Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Aug;87(16):6258–6262. doi: 10.1073/pnas.87.16.6258

Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element.

R S Friling 1, A Bensimon 1, Y Tichauer 1, V Daniel 1
PMCID: PMC54512  PMID: 2166952

Abstract

Glutathione S-transferase (GST) Ya subunit gene expression is induced in mammalian tissues by two types of chemical agents: (i) planar aromatic compounds (e.g., 3-methylcholanthrene, beta-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p- dioxin) and (ii) electrophiles (e.g., trans-4-phenyl-3-buten-2-one and dimethyl fumarate) or compounds easily oxidized to electrophiles (e.g., tert-butylhydroquinone). To study the mechanism of this induction, we have introduced deletions in the 5' flanking region of a mouse GST Ya subunit gene, fused it to the coding sequence for chloramphenicol acetyltransferase (CAT) activity, and transfected the Ya-CAT genes for expression into hepatoma cells. We show that a single cis-regulatory element, between nucleotides -754 and -713 from the start of transcription, is responsible for the induction by both planar aromatic and electrophilic compounds. Using murine hepatoma cell mutants defective in either the Ah-encoded aryl hydrocarbon receptor (BPrc1 mutant) or in cytochrome P1-450 gene (c1 mutant), we show that induction by planar aromatic but not by electrophilic inducers requires a functional Ah receptor and cytochrome P1-450 activity. From this it is concluded that Ya gene activation by planar aromatic compounds involves metabolism of these inducers by the phase I xenobiotic-metabolizing cytochrome P1-450 system into electrophilic compounds, which is consistent with a recently proposed model [Prochaska, H. J. & Talalay, P. (1988) Cancer Res. 48, 4776-4782]. Therefore, the regulatory sequence of the Ya gene should be considered an electrophile-responsive element (EpRE) activated exclusively by inducers containing an electrophilic center. An EpRE-containing 41-bp oligonucleotide ligated at the -187 site of the Ya gene promoter confers upon it an increase in basal activity and xenobiotic inducibility. The basal activity augments with the number of EpRE copies. DNase I protection patterns show the protection of the EpRE domain by a nuclear factor(s) that becomes more abundant upon exposure of Hepa 1c1c7 cells to tert-butylhydroquinone.

Full text

PDF
6258

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgmeyer U., Nowock J., Sippel A. E. The TGGCA-binding protein: a eukaryotic nuclear protein recognizing a symmetrical sequence on double-stranded linear DNA. Nucleic Acids Res. 1984 May 25;12(10):4295–4311. doi: 10.1093/nar/12.10.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Daniel V., Sharon R., Bensimon A. Regulatory elements controlling the basal and drug-inducible expression of glutathione S-transferase Ya subunit gene. DNA. 1989 Jul-Aug;8(6):399–408. doi: 10.1089/dna.1.1989.8.399. [DOI] [PubMed] [Google Scholar]
  3. Daniel V., Sharon R., Tichauer Y., Sarid S. Mouse glutathione S-transferase Ya subunit: gene structure and sequence. DNA. 1987 Aug;6(4):317–324. doi: 10.1089/dna.1987.6.317. [DOI] [PubMed] [Google Scholar]
  4. Daniel V., Tichauer Y., Sharon R. 5'-flanking sequence of mouse glutathione S-transferase Ya gene. Nucleic Acids Res. 1988 Jan 11;16(1):351–351. doi: 10.1093/nar/16.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denison M. S., Fisher J. M., Whitlock J. P., Jr Protein-DNA interactions at recognition sites for the dioxin-Ah receptor complex. J Biol Chem. 1989 Oct 5;264(28):16478–16482. [PubMed] [Google Scholar]
  6. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujisawa-Sehara A., Yamane M., Fujii-Kuriyama Y. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: its possible translocation to nucleus. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5859–5863. doi: 10.1073/pnas.85.16.5859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Israel D. I., Whitlock J. P., Jr Regulation of cytochrome P1-450 gene transcription by 2,3,7, 8-tetrachlorodibenzo-p-dioxin in wild type and variant mouse hepatoma cells. J Biol Chem. 1984 May 10;259(9):5400–5402. [PubMed] [Google Scholar]
  9. Kimura S., Smith H. H., Hankinson O., Nebert D. W. Analysis of two benzo[a]pyrene-resistant mutants of the mouse hepatoma Hepa-1 P(1)450 gene via cDNA expression in yeast. EMBO J. 1987 Jul;6(7):1929–1933. doi: 10.1002/j.1460-2075.1987.tb02453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  11. Miller A. G., Israel D., Whitlock J. P., Jr Biochemical and genetic analysis of variant mouse hepatoma cells defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. J Biol Chem. 1983 Mar 25;258(6):3523–3527. [PubMed] [Google Scholar]
  12. Nebert D. W., Jones J. E. Regulation of the mammalian cytochrome P1-450 (CYP1A1) gene. Int J Biochem. 1989;21(3):243–252. doi: 10.1016/0020-711x(89)90182-1. [DOI] [PubMed] [Google Scholar]
  13. Pickett C. B., Lu A. Y. Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem. 1989;58:743–764. doi: 10.1146/annurev.bi.58.070189.003523. [DOI] [PubMed] [Google Scholar]
  14. Poland A., Knutson J. C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 1982;22:517–554. doi: 10.1146/annurev.pa.22.040182.002505. [DOI] [PubMed] [Google Scholar]
  15. Prochaska H. J., De Long M. J., Talalay P. On the mechanisms of induction of cancer-protective enzymes: a unifying proposal. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8232–8236. doi: 10.1073/pnas.82.23.8232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prochaska H. J., Talalay P. Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res. 1988 Sep 1;48(17):4776–4782. [PubMed] [Google Scholar]
  17. Talalay P., De Long M. J., Prochaska H. J. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8261–8265. doi: 10.1073/pnas.85.21.8261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Williams R. T. Comparative patterns of drug metabolism. Fed Proc. 1967 Jul-Aug;26(4):1029–1039. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES