Abstract
The malignant CHO-K1 cell is reverse-transformed by cAMP, regaining the phenotype of a normal fibroblast. During this reaction, much of its DNA re-acquires sensitivity to hydrolysis by DNase I in a way characteristic of the normal fibroblast. Exposed DNA forms a rim about the nucleus in both the normal and reverse-transformed cell but not in the malignant CHO-K1. Reacquisition of the nuclear rim requires an organized cytoskeleton. Sequestered DNA forms families of different degrees of sequestration. In accordance with previous theoretical developments it is proposed that (i) genes specific to a given differentiation state are stored in the nuclear rim, whereas genes specific to other states are sequestered within the nucleus; (ii) only exposed genes are active, and their activity is modulated by regulatory molecules in the fluid medium; (iii) exposure and sequestration are regulated by cytoskeletal and nuclear protein structures; (iv) in at least several types of cancer the regulatory defect lies in the genome exposure process so that the specific DNA sequences and their associated growth regulatory loci have been transferred from the exposed to the sequestered condition with consequent loss of the nuclear rim of exposed DNA. The methodology described should be generally applicable to examining the accessibility state of subsets of DNA during various physiological modulations of cell function.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aréchaga J., Diaz J., Silió M., Bahr G. F. Mass and molecular weight of isolated nuclear rings. Biol Cell. 1990;68(1):13–20. doi: 10.1111/j.1768-322x.1990.tb00888.x. [DOI] [PubMed] [Google Scholar]
- Ashall F., Puck T. T. Cytoskeletal involvement in cAMP-induced sensitization of chromatin to nuclease digestion in transformed Chinese hamster ovary K1 cells. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5145–5149. doi: 10.1073/pnas.81.16.5145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashall F., Sullivan N., Puck T. T. Specificity of the cAMP-induced gene exposure reaction in CHO cells. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3908–3912. doi: 10.1073/pnas.85.11.3908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. D. Ordered disposition of parental genomes and individual chromosomes in reconstructed plant nuclei, and their implications. Somat Cell Mol Genet. 1987 Jul;13(4):463–466. doi: 10.1007/BF01534949. [DOI] [PubMed] [Google Scholar]
- Bunn P. A., Jr, Dienhart D. G., Chan D., Puck T. T., Tagawa M., Jewett P. B., Braunschweiger E. Neuropeptide stimulation of calcium flux in human lung cancer cells: delineation of alternative pathways. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2162–2166. doi: 10.1073/pnas.87.6.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capco D. G., Wan K. M., Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell. 1982 Jul;29(3):847–858. doi: 10.1016/0092-8674(82)90446-9. [DOI] [PubMed] [Google Scholar]
- Chan D., Goate A., Puck T. T. Involvement of vimentin in the reverse transformation reaction. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2747–2751. doi: 10.1073/pnas.86.8.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciejek E. M., Tsai M. J., O'Malley B. W. Actively transcribed genes are associated with the nuclear matrix. Nature. 1983 Dec 8;306(5943):607–609. doi: 10.1038/306607a0. [DOI] [PubMed] [Google Scholar]
- Ellison J. R., Howard G. C. Non-random position of the A-T rich DNA sequences in early embryos of Drosophila virilis. Chromosoma. 1981;83(4):555–561. doi: 10.1007/BF00328279. [DOI] [PubMed] [Google Scholar]
- Franke W. W. Nuclear lamins and cytoplasmic intermediate filament proteins: a growing multigene family. Cell. 1987 Jan 16;48(1):3–4. doi: 10.1016/0092-8674(87)90345-x. [DOI] [PubMed] [Google Scholar]
- Gabrielson E. G., Scoggin C., Puck T. T. Phosphorylation changes induced by cAMP derivatives in the CHO cell and selected mutants. Exp Cell Res. 1982 Nov;142(1):63–68. doi: 10.1016/0014-4827(82)90409-8. [DOI] [PubMed] [Google Scholar]
- Garel A., Axel R. Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3966–3970. doi: 10.1073/pnas.73.11.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton W. G., Ham R. G. Clonal growth of chinese hamster cell lines in protein-free media. In Vitro. 1977 Sep;13(9):537–547. doi: 10.1007/BF02627849. [DOI] [PubMed] [Google Scholar]
- Hsie A. W., Puck T. T. Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3':5'-monophosphate and testosterone. Proc Natl Acad Sci U S A. 1971 Feb;68(2):358–361. doi: 10.1073/pnas.68.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchison N., Weintraub H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell. 1985 Dec;43(2 Pt 1):471–482. doi: 10.1016/0092-8674(85)90177-1. [DOI] [PubMed] [Google Scholar]
- Kerem B. S., Goitein R., Diamond G., Cedar H., Marcus M. Mapping of DNAase I sensitive regions on mitotic chromosomes. Cell. 1984 Sep;38(2):493–499. doi: 10.1016/0092-8674(84)90504-x. [DOI] [PubMed] [Google Scholar]
- Larsen A., Weintraub H. An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell. 1982 Jun;29(2):609–622. doi: 10.1016/0092-8674(82)90177-5. [DOI] [PubMed] [Google Scholar]
- Law M. L., Gao J. Z., Puck T. T. A nuclear protein associated with human cancer cells binds preferentially to a human repetitive DNA sequence. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8472–8476. doi: 10.1073/pnas.86.21.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto L. H. Enrichment of satellite DNA on the nuclear matrix of bovine cells. Nature. 1981 Dec 3;294(5840):481–482. doi: 10.1038/294481a0. [DOI] [PubMed] [Google Scholar]
- Miranti C., Puck T. T. Gene regulation in reverse transformation: cyclic AMP-induced actin homolog in CHO cells. Somat Cell Mol Genet. 1990 Jan;16(1):67–78. doi: 10.1007/BF01650481. [DOI] [PubMed] [Google Scholar]
- Porter K. R., Puck T. T., Hsie A. W., Kelley D. An electron microscopy study of the effects on dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell. 1974 Jul;2(3):145–162. doi: 10.1016/0092-8674(74)90089-0. [DOI] [PubMed] [Google Scholar]
- Puck T. T., Krystosek A., Chan D. C. Genome regulation in mammalian cells. Somat Cell Mol Genet. 1990 May;16(3):257–265. doi: 10.1007/BF01233362. [DOI] [PubMed] [Google Scholar]
- Rae M. M., Franke W. W. The interphase distribution of satellite DNA-containing heterochromatin in mouse nuclei. Chromosoma. 1972;39(4):443–456. doi: 10.1007/BF00326177. [DOI] [PubMed] [Google Scholar]
- Schonberg S., Patterson D., Puck T. T. Resistance of Chinese hamster ovary cell chromatin to endonuclease digestion. I. Reversal by cAMP. Exp Cell Res. 1983 Apr 15;145(1):57–62. doi: 10.1016/s0014-4827(83)80007-x. [DOI] [PubMed] [Google Scholar]
- TJIO J. H., PUCK T. T. Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J Exp Med. 1958 Aug 1;108(2):259–268. doi: 10.1084/jem.108.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogelstein B., Pardoll D. M., Coffey D. S. Supercoiled loops and eucaryotic DNA replicaton. Cell. 1980 Nov;22(1 Pt 1):79–85. doi: 10.1016/0092-8674(80)90156-7. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. doi: 10.1126/science.948749. [DOI] [PubMed] [Google Scholar]
- Wu C., Wong Y. C., Elgin S. C. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell. 1979 Apr;16(4):807–814. doi: 10.1016/0092-8674(79)90096-5. [DOI] [PubMed] [Google Scholar]