Full text
PDF![601](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/e708e944049e/jbacter00766-0039.png)
![602](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/bbdb9951ceed/jbacter00766-0040.png)
![603](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/6acea9a19f0e/jbacter00766-0041.png)
![604](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/6e953a088c1b/jbacter00766-0042.png)
![605](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/0e550d9540f5/jbacter00766-0043.png)
![606](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/21f9c5c7bf2f/jbacter00766-0044.png)
![607](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/b49472f26d1d/jbacter00766-0045.png)
![608](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/2c168d3685e1/jbacter00766-0046.png)
![609](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/e10997d09245/jbacter00766-0047.png)
![610](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/dd398c6fb290/jbacter00766-0048.png)
![611](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/b43ddf6485c8/jbacter00766-0049.png)
![612](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/efa4f4a315f7/jbacter00766-0050.png)
![613](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/9e34f42b206f/jbacter00766-0051.png)
![614](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/afc14e3ee23c/jbacter00766-0052.png)
![615](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/6ded879e4495/jbacter00766-0053.png)
![616](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/0ec8a7654b36/jbacter00766-0054.png)
![617](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/d41ecd87b4ec/jbacter00766-0055.png)
![618](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/6e67a0d80ab2/jbacter00766-0056.png)
![619](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/a376350c90b6/jbacter00766-0057.png)
![620](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/110989895263/jbacter00766-0058.png)
![621](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/91d71b20b639/jbacter00766-0059.png)
![622](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/d0445e45c81c/jbacter00766-0060.png)
![623](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74a/545330/d97cc034a4a2/jbacter00766-0061.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison F. E., Hoover S. R. An Accessory Factor for Legume Nodule Bacteria: I. Sources and Activity. J Bacteriol. 1934 Jun;27(6):561–581. doi: 10.1128/jb.27.6.561-581.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burk D., Lineweaver H., Horner C. K. The Specific Influence of Acidity on the Mechanism of Nitrogen Fixation by Azotobacter. J Bacteriol. 1934 Apr;27(4):325–340. doi: 10.1128/jb.27.4.325-340.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook R. P., Stephenson M. Bacterial oxidations by molecular oxygen: The aerobic oxidation of glucose and its fermentation products in its relation to the viability of the organism. Biochem J. 1928;22(6):1368–1386. doi: 10.1042/bj0221368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neal O. R., Walker R. H. Physiological Studies on Rhizobium: IV. Utilization of Carbonaceous Materials. J Bacteriol. 1935 Aug;30(2):173–187. doi: 10.1128/jb.30.2.173-187.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neal O. R., Walker R. H. Physiological Studies on Rhizobium: V. The Extent of Oxidation of Carbonaceous Materials. J Bacteriol. 1936 Aug;32(2):183–194. doi: 10.1128/jb.32.2.183-194.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson M., Gale E. F. The adaptability of glucozymase and galactozymase in Bacterium coli. Biochem J. 1937 Aug;31(8):1311–1315. doi: 10.1042/bj0311311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson M., Stickland L. H. Hydrogenase: a bacterial enzyme activating molecular hydrogen: The properties of the enzyme. Biochem J. 1931;25(1):205–214. doi: 10.1042/bj0250205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson M., Yudkin J. Galactozymase considered as an adaptive enzyme. Biochem J. 1936 Mar;30(3):506–514. doi: 10.1042/bj0300506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy. Biochem J. 1934;28(5):1746–1759. doi: 10.1042/bj0281746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone R. W., Werkman C. H. The occurrence of phosphoglyceric acid in the bacterial dissimilation of glucose. Biochem J. 1937 Sep;31(9):1516–1523. doi: 10.1042/bj0311516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorne D. W., Walker R. H. Physiological Studies on Rhizobium: III. Respiration and Growth as Influenced by the Reaction of the Medium. J Bacteriol. 1935 Jul;30(1):33–42. doi: 10.1128/jb.30.1.33-42.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werkman C. H. VITAMIN EFFECTS IN THE PHYSIOLOGY OF MICROORGANISMS. J Bacteriol. 1927 Nov;14(5):335–347. doi: 10.1128/jb.14.5.335-347.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson P. W., Fred E. B. Mechanism of Symbiotic Nitrogen Fixation: II. The pO(2) Function. Proc Natl Acad Sci U S A. 1937 Sep;23(9):503–508. doi: 10.1073/pnas.23.9.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood H. G., Stone R. W., Werkman C. H. The intermediate metabolism of propionic acid bacteria. Biochem J. 1937 Mar;31(3):349–359. doi: 10.1042/bj0310349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods D. D. Hydrogenlyases: The synthesis of formic acid by bacteria. Biochem J. 1936 Mar;30(3):515–527. doi: 10.1042/bj0300515. [DOI] [PMC free article] [PubMed] [Google Scholar]