Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Aug;87(16):6102–6106. doi: 10.1073/pnas.87.16.6102

Isolation and characterization of a Chinese hamster ovary cell line deficient in fatty alcohol:NAD+ oxidoreductase activity.

P F James 1, W B Rizzo 1, J Lee 1, R A Zoeller 1
PMCID: PMC54480  PMID: 2201021

Abstract

We have isolated a mutant Chinese hamster ovary cell line that is defective in long-chain fatty alcohol oxidation. The ability of the mutant cells to convert labeled hexadecanol to the corresponding fatty acid in vivo was reduced to 5% of the parent strain. Whole-cell homogenates from the mutant strain, FAA.1, were deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192) activity, which catalyzes the oxidation of hexadecanol to hexadecanoic acid, although the intermediate fatty aldehyde was formed normally. A direct measurement of fatty aldehyde dehydrogenase showed that the FAA.1 strain was defective in this component of FAO activity. FAA.1 is a two-stage mutant that was selected from a previously described parent strain, ZR-82, which is defective in ether lipid biosynthesis and peroxisome assembly. Because of combined defects in ether lipid biosynthesis and fatty alcohol oxidation, the ability of the FAA.1 cells to incorporate hexadecanol into complex lipids was greatly impaired, resulting in a 60-fold increase in cellular fatty alcohol levels. As the FAO deficiency in FAA.1 cells appears to be identical to the defect associated with the human genetic disorder Sjögren-Larsson syndrome, the FAA.1 cell line may be useful in studying this disease.

Full text

PDF
6102

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algar E. M., Seeley T. L., Holmes R. S. Purification and molecular properties of mouse alcohol dehydrogenase isozymes. Eur J Biochem. 1983 Dec 1;137(1-2):139–147. doi: 10.1111/j.1432-1033.1983.tb07807.x. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Davis P. A., Hajra A. K. Assay and properties of the enzyme catalyzing the biosynthesis of 1-O-alkyl dihydroxyacetone 3-phosphate. Arch Biochem Biophys. 1981 Oct 1;211(1):20–29. doi: 10.1016/0003-9861(81)90424-0. [DOI] [PubMed] [Google Scholar]
  4. El-Bassiouni E. A., Piantadosi C., Snyder F. Metabolism of alkyldihydroxyacetone phosphate in rat brain. Biochim Biophys Acta. 1975 Apr 18;388(1):5–11. doi: 10.1016/0005-2760(75)90056-9. [DOI] [PubMed] [Google Scholar]
  5. Esko J. D., Nishijima M., Raetz C. R. Animal cells dependent on exogenous phosphatidylcholine for membrane biogenesis. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1698–1702. doi: 10.1073/pnas.79.6.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Esko J. D., Raetz C. R. Replica plating and in situ enzymatic assay of animal cell colonies established on filter paper. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1190–1193. doi: 10.1073/pnas.75.3.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferrell W. J., Yao K. C. Reductive and oxidative synthesis of saturated and unsaturated fatty aldehydes. J Lipid Res. 1972 Jan;13(1):23–26. [PubMed] [Google Scholar]
  8. Grigor M. R., Harris E. L. Wax ester synthesis in the mouse preputial gland tumour. Biochim Biophys Acta. 1977 Jul 20;488(1):121–127. doi: 10.1016/0005-2760(77)90129-1. [DOI] [PubMed] [Google Scholar]
  9. Ichihara K., Kusunose E., Noda Y., Kusunose M. Some properties of the fatty alcohol oxidation system and reconstitution of microsomal oxidation activity in intestinal mucosa. Biochim Biophys Acta. 1986 Oct 3;878(3):412–418. doi: 10.1016/0005-2760(86)90250-x. [DOI] [PubMed] [Google Scholar]
  10. Ichihara K., Noda Y., Tanaka C., Kusunose M. Purification of aldehyde dehydrogenase reconstitutively active in fatty alcohol oxidation from rabbit intestinal microsomes. Biochim Biophys Acta. 1986 Oct 3;878(3):419–425. [PubMed] [Google Scholar]
  11. Ikawa M., Impraim C. C., Wang G., Yoshida A. Isolation and characterization of aldehyde dehydrogenase isozymes from usual and atypical human livers. J Biol Chem. 1983 May 25;258(10):6282–6287. [PubMed] [Google Scholar]
  12. Jagell S., Gustavson K. H., Holmgren G. Sjögren-Larsson syndrome in Sweden. A clinical, genetic and epidemiological study. Clin Genet. 1981 Apr;19(4):233–256. doi: 10.1111/j.1399-0004.1981.tb00704.x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lee T. Characterization of fatty alcohol:NAD+ oxidoreductase from rat liver. J Biol Chem. 1979 Apr 25;254(8):2892–2896. [PubMed] [Google Scholar]
  15. Lindahl R., Evces S. Rat liver aldehyde dehydrogenase. II. Isolation and characterization of four inducible isozymes. J Biol Chem. 1984 Oct 10;259(19):11991–11996. [PubMed] [Google Scholar]
  16. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  17. MacDonald P. N., Ong D. E. Evidence for a lecithin-retinol acyltransferase activity in the rat small intestine. J Biol Chem. 1988 Sep 5;263(25):12478–12482. [PubMed] [Google Scholar]
  18. Neufeld E. J., Bross T. E., Majerus P. W. A mutant HSDM1C1 fibrosarcoma line selected for defective eicosanoid precursor uptake lacks arachidonate-specific acyl-CoA synthetase. J Biol Chem. 1984 Feb 10;259(3):1986–1992. [PubMed] [Google Scholar]
  19. Pestalozzi D. M., Bühler R., von Wartburg J. P., Hess M. Immunohistochemical localization of alcohol dehydrogenase in the human gastrointestinal tract. Gastroenterology. 1983 Nov;85(5):1011–1016. [PubMed] [Google Scholar]
  20. Raetz C. R., Wermuth M. M., McIntyre T. M., Esko J. D., Wing D. C. Somatic cell cloning in polyester stacks. Proc Natl Acad Sci U S A. 1982 May;79(10):3223–3227. doi: 10.1073/pnas.79.10.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Riendeau D., Meighen E. Enzymatic reduction of fatty acids and acyl-CoAs to long chain aldehydes and alcohols. Experientia. 1985 Jun 15;41(6):707–713. doi: 10.1007/BF02012564. [DOI] [PubMed] [Google Scholar]
  22. Rizzo W. B., Craft D. A., Dammann A. L., Phillips M. W. Fatty alcohol metabolism in cultured human fibroblasts. Evidence for a fatty alcohol cycle. J Biol Chem. 1987 Dec 25;262(36):17412–17419. [PubMed] [Google Scholar]
  23. Rizzo W. B., Dammann A. L., Craft D. A., Black S. H., Tilton A. H., Africk D., Chaves-Carballo E., Holmgren G., Jagell S. Sjögren-Larsson syndrome: inherited defect in the fatty alcohol cycle. J Pediatr. 1989 Aug;115(2):228–234. doi: 10.1016/s0022-3476(89)80070-8. [DOI] [PubMed] [Google Scholar]
  24. Rizzo W. B., Dammann A. L., Craft D. A. Sjögren-Larsson syndrome. Impaired fatty alcohol oxidation in cultured fibroblasts due to deficient fatty alcohol:nicotinamide adenine dinucleotide oxidoreductase activity. J Clin Invest. 1988 Mar;81(3):738–744. doi: 10.1172/JCI113379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stoffel W., Assmann G. Metabolism of sphingosine bases. XV. Enzymatic degradation of 4t-sphingenine 1-phosphate (sphingosine 1-phosphate) to 2t-hexadecen-1-al and ethanolamine phosphate. Hoppe Seylers Z Physiol Chem. 1970 Aug;351(8):1041–1049. doi: 10.1515/bchm2.1970.351.2.1041. [DOI] [PubMed] [Google Scholar]
  26. TIETZ A., LINDBERG M., KENNEDY E. P. A NEW PTERIDINE-REQUIRING ENZYME SYSTEM FOR THE OXIDATION OF GLYCERYL ETHERS. J Biol Chem. 1964 Dec;239:4081–4090. [PubMed] [Google Scholar]
  27. Tuma D. J., Jennett R. B., Sorrell M. F. The interaction of acetaldehyde with tubulin. Ann N Y Acad Sci. 1987;492:277–286. doi: 10.1111/j.1749-6632.1987.tb48681.x. [DOI] [PubMed] [Google Scholar]
  28. Weber N., Richter I. Formation of ether lipids and wax esters in mammalian cells. Specificity of enzymes with regard to carbon chains of substrates. Biochim Biophys Acta. 1982 May 13;711(2):197–207. doi: 10.1016/0005-2760(82)90027-3. [DOI] [PubMed] [Google Scholar]
  29. Zoeller R. A., Allen L. A., Santos M. J., Lazarow P. B., Hashimoto T., Tartakoff A. M., Raetz C. R. Chinese hamster ovary cell mutants defective in peroxisome biogenesis. Comparison to Zellweger syndrome. J Biol Chem. 1989 Dec 25;264(36):21872–21878. [PubMed] [Google Scholar]
  30. Zoeller R. A., Raetz C. R. Isolation of animal cell mutants deficient in plasmalogen biosynthesis and peroxisome assembly. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5170–5174. doi: 10.1073/pnas.83.14.5170. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES