylindrical helices. (D) Mapping mutations to the pore domain in four different views

Nav1.2 mutations are largely associated with various epilepsy diseases, including BFIS3 (seizures, benign familial infantile 3), EIEE11 (epileptic encephalopathy, early infantile, 11), and DS (Fig. 3B and Table 3). More than 30 Nav1.2 mutations have been discovered and some of them are now functionally characterized. Interestingly, electrophysiological studies showed that Nav1.2 mutations can either be loss-of-function (R1319Q and L1330F) or gain-of-function (M252V, V261M, L1563V, and Y1579C) (Misra et al., 2008; Liao et al., 2010; Lauxmann et al., 2013). It is noted that BFIS3 mutations in Nav1.2 create less pronounced changes in the activation and inactivation potentials than the EIEE11 mutations (Shi et al., 2012).

Only six missense mutations of Nav1.3 have so far been identified in patients with cryptogenic partial epilepsy (Fig. 3C and Table 4). Five of them, namely K354Q, R357Q, D815N, E1160K, and M1372V, have been characterized, all of which are gain-of-function mutations, consistent with the neuronal hyperexcitability phenotype (Estacion et al., 2010; Vanoye et al., 2014).

Nav1.4 is essential for controlling the muscle action potential and consequently crucial for skeletal muscle contraction. Mutations of Nav1.4 are related with various neuromuscular disorders including PMC (paramyotonia congenita of von Eulenburg), HOKPP2 (periodic paralysis hypokalemic 2), HYPP (periodic paralysis hyperkalemic), NKPP (periodic paralysis normokalemic), MYOSCN4A (myotonia SCN4A-related), and CMS16 (myasthenic syndrome, congenital, 16) (Fig. 3D and Table 5). Different disease-causing mutations alter the Nav1.4 channel function through distinct mechanisms. For example, CMS16 mutations R104H, P382T, and C1209F completely abolish the Nav1.4 channel’s ability to conduct sodium ion, while other mutations such as M203K, R225W, and D1069N cause reduced action potential amplitude, leading to impaired channel function (Zaharieva et al., 2016). Compared to the WT channel, a CMS16 voltage sensor mutant R1457H requires longer hyperpolarization to recover which results in increased fast inactivation (Arnold et al., 2015). On the other hand, a HOKPP2 mutation R1135H (the third arginine in the domain III voltage sensor) exhibits increased depolarization, suggesting that R1135H mutation be gain-of-function (Groome et al., 2014). A MYOSCN4A mutation I582V shows a hyperpolarizing shift of 6 mV, indicating the nature of this mutation be also gain-of-function (Corrochano et al., 2014).

Nav1.6 is one of the sodium channels expressed in human brain and mutations of Nav1.6 cause EIEE13 (epileptic encephalopathy, early infantile, 13) (Fig. 3F and Table 7). More than 40 Nav1.6 mutations have been discovered since 2012 (Fig. 3F and Table 7), and seven of them have been studied in the functional assays. Specifically, five Nav1.6 mutations, namely T767I, N984K, T1716I, N1768D, and R1872W/R1872Q/R1872L, are characterized as gain-of-function, which cause hyperpolarizing shift of inactivation voltage or increased persistent current (Veeramah et al., 2012; Estacion et al., 2014; Wagnon et al., 2016), while the other two mutations, R223G and G1451S, are loss-of-function (de Kovel et al., 2014; Blanchard et al., 2015).

Five Nav1.8 mutations are associated with SFN, a condition that is clinically characterized by autonomic dysfunction and burning pain in the distal extremities (Fig. 3H and Table 8). Electrophysiology study has shown that Nav1.8 mutations, specifically L554P, A1304T, G1662S, and I1706V, accelerate inactivation recovery and enhance activation, which result in hyperexcitability (Faber et al., 2012b; Huang et al., 2013; Han et al., 2014). However, another SFN Nav1.8 mutation M650K causes reduced excitability of C fibers (Kist et al., 2016).

FEPS3 (episodic pain syndrome, familial, 3) and HSAN7 (neuropathy, hereditary sensory and autonomic, 7) are thought to be caused by the nine missense gain-of-function mutations of Nav1.9 (Fig. 3I and Table 9). Specifically, compared to the WT channel, R225C and A808G mutations induce hyperexcitability of the DRG neurons (Zhang et al., 2013), G699R enhances activation (Han et al., 2015), L811P significantly increases current density (Leipold et al., 2013), L1158P enhances spontaneous firing (Huang et al., 2014), and V1184A alters the channel voltage dependence that results in channel opening in response to hyperpolarized potentials (Leipold et al., 2015).

DISEASE-RELATED MUTATIONS IN SODIUM CHANNELS Nav1.1 AND Nav1.5

Mutations of Nav1.1 are associated with several neurological disorders including GEFS+2, EIEE6, ICEGTC, FHM3 (migraine, familial hemiplegic, 3), and FEB3A (febrile seizures, familial, 3A) (Table 2 and Table 10). More than 400 mutations of Nav1.1 have been identified, approximately 10% account for GEFS+2 while 80% for EIEE6 (Fig. 5A and Table 2). By mapping the Nav1.1-related mutations to the Nav1.7 structure model, we identified that most mutations are located in the VSDs and the pore domain (Fig. 5A). For example, mutations of the four positively charged residues, R1639G, R1642S, R1645Q, and R1648C, are present in the domain IV S4 segment (Table 2), suggesting that these EIEE6 mutations may alter the voltage sensing behavior of the channel. In addition, it is noteworthy that Nav1.1 mutations can be either loss-of-function or gain-of-function (Catterall et al., 2010; Escayg and Goldin, 2010). For example, two GEFS+2 mutations W1204R and R1648H increase the level of persistent current through gain-of-function (Lossin et al., 2002), while the loss-of-function M145T mutation in FEB3A decreases 60% of the current density (Mantegazza et al., 2005).

Figure 5.

Figure 5

Distributions of the missense mutations in Nav1.1 and Nav1.5. (A) Distributions of Nav1.1 missense mutations on the Nav1.7 model structure. More than 400 mutations are mapped. Mutations from five Nav1.1-related diseases are shown from intra-membrane, intracellular, and extracellular views. The Nav1.7 model is shown in cylindrical helices and colored by GEFS+2 in red, EIEE6 in blue, ICEGTC in cyan, FHM3 in green, and FEB3A in yellow. (B) Distributions of Nav1.5 related-disease mutations on the Nav1.7 structure model. Mutations from Nav1.5 related diseases are shown from intra-membrane, intracellular, and extracellular views. Different diseases are colored in green for PFHB1A, blue for LQT3, red for BRGDA1, cyan for SSS1, and magenta for VF1, SIDS, ATRST1, CMD1E, ATFB10, and MEPPC

Nav1.5 is the primary sodium channel in the heart and is essential for the cardiac action potential initiation. More than 400 Nav1.5 mutations have been discovered and they are implicated in a wide variety of cardiac diseases—including PFHB1A (progressive familial heart block 1A), LQT3, BRGDA1, SSS1, VF1 (familial paroxysmal ventricular fibrillation 1), SIDS (sudden infant death syndrome), ATRST1 (atrial standstill 1), CMD1E (cardiomyopathy, dilated 1E), ATFB10 (atrial fibrillation, familial, 10), and MEPPC (multifocal ectopic Purkinje-related premature contractions) (Fig. 5B and Table 6). By mapping all the Nav1.5 mutations onto the Nav1.7 structure model, it shows that most mutations are located in the transmembrane regions of the channel, suggesting that these mutations might disturb voltage sensing or sodium conduction (Fig. 5B). Furthermore, about 50% of the Nav1.5 mutations account for BRGDA1, while 30% for LQT3. Similar to the case of Nav1.1, mutations in Nav1.5 can be either loss-of-function or gain-of-function. For example, loss-of-function mutations are associated with BRGDA1, CMD1E, SSS1, and ATFB10 (Tan et al., 2001; Smits et al., 2005; Makiyama et al., 2008; Laurent et al., 2012), while gain-of-function mutations of Nav1.5 are responsible for LQT3 (Remme et al., 2006), CMD1E, and ATFB10 (Olson et al., 2005), and most recently MEPPC (Swan et al., 2014).

CONCLUDING REMARKS

The Nav family of sodium channels are important drug targets for the pharmaceutical industry. However, no atomic structure of any mammalian Nav channels is currently available, preventing the establishment of an in-depth structure-function relationship for this important group of sodium channels and application of structure-based approach to rationally design compounds that are able to modulate the functions of those Nav channels in a disease relevant manner. Using the recently published cryo-EM structure of a rabbit Cav channel Cav1.1, we established an atomic level heterotetrameric structure model for the human Nav channel Nav1.7. Disease-related mutations of Nav1.7 and other members of the Nav family, which are largely responsible for many neurological disorders like epilepsies, pains, and myopathies, are mapped onto the structure model. Taken together the available functional data, we attempted to establish a rudimentary structure-function relationship for human Nav1.7 and other members of the Nav channel family. It is noticeable that sodium channelopathies can be attributed to both loss-of-function and gain-of-function mutations.

However, we must realize that the current Nav1.7 structural model has its limitation and the atomic resolution mammalian Nav channel structure is urgently needed. In recent years, cryo-EM technology is becoming a mainstream technology for structural biology, which is able to potentially overcome the significant technical hurdles in producing challenging proteins such as mammalian Nav channels in sufficient quality and the necessity of crystallization for structural elucidation. Detailed mechanisms of how the Nav channels sense voltage changes and conduct sodium ions can only be answered when such atomic resolution structures become available. We hope the Nav1.7 structure model presented here is a temporary surrogate to help understand the Nav channel functions, particularly those relevant to the various neurological diseases, at atomic level, and contributes to the structure-based rational design of the next generation Nav channel modulators.

SUMMARY OF DISEASE-RELATED MUTATIONS FOR SODIUM CHANNELS

Most of the Nav channel disease-related mutations are extracted from the UNIPROT websites:

http://www.uniprot.org/uniprot/P35498 (Nav1.1);

http://www.uniprot.org/uniprot/Q99250 (Nav1.2);

http://www.uniprot.org/uniprot/P35499 (Nav1.4);

http://www.uniprot.org/uniprot/Q14524 (Nav1.5);

http://www.uniprot.org/uniprot/Q9UQD0 (Nav1.6);

http://www.uniprot.org/uniprot/Q15858 (Nav1.7);

http://www.uniprot.org/uniprot/Q9Y5Y9 (Nav1.8);

http://www.uniprot.org/uniprot/Q9UI33 (Nav1.9).

In the UNIPROT websites, there are no mutations described for Nav1.3. During literatures searching, we found that six mutations of Nav1.3 are associated with cryptogenic partial epilepsy. Except for the present mutations in the UNIPROT websites, we found additional mutations of Nav channels in literatures. All mutations are summarized in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9. However, we recognize that our summary may not contain all Nav channel disease-related mutations owing to abundant literatures reporting Nav channel disease-related mutations and increasing volume of work describing new findings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ACKNOWLEDGEMENTS

This work was supported by funds from the National Basic Research Program (973 Program) (2015CB910101, 2016YFA0500402, 2014ZX09507003-006), the National Natural Science Foundation of China (projects 31621092, 31630017, and 31611130036). The research of N.Y. was supported in part by an International Early Career Scientist grant from the Howard Hughes Medical Institute and an endowed professorship from Bayer Healthcare.

ABBREVIATIONS

ATRST1, atrial standstill 1; BRGDA1, Brugada syndrome 1; Cav, voltage-gated calcium; CNS, central nervous system; cryo-EM, cryo-electron microscopy; DS, Dravet syndrome; FEB, febrile seizure; GEFS+2, generalized epilepsy with febrile seizures plus 2; HOKPP2, periodic paralysis hypokalemic 2; HYPP, periodic paralysis hyperkalemic; IEM, primary erythermalgia; LQT3, long QT syndrome 3; MEPPC, multifocal ectopic Purkinje-related premature contractions; Nav, voltage-gated sodium; NKPP, periodic paralysis normokalemic; PEPD, paroxysmal extreme pain disorder; PFHB1A, progressive familial heart block 1A; PMC, paramyotonia congenita of von Eulenburg; SF, selectivity filter; SFN, small fiber neuropathy; SIDS, sudden infant death syndrome; SSS1, sick sinus syndrome 1; VF1, familial paroxysmal ventricular fibrillation 1; VSDs, voltage-sensing domains

COMPLIANCE WITH ETHICS GUIDELINES

Weiyun Huang, Minhao Liu, S. Frank Yan, and Nieng Yan declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

Footnotes

Electronic supplementary material

The online version of this article (doi:10.1007/s13238-017-0372-z) contains supplementary material, which is available to authorized users.

Contributor Information

S. Frank Yan, Email: frank.yan@outlook.com.

Nieng Yan, Email: nyan@tsinghua.edu.cn.

References

  1. Arnold WD, Feldman DH, Ramirez S, He L, Kassar D, Quick A, Klassen TL, Lara M, Nguyen J, Kissel JT, et al. Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome. Ann Neurol. 2015;77:840–850. doi: 10.1002/ana.24389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blanchard MG, Willemsen MH, Walker JB, Dib-Hajj SD, Waxman SG, Jongmans MC, Kleefstra T, van de Warrenburg BP, Praamstra P, Nicolai J, et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J Med Genet. 2015;52:330–337. doi: 10.1136/jmedgenet-2014-102813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25. doi: 10.1016/S0896-6273(00)81133-2. [DOI] [PubMed] [Google Scholar]
  4. Catterall WA. Sodium channel mutations and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. Bethesda: National Center for Biotechnology Information (US); 2012. [PubMed] [Google Scholar]
  5. Catterall WA. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol. 2012;590:2577–2589. doi: 10.1113/jphysiol.2011.224204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Catterall WA. Structure and function of voltage-gated sodium channels at atomic resolution. Exp Physiol. 2014;99:35–51. doi: 10.1113/expphysiol.2013.071969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397–409. doi: 10.1124/pr.57.4.4. [DOI] [PubMed] [Google Scholar]
  8. Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol. 2010;588:1849–1859. doi: 10.1113/jphysiol.2010.187484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choi JS, Dib-Hajj SD, Waxman SG. Inherited erythermalgia: limb pain from an S4 charge-neutral Na channelopathy. Neurology. 2006;67:1563–1567. doi: 10.1212/01.wnl.0000231514.33603.1e. [DOI] [PubMed] [Google Scholar]
  10. Choi JS, Zhang L, Dib-Hajj SD, Han C, Tyrrell L, Lin Z, Wang X, Yang Y, Waxman SG. Mexiletine-responsive erythromelalgia due to a new Na(v)1.7 mutation showing use-dependent current fall-off. Exp Neurol. 2009;216:383–389. doi: 10.1016/j.expneurol.2008.12.012. [DOI] [PubMed] [Google Scholar]
  11. Choi JS, Boralevi F, Brissaud O, Sanchez-Martin J, Te Morsche RH, Dib-Hajj SD, Drenth JP, Waxman SG. Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat Rev Neurol. 2011;7:51–55. doi: 10.1038/nrneurol.2010.162. [DOI] [PubMed] [Google Scholar]
  12. Corrochano S, Mannikko R, Joyce PI, McGoldrick P, Wettstein J, Lassi G, Raja Rayan DL, Blanco G, Quinn C, Liavas A, et al. Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis. Brain. 2014;137:3171–3185. doi: 10.1093/brain/awu292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Corry B, Thomas M. Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J Am Chem Soc. 2012;134:1840–1846. doi: 10.1021/ja210020h. [DOI] [PubMed] [Google Scholar]
  14. de Kovel CG, Meisler MH, Brilstra EH, van Berkestijn FM, van’t Slot R, van Lieshout S, Nijman IJ, O’Brien JE, Hammer MF, Estacion M, et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res. 2014;108:1511–1518. doi: 10.1016/j.eplepsyres.2014.08.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dib-Hajj SD, Estacion M, Jarecki BW, Tyrrell L, Fischer TZ, Lawden M, Cummins TR, Waxman SG. Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable. Mol Pain. 2008;4:37. doi: 10.1186/1744-8069-4-37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dib-Hajj SD, Yang Y, Black JA, Waxman SG. The Na(V)1.7 sodium channel: from molecule to man. Nat Rev Neurosci. 2013;14:49–62. doi: 10.1038/nrn3404. [DOI] [PubMed] [Google Scholar]
  17. Djouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN. Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein. J Physiol. 2003;546:565–576. doi: 10.1113/jphysiol.2002.026559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia. 2010;51:1650–1658. doi: 10.1111/j.1528-1167.2010.02640.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Estacion M, Dib-Hajj SD, Benke PJ, Te Morsche RH, Eastman EM, Macala LJ, Drenth JP, Waxman SG. NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci. 2008;28:11079–11088. doi: 10.1523/JNEUROSCI.3443-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Estacion M, Gasser A, Dib-Hajj SD, Waxman SG. A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Exp Neurol. 2010;224:362–368. doi: 10.1016/j.expneurol.2010.04.012. [DOI] [PubMed] [Google Scholar]
  21. Estacion M, O’Brien JE, Conravey A, Hammer MF, Waxman SG, Dib-Hajj SD, Meisler MH. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis. 2014;69:117–123. doi: 10.1016/j.nbd.2014.05.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, Estacion M, Lauria G, Vanhoutte EK, Gerrits MM, et al. Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71:26–39. doi: 10.1002/ana.22485. [DOI] [PubMed] [Google Scholar]
  23. Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci USA. 2012;109:19444–19449. doi: 10.1073/pnas.1216080109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman J, Klugbauer N, Wood JN, Gardiner RM, et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006;52:767–774. doi: 10.1016/j.neuron.2006.10.006. [DOI] [PubMed] [Google Scholar]
  25. George AL., Jr Inherited disorders of voltage-gated sodium channels. J Clin Invest. 2005;115:1990–1999. doi: 10.1172/JCI25505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol. 2001;63:871–894. doi: 10.1146/annurev.physiol.63.1.871. [DOI] [PubMed] [Google Scholar]
  27. Groome JR, Lehmann-Horn F, Fan C, Wolf M, Winston V, Merlini L, Jurkat-Rott K. NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery. Brain. 2014;137:998–1008. doi: 10.1093/brain/awu015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Han C, Vasylyev D, Macala LJ, Gerrits MM, Hoeijmakers JG, Bekelaar KJ, Dib-Hajj SD, Faber CG, Merkies IS, Waxman SG. The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. J Neurol Neurosurg Psychiatry. 2014;85:499–505. doi: 10.1136/jnnp-2013-306095. [DOI] [PubMed] [Google Scholar]
  29. Han C, Yang Y, de Greef BT, Hoeijmakers JG, Gerrits MM, Verhamme C, Qu J, Lauria G, Merkies IS, Faber CG, et al. The domain II S4-S5 linker in Nav1.9: a missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy. Neuromol Med. 2015;17:158–169. doi: 10.1007/s12017-015-8347-9. [DOI] [PubMed] [Google Scholar]
  30. Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 1992;356:441–443. doi: 10.1038/356441a0. [DOI] [PubMed] [Google Scholar]
  31. Huang J, Yang Y, Zhao P, Gerrits MM, Hoeijmakers JG, Bekelaar K, Merkies IS, Faber CG, Dib-Hajj SD, Waxman SG. Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci. 2013;33:14087–14097. doi: 10.1523/JNEUROSCI.2710-13.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JG, Gerrits MM, Tyrrell L, Lauria G, Faber CG, Dib-Hajj SD, et al. Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain. 2014;137:1627–1642. doi: 10.1093/brain/awu079. [DOI] [PubMed] [Google Scholar]
  33. Jarecki BW, Sheets PL, Jackson JO, 2nd, Cummins TR. Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation. J Physiol. 2008;586:4137–4153. doi: 10.1113/jphysiol.2008.154906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kim JB. Channelopathies. Korean J Pediatr. 2014;57:1–18. doi: 10.3345/kjp.2014.57.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kist AM, Sagafos D, Rush AM, Neacsu C, Eberhardt E, Schmidt R, Lunden LK, Orstavik K, Kaluza L, Meents J, et al. SCN10A mutation in a patient with erythromelalgia enhances C-fiber activity dependent slowing. PLoS One. 2016;11:e0161789. doi: 10.1371/journal.pone.0161789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lampert A, Dib-Hajj SD, Tyrrell L, Waxman SG. Size matters: erythromelalgia mutation S241T in Nav1.7 alters channel gating. J Biol Chem. 2006;281:36029–36035. doi: 10.1074/jbc.M607637200. [DOI] [PubMed] [Google Scholar]
  37. Lampert A, O’Reilly AO, Reeh P, Leffler A. Sodium channelopathies and pain. Pflugers Arch. 2010;460:249–263. doi: 10.1007/s00424-009-0779-3. [DOI] [PubMed] [Google Scholar]
  38. Laurent G, Saal S, Amarouch MY, Beziau DM, Marsman RF, Faivre L, Barc J, Dina C, Bertaux G, Barthez O, et al. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol. 2012;60:144–156. doi: 10.1016/j.jacc.2012.02.052. [DOI] [PubMed] [Google Scholar]
  39. Lauxmann S, Boutry-Kryza N, Rivier C, Mueller S, Hedrich UB, Maljevic S, Szepetowski P, Lerche H, Lesca G. An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na(+) current. Epilepsia. 2013;54:e117–e121. doi: 10.1111/epi.12241. [DOI] [PubMed] [Google Scholar]
  40. Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J, Ebbinghaus M, Goral RO, Stodberg T, Hennings JC, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. 2013;45:1399–1404. doi: 10.1038/ng.2767. [DOI] [PubMed] [Google Scholar]
  41. Leipold E, Hanson-Kahn A, Frick M, Gong P, Bernstein JA, Voigt M, Katona I, OliverGoral R, Altmuller J, Nurnberg P, et al. Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant. Nat Commun. 2015;6:10049. doi: 10.1038/ncomms10049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Liao Y, Deprez L, Maljevic S, Pitsch J, Claes L, Hristova D, Jordanova A, Ala-Mello S, Bellan-Koch A, Blazevic D, et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain. 2010;133:1403–1414. doi: 10.1093/brain/awq057. [DOI] [PubMed] [Google Scholar]
  43. Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL., Jr Molecular basis of an inherited epilepsy. Neuron. 2002;34:877–884. doi: 10.1016/S0896-6273(02)00714-6. [DOI] [PubMed] [Google Scholar]
  44. Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y, Ohno S, Nishio Y, Tsuji K, Itoh H, et al. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 2008;52:1326–1334. doi: 10.1016/j.jacc.2008.07.013. [DOI] [PubMed] [Google Scholar]
  45. Mantegazza M, Gambardella A, Rusconi R, Schiavon E, Annesi F, Cassulini RR, Labate A, Carrideo S, Chifari R, Canevini MP, et al. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci USA. 2005;102:18177–18182. doi: 10.1073/pnas.0506818102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Misra SN, Kahlig KM, George AL., Jr Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia. 2008;49:1535–1545. doi: 10.1111/j.1528-1167.2008.01619.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. MOE (2016) Molecular operating environment (MOE), 2013.08. Chemical Computing Group Inc, Montreal
  48. Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ, Horton SC, Rodeheffer RJ, Anderson JL. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293:447–454. doi: 10.1001/jama.293.4.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature. 2011;475:353–358. doi: 10.1038/nature10238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Plummer NW, Meisler MH. Evolution and diversity of mammalian sodium channel genes. Genomics. 1999;57:323–331. doi: 10.1006/geno.1998.5735. [DOI] [PubMed] [Google Scholar]
  51. Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN, Wilders R, van Roon MA, Tan HL, Wilde AA, et al. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation. 2006;114:2584–2594. doi: 10.1161/CIRCULATIONAHA.106.653949. [DOI] [PubMed] [Google Scholar]
  52. Shi X, Yasumoto S, Kurahashi H, Nakagawa E, Fukasawa T, Uchiya S, Hirose S. Clinical spectrum of SCN2A mutations. Brain Dev. 2012;34:541–545. doi: 10.1016/j.braindev.2011.09.016. [DOI] [PubMed] [Google Scholar]
  53. Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA, Mannens MM, Balser JR, Tan HL, Bezzina CR, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol. 2005;38:969–981. doi: 10.1016/j.yjmcc.2005.02.024. [DOI] [PubMed] [Google Scholar]
  54. Song W, Shou W. Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia. Pediatr Cardiol. 2012;33:943–949. doi: 10.1007/s00246-012-0303-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sun YM, Favre I, Schild L, Moczydlowski E. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel—effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol. 1997;110:693–715. doi: 10.1085/jgp.110.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Suter MR, Bhuiyan ZA, Laedermann CJ, Kuntzer T, Schaller M, Stauffacher MW, Roulet E, Abriel H, Decosterd I, Wider C. p. L1612P, a novel voltage-gated sodium channel Nav1.7 mutation inducing a cold sensitive paroxysmal extreme pain disorder. Anesthesiology. 2015;122:414–423. doi: 10.1097/ALN.0000000000000476. [DOI] [PubMed] [Google Scholar]
  57. Swan H, Amarouch MY, Leinonen J, Marjamaa A, Kucera JP, Laitinen-Forsblom PJ, Lahtinen AM, Palotie A, Kontula K, Toivonen L, et al. Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias. Circ Cardiovasc Genet. 2014;7:771–781. doi: 10.1161/CIRCGENETICS.114.000703. [DOI] [PubMed] [Google Scholar]
  58. Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, van den Berg MP, Wilde AA, Balser JR. A sodium-channel mutation causes isolated cardiac conduction disease. Nature. 2001;409:1043–1047. doi: 10.1038/35059090. [DOI] [PubMed] [Google Scholar]
  59. Tikhonov DB, Zhorov BS. Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure. Mol Pharmacol. 2012;82:97–104. doi: 10.1124/mol.112.078212. [DOI] [PubMed] [Google Scholar]
  60. Vanoye CG, Gurnett CA, Holland KD, George AL, Jr, Kearney JA. Novel SCN3A variants associated with focal epilepsy in children. Neurobiol Dis. 2014;62:313–322. doi: 10.1016/j.nbd.2013.10.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Vassilev PM, Scheuer T, Catterall WA. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science. 1988;241:1658–1661. doi: 10.1126/science.2458625. [DOI] [PubMed] [Google Scholar]
  62. Veeramah KR, O’Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG, Talwar D, Girirajan S, Eichler EE, Restifo LL, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90:502–510. doi: 10.1016/j.ajhg.2012.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Veerman CC, Wilde AA, Lodder EM. The cardiac sodium channel gene SCN5A and its gene product NaV1.5: role in physiology and pathophysiology. Gene. 2015;573:177–187. doi: 10.1016/j.gene.2015.08.062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wagnon JL, Barker BS, Hounshell JA, Haaxma CA, Shealy A, Moss T, Parikh S, Messer RD, Patel MK, Meisler MH. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann Clin Transl Neurol. 2016;3:114–123. doi: 10.1002/acn3.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci USA. 1992;89:10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Structure of the voltage-gated calcium channel Cav1.1 complex. Science. 2015;350:aad2395. doi: 10.1126/science.aad2395. [DOI] [PubMed] [Google Scholar]
  67. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 A resolution. Nature. 2016;537:191–196. doi: 10.1038/nature19321. [DOI] [PubMed] [Google Scholar]
  68. Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel. Nat Commun. 2012;3:1186. doi: 10.1038/ncomms2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Yang Y, Huang J, Mis MA, Estacion M, Macala L, Shah P, Schulman BR, Horton DB, Dib-Hajj SD, Waxman SG. Nav 1.7-A1632G mutation from a family with inherited erythromelalgia: enhanced firing of dorsal root ganglia neurons evoked by thermal stimuli. J Neurosci. 2016;36:7511–7522. doi: 10.1523/JNEUROSCI.0462-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Zaharieva IT, Thor MG, Oates EC, van Karnebeek C, Hendson G, Blom E, Witting N, Rasmussen M, Gabbett MT, Ravenscroft G, et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy. Brain. 2016;139:674–691. doi: 10.1093/brain/awv352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J, et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature. 2012;486:130–134. doi: 10.1038/486323e. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Zhang XY, Wen J, Yang W, Wang C, Gao L, Zheng LH, Wang T, Ran K, Li Y, Li X, et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet. 2013;93:957–966. doi: 10.1016/j.ajhg.2013.09.016. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES