Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Aug;87(16):6200–6203. doi: 10.1073/pnas.87.16.6200

Expression of melatonin receptors in arteries involved in thermoregulation.

M Viswanathan 1, J T Laitinen 1, J M Saavedra 1
PMCID: PMC54500  PMID: 2166949

Abstract

Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-[125I]iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. The binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.

Full text

PDF
6200

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod J. The pineal gland: a neurochemical transducer. Science. 1974 Jun 28;184(4144):1341–1348. doi: 10.1126/science.184.4144.1341. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bülbring E., Tomita T. Catecholamine action on smooth muscle. Pharmacol Rev. 1987 Mar;39(1):49–96. [PubMed] [Google Scholar]
  6. Carlson L. L., Weaver D. R., Reppert S. M. Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Endocrinology. 1989 Nov;125(5):2670–2676. doi: 10.1210/endo-125-5-2670. [DOI] [PubMed] [Google Scholar]
  7. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  8. Dubocovich M. L., Shankar G., Mickel M. 2-[125I]iodomelatonin labels sites with identical pharmacological characteristics in chicken brain and chicken retina. Eur J Pharmacol. 1989 Mar 21;162(2):289–299. doi: 10.1016/0014-2999(89)90292-6. [DOI] [PubMed] [Google Scholar]
  9. Dubocovich M. L., Takahashi J. S. Use of 2-[125I]iodomelatonin to characterize melatonin binding sites in chicken retina. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3916–3920. doi: 10.1073/pnas.84.11.3916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duncan M. J., Takahashi J. S., Dubocovich M. L. Characteristics and autoradiographic localization of 2-[125I]iodomelatonin binding sites in Djungarian hamster brain. Endocrinology. 1989 Aug;125(2):1011–1018. doi: 10.1210/endo-125-2-1011. [DOI] [PubMed] [Google Scholar]
  11. Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 1988 Dec 8;336(6199):583–586. doi: 10.1038/336583a0. [DOI] [PubMed] [Google Scholar]
  12. Harlow H. J. Influence of the pineal gland and melatonin on blood flow and evaporative water loss during heat stress in rats. J Pineal Res. 1987;4(2):147–159. doi: 10.1111/j.1600-079x.1987.tb00851.x. [DOI] [PubMed] [Google Scholar]
  13. Hayward J. N., Baker M. A. A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals. Brain Res. 1969 Dec;16(2):417–440. doi: 10.1016/0006-8993(69)90236-4. [DOI] [PubMed] [Google Scholar]
  14. Hirst G. D., Edwards F. R. Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev. 1989 Apr;69(2):546–604. doi: 10.1152/physrev.1989.69.2.546. [DOI] [PubMed] [Google Scholar]
  15. Laitinen J. T., Castren E., Vakkuri O., Saavedra J. M. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus. Endocrinology. 1989 Mar;124(3):1585–1587. doi: 10.1210/endo-124-3-1585. [DOI] [PubMed] [Google Scholar]
  16. Laitinen J. T., Flügge G., Saavedra J. M. Characterization of melatonin receptors in the rat area postrema: modulation of affinity with cations and guanine nucleotides. Neuroendocrinology. 1990 Jun;51(6):619–624. doi: 10.1159/000125401. [DOI] [PubMed] [Google Scholar]
  17. Laitinen J. T., Saavedra J. M. Characterization of melatonin receptors in the rat suprachiasmatic nuclei: modulation of affinity with cations and guanine nucleotides. Endocrinology. 1990 Apr;126(4):2110–2115. doi: 10.1210/endo-126-4-2110. [DOI] [PubMed] [Google Scholar]
  18. Laitinen J. T., Torda T., Saavedra J. M. Cholinergic stimulation of phosphoinositide hydrolysis in the rat pineal gland. Eur J Pharmacol. 1989 Feb 28;161(2-3):237–240. doi: 10.1016/0014-2999(89)90851-0. [DOI] [PubMed] [Google Scholar]
  19. Laitinen J. T., Torda T., Saavedra J. M. Pineal muscarinic phosphoinositide response: pertussis toxin resistant signaling with very low receptor number. Biochem Biophys Res Commun. 1989 Oct 31;164(2):645–652. doi: 10.1016/0006-291x(89)91509-x. [DOI] [PubMed] [Google Scholar]
  20. Mihara S., Shigeri Y., Fujimoto M. Neuropeptide Y-induced intracellular Ca2+ increases in vascular smooth muscle cells. FEBS Lett. 1989 Dec 18;259(1):79–82. doi: 10.1016/0014-5793(89)81499-1. [DOI] [PubMed] [Google Scholar]
  21. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  22. Nazarali A. J., Gutkind J. S., Saavedra J. M. Calibration of 125I-polymer standards with 125I-brain paste standards for use in quantitative receptor autoradiography. J Neurosci Methods. 1989 Dec;30(3):247–253. doi: 10.1016/0165-0270(89)90135-0. [DOI] [PubMed] [Google Scholar]
  23. Niles L. P., Pickering D. S., Sayer B. G. HPLC-purified 2-[125I]iodomelatonin labels multiple binding sites in hamster brain. Biochem Biophys Res Commun. 1987 Sep 30;147(3):949–956. doi: 10.1016/s0006-291x(87)80162-6. [DOI] [PubMed] [Google Scholar]
  24. O'Leary D. S., Johnson J. M., Taylor W. F. Mode of neural control mediating rat tail vasodilation during heating. J Appl Physiol (1985) 1985 Nov;59(5):1533–1538. doi: 10.1152/jappl.1985.59.5.1533. [DOI] [PubMed] [Google Scholar]
  25. Vanecek J. Melatonin binding sites. J Neurochem. 1988 Nov;51(5):1436–1440. doi: 10.1111/j.1471-4159.1988.tb01108.x. [DOI] [PubMed] [Google Scholar]
  26. Vanecek J., Pavlík A., Illnerová H. Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res. 1987 Dec 1;435(1-2):359–362. doi: 10.1016/0006-8993(87)91625-8. [DOI] [PubMed] [Google Scholar]
  27. Vanecek J., Vollrath L. Melatonin inhibits cyclic AMP and cyclic GMP accumulation in the rat pituitary. Brain Res. 1989 Dec 25;505(1):157–159. doi: 10.1016/0006-8993(89)90129-7. [DOI] [PubMed] [Google Scholar]
  28. Weaver D. R., Rivkees S. A., Reppert S. M. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J Neurosci. 1989 Jul;9(7):2581–2590. doi: 10.1523/JNEUROSCI.09-07-02581.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Young A. A., Dawson N. J. Evidence for on-off control of heat dissipation from the tail of the rat. Can J Physiol Pharmacol. 1982 Mar;60(3):392–398. doi: 10.1139/y82-057. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES