Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Sep;87(17):6517–6521. doi: 10.1073/pnas.87.17.6517

Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor.

M S Madden 1, N D Kindon 1, P W Ludden 1, V K Shah 1
PMCID: PMC54567  PMID: 2204057

Abstract

In vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase using homocitrate and its analogs allows the formation of modified forms of FeMo-co that show altered substrate specificities (N2, acetylene, cyanide, or proton reduction) of nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC 1.18.6.1]. The (1R,2S)-threo- and (1S,2S)-erythro-fluorinated diastereomers of homocitrate have been incorporated in vitro into dinitrogenase in place of homocitrate. Dinitrogenase activated with FeMo-co synthesized using threo-fluorohomocitrate reduces protons, cyanide, and acetylene but cannot reduce N2. In addition, proton reduction is inhibited by carbon monoxide (CO), a characteristic of dinitrogenase from NifV- mutants. Dinitrogenase activated with FeMo-co synthesized using erythro-fluorohomocitrate reduces protons, cyanide, acetylene, and N2. In this case proton reduction is not inhibited by CO, a characteristic of the wild-type enzyme. Cyanide reduction properties of dinitrogenase activated with FeMo-co containing either fluorohomocitrate diastereomer are similar, and CO strongly inhibits cyanide reduction. Dinitrogenases activated with FeMo-co containing homocitrate analogs with a hydroxyl group on the C-1 position are much less susceptible to CO inhibition of cyanide reduction. However, proton and cyanide reduction by dinitrogenase containing FeMo-co activated with (1R,2S) threo-isocitrate is only one-third that of dinitrogenase activated with the racemic mixture of -isocitrate and shows strong CO inhibition of substrate reduction. These results suggest that CO inhibition of proton and cyanide reduction occurs when the hydroxyl group on the C-1 position of analogs is "trans" to the C-2 carboxyl group (i.e., in the threo conformation). When racemic mixtures of these analogs are used in the system, it seems that the erythro form is preferentially incorporated into dinitrogenase. Finally, carbonyl sulfide inhibition of substrate reduction by dinitrogenase is dependent on the homocitrate analog incorporated into FeMo-co.

Full text

PDF
6517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulen W. A., LeComte J. R. The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proc Natl Acad Sci U S A. 1966 Sep;56(3):979–986. doi: 10.1073/pnas.56.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Filler W. A., Kemp R. M., Ng J. C., Hawkes T. R., Dixon R. A., Smith B. E. The nifH gene product is required for the synthesis or stability of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Eur J Biochem. 1986 Oct 15;160(2):371–377. doi: 10.1111/j.1432-1033.1986.tb09981.x. [DOI] [PubMed] [Google Scholar]
  3. Hageman R. V., Burris R. H. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2699–2702. doi: 10.1073/pnas.75.6.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hawkes T. R., McLean P. A., Smith B. E. Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Biochem J. 1984 Jan 1;217(1):317–321. doi: 10.1042/bj2170317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hoover T. R., Imperial J., Liang J. H., Ludden P. W., Shah V. K. Dinitrogenase with altered substrate specificity results from the use of homocitrate analogues for in vitro synthesis of the iron-molybdenum cofactor. Biochemistry. 1988 May 17;27(10):3647–3652. doi: 10.1021/bi00410a019. [DOI] [PubMed] [Google Scholar]
  6. Hoover T. R., Imperial J., Ludden P. W., Shah V. K. Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry. 1989 Apr 4;28(7):2768–2771. doi: 10.1021/bi00433a004. [DOI] [PubMed] [Google Scholar]
  7. Hoover T. R., Robertson A. D., Cerny R. L., Hayes R. N., Imperial J., Shah V. K., Ludden P. W. Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate. 1987 Oct 29-Nov 4Nature. 329(6142):855–857. doi: 10.1038/329855a0. [DOI] [PubMed] [Google Scholar]
  8. Imperial J., Hoover T. R., Madden M. S., Ludden P. W., Shah V. K. Substrate reduction properties of dinitrogenase activated in vitro are dependent upon the presence of homocitrate or its analogues during iron-molybdenum cofactor synthesis. Biochemistry. 1989 Sep 19;28(19):7796–7799. doi: 10.1021/bi00445a040. [DOI] [PubMed] [Google Scholar]
  9. Imperial J., Ugalde R. A., Shah V. K., Brill W. J. Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J Bacteriol. 1984 Apr;158(1):187–194. doi: 10.1128/jb.158.1.187-194.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lowe D. J., Fisher K., Thorneley R. N., Vaughn S. A., Burgess B. K. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii. Biochemistry. 1989 Oct 17;28(21):8460–8466. doi: 10.1021/bi00447a028. [DOI] [PubMed] [Google Scholar]
  11. McLean P. A., Dixon R. A. Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature. 1981 Aug 13;292(5824):655–656. doi: 10.1038/292655a0. [DOI] [PubMed] [Google Scholar]
  12. Rivera-Ortiz J. M., Burris R. H. Interactions among substrates and inhibitors of nitrogenase. J Bacteriol. 1975 Aug;123(2):537–545. doi: 10.1128/jb.123.2.537-545.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robinson A. C., Dean D. R., Burgess B. K. Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J Biol Chem. 1987 Oct 15;262(29):14327–14332. [PubMed] [Google Scholar]
  14. Shah V. K., Brill W. J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3249–3253. doi: 10.1073/pnas.74.8.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shah V. K., Imperial J., Ugalde R. A., Ludden P. W., Brill W. J. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1636–1640. doi: 10.1073/pnas.83.6.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES