Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Aug;87(16):6228–6232. doi: 10.1073/pnas.87.16.6228

Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes.

B Martinac 1, H Zhu 1, A Kubalski 1, X L Zhou 1, M Culbertson 1, H Bussey 1, C Kung 1
PMCID: PMC54506  PMID: 1696721

Abstract

The patch-clamp technique was used to examine the plasma membranes of sensitive yeast spheroplasts exposed to partially purified killer toxin preparations. Asolectin liposomes in which the toxin was incorporated were also examined. Excised inside-out patches from these preparations often revealed at 118 pS conductance appearing in pairs. The current through this conductance flickered rapidly among three states: dwelling mostly at the unit-open state, less frequently at the two-unit-open state, and more rarely at the closed state. Membrane voltages from -80 to 80 mV had little influence on the opening probability. The current reversed near the equilibrium potential of K+ in asymmetric KCl solutions and also reversed near O mV at symmetric NaCl vs. KCl solutions. The two levels of the conductance were likely due to the toxin protein, as treatment of spheroplasts or liposomes with extracellular protein preparations from isogenic yeasts deleted for the toxin gene gave no such conductance levels. These results show that in vivo the killer-toxin fraction can form a cation channel that seldom closes regardless of membrane voltage. We suggest that this channel causes the death of sensitive yeast cells.

Full text

PDF
6228

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan E. A., Herring A. J., Mitchell D. J. Preliminary characterization of two species of dsRNA in yeast and their relationship to the "killer" character. Nature. 1973 Sep 14;245(5420):81–86. doi: 10.1038/245081b0. [DOI] [PubMed] [Google Scholar]
  2. Boone C., Bussey H., Greene D., Thomas D. Y., Vernet T. Yeast killer toxin: site-directed mutations implicate the precursor protein as the immunity component. Cell. 1986 Jul 4;46(1):105–113. doi: 10.1016/0092-8674(86)90864-0. [DOI] [PubMed] [Google Scholar]
  3. Boone C., Sommer S. S., Hensel A., Bussey H. Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol. 1990 May;110(5):1833–1843. doi: 10.1083/jcb.110.5.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bostian K. A., Elliott Q., Bussey H., Burn V., Smith A., Tipper D. J. Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell. 1984 Mar;36(3):741–751. doi: 10.1016/0092-8674(84)90354-4. [DOI] [PubMed] [Google Scholar]
  5. Bostian K. A., Hopper J. E., Rogers D. T., Tipper D. J. Translational analysis of the killer-associated virus-like particle dsRNA genome of S. cerevisiae: M dsRNA encodes toxin. Cell. 1980 Feb;19(2):403–414. doi: 10.1016/0092-8674(80)90514-0. [DOI] [PubMed] [Google Scholar]
  6. Bussey H., Boone C., Zhu H., Vernet T., Whiteway M., Thomas D. Y. Genetic and molecular approaches to synthesis and action of the yeast killer toxin. Experientia. 1990 Feb 15;46(2):193–200. doi: 10.1007/BF02027313. [DOI] [PubMed] [Google Scholar]
  7. Bussey H. Physiology of killer factor in yeast. Adv Microb Physiol. 1981;22:93–122. doi: 10.1016/s0065-2911(08)60326-4. [DOI] [PubMed] [Google Scholar]
  8. Bussey H., Vernet T., Sdicu A. M. Mutual antagonism among killer yeasts: competition between K1 and K2 killers and a novel cDNA-based K1-K2 killer strain of Saccharomyces cerevisiae. Can J Microbiol. 1988 Jan;34(1):38–44. doi: 10.1139/m88-007. [DOI] [PubMed] [Google Scholar]
  9. Delcour A. H., Martinac B., Adler J., Kung C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J. 1989 Sep;56(3):631–636. doi: 10.1016/S0006-3495(89)82710-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gustin M. C., Martinac B., Saimi Y., Culbertson M. R., Kung C. Ion channels in yeast. Science. 1986 Sep 12;233(4769):1195–1197. doi: 10.1126/science.2426783. [DOI] [PubMed] [Google Scholar]
  11. Gustin M. C., Zhou X. L., Martinac B., Kung C. A mechanosensitive ion channel in the yeast plasma membrane. Science. 1988 Nov 4;242(4879):762–765. doi: 10.1126/science.2460920. [DOI] [PubMed] [Google Scholar]
  12. HALVORSON H. Studies on protein and nucleic acid turnover in growing cultures of yeast. Biochim Biophys Acta. 1958 Feb;27(2):267–276. doi: 10.1016/0006-3002(58)90333-0. [DOI] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Hutchins K., Bussey H. Cell wall receptor for yeast killer toxin: involvement of (1 leads to 6)-beta-D-glucan. J Bacteriol. 1983 Apr;154(1):161–169. doi: 10.1128/jb.154.1.161-169.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kagan B. L. Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature. 1983 Apr 21;302(5910):709–711. doi: 10.1038/302709a0. [DOI] [PubMed] [Google Scholar]
  16. Lolle S., Skipper N., Bussey H., Thomas D. Y. The expression of cDNA clones of yeast M1 double-stranded RNA in yeast confers both killer and immunity phenotypes. EMBO J. 1984 Jun;3(6):1383–1387. doi: 10.1002/j.1460-2075.1984.tb01981.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olsnes S., Pihl A. Isolation and properties of abrin: a toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent-peptide chains. Eur J Biochem. 1973 May;35(1):179–185. doi: 10.1111/j.1432-1033.1973.tb02823.x. [DOI] [PubMed] [Google Scholar]
  18. Skipper N., Bussey H. Mode of action of yeast toxins: energy requirement for Saccharomyces cerevisiae killer toxin. J Bacteriol. 1977 Feb;129(2):668–677. doi: 10.1128/jb.129.2.668-677.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wickner R. B. "Killer character" of Saccharomyces cerevisiae: curing by growth at elevated temperature. J Bacteriol. 1974 Mar;117(3):1356–1357. doi: 10.1128/jb.117.3.1356-1357.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wickner R. B. Double-stranded RNA replication in yeast: the killer system. Annu Rev Biochem. 1986;55:373–395. doi: 10.1146/annurev.bi.55.070186.002105. [DOI] [PubMed] [Google Scholar]
  21. Zhu H., Bussey H., Thomas D. Y., Gagnon J., Bell A. W. Determination of the carboxyl termini of the alpha and beta subunits of yeast K1 killer toxin. Requirement of a carboxypeptidase B-like activity for maturation. J Biol Chem. 1987 Aug 5;262(22):10728–10732. [PubMed] [Google Scholar]
  22. Zhu Hong, Bussey Howard. The K1 Toxin of Saccharomyces cerevisiae Kills Spheroplasts of Many Yeast Species. Appl Environ Microbiol. 1989 Aug;55(8):2105–2107. doi: 10.1128/aem.55.8.2105-2107.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de la Peña P., Barros F., Gascón S., Lazo P. S., Ramos S. Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem. 1981 Oct 25;256(20):10420–10425. [PubMed] [Google Scholar]
  24. de la Peña P., Barros F., Gascón S., Ramos S., Lazo P. S. Primary effects of yeast killer toxin. Biochem Biophys Res Commun. 1980 Sep 30;96(2):544–550. doi: 10.1016/0006-291x(80)91390-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES