Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 5;73(Pt 6):817–820. doi: 10.1107/S2056989017006363

Synthesis and crystal structure of a new magnesium phosphate Na3RbMg7(PO4)6

Teycir Ben Hamed a,*, Amal Boukhris a, Abdessalem Badri a, Mongi Ben Amara a
PMCID: PMC5458299  PMID: 28638634

Trisodium rubidium hepta­magnesium hexakis(ortho­phosphate) exhibits a new structure type, with MgOx (x = 5 and 6) polyhedra linked directly to each other through common corners or edges and reinforced by corner-sharing with PO4 tetra­hedra. The resulting anionic three-dimensional framework leads to the formation of channels in which the Na+ cations are located, while the Rb+ cations are located in large inter­stitial cavities.

Keywords: crystal structure, magnesium phosphate, anionic framework

Abstract

A new magnesium phosphate, Na3RbMg7(PO4)6 [tris­odium rubidium hepta­magnesium hexakis(ortho­phosphate)], has been synthesized as single crystals by the flux method and exhibits a new structure type. Its original structure is built up from MgOx (x = 5 and 6) polyhedra linked directly to each other through common corners or edges and reinforced by corner-sharing with PO4 tetra­hedra. The resulting anionic three-dimensional framework leads to the formation of channels along the [010] direction, in which the Na+ cations are located, while the Rb+ cations are located in large inter­stitial cavities.

Chemical context  

Magnesium phosphates are of increasing inter­est because of their potential applications as host materials for optically active rare earth ions (Seo, 2013; Kim et al., 2013; Boukhris et al., 2015). Moreover, these materials are very attractive in terms of basic research because they exhibit a rich structural chemistry due to their polymorphism (Ait Benhamou et al., 2010; Orlova et al., 2015).

Among the variety of magnesium monophosphates synthesized and characterized up to now, only four compounds belong to the system Na3PO4–Mg3(PO4)2, namely NaMgPO4, NaMg4(PO4)3, Na2Mg5(PO4)4 and Na4Mg(PO4)2 (Imura & Kawahara, 1997; Ben Amara et al., 1983; Yamakawa et al., 1994; Ghorbel et al., 1974). NaMgPO4 compound crystallizes in the ortho­rhom­bic system with space group P212121. Its structure involves MgO6 and MgO5 polyhedra linked by the monophosphate groups that form a three-dimensional framework. NaMg4(PO4)3 is also ortho­rhom­bic, space group Pnma. Its structure is built up from three kinds of MgO5 units sharing edges and corners and linked to each other by the PO4 tetra­hedra, leading to a three-dimensional framework. Na2Mg5(PO4)4, synthesized under pressure, crystallizes in the triclinic system. Its structure results from a three-dimensional framework of MgO6 and MgO5 polyhedra connected either directly via common corners or by means of the phosphate groups. Na4Mg(PO4)2 exhibits two polymorphs, which were only identified by their powder diffraction patterns.

Starting from these compounds, suitable replacements of magnesium and/or sodium by large cations induces their transformation into several structural types for different Mg/P atomic ratios. NaMMg(PO4)2 (M = Ca, Sr and Ba) compounds are related to the glaserite-type structure (Alkemper & Fuess, 1998; Boukhris et al., 2012, 2013). They adopt an anionic two-dimensional network with different symmetries as a function of the size of the M 2+ cation. For an atomic ratio M:P of 7:6, magnesium phosphate compounds adopt a three-dimensional network related to the fillowite-type structure, as observed in Na4Ca4Mg21(PO4)18, Na2CaMg7(PO4)6 and Na2.5Y0.5Mg7(PO4)6 (Domanskii et al., 1982; McCoy et al., 1994; Jerbi et al., 2010a ). All of them crystallize with trigonal symmetry (space group R Inline graphic) and differ only by their cationic distributions. Three-dimensional anionic networks includes also original structures such as those observed in Na18Ca13Mg5(PO4)18, NaCa9Mg(PO4)7, Na7 LnMg13(PO4)12 (Ln = La, Eu, Nd) (Yamakawa et al., 1994; Morozov et al., 1997; Jerbi et al., 2010b , 2012).

As a contribution to the investigation of the above-mentioned systems, we report here the structural characterization of a new magnesium phosphate Na3RbMg7(PO4)6, which is, to our knowledge, the first magnesium phosphate revealing an original structure for an atomic ratio Mg/P equal to 7/6.

Structural commentary  

To the best of our knowledge, Na3RbMg7(PO4)6 exhibits a new structure type. A projection along the [010] direction of its structure (Fig. 1) clearly evidences the three-dimensional character of its anionic framework, which is built up from five different polyhedra MgOx (x = 5, 6) and three kinds of PO4 tetra­hedra connected together by sharing edges and corners. The Na+ cations are located within channels running along the [010] direction while the Rb+ cations are found in the large inter­stitial cavities.

Figure 1.

Figure 1

A view of the Na3RbMg7(PO4)6 structure along [010]. Colour key: MgOx (x = 5 and 6; blue polyhedra), PO4 (purple polyhedra), Rb (green spheres) and Na (yellow spheres).

A projection of the structure on the (012) plane (Fig. 2) shows that it can also be described on the basis of three kinds of rows (A, B and C) running parallel to the [100] direction. The first row (A; Fig. 3), consists of units with edge-sharing between one Na1O8 and two Na2O6 polyhedra. Such units alternate with Mg1O5 polyhedra, leading to the sequence –Mg1–Na2–Na1–Na2–. The second row (B) consists of corner-sharing P2O4, P3O4, Mg4O6 and Mg5O5 polyhedra, forming the sequence –P3–Mg4–P2–Mg5–. Rows B and B′ are symmetrical with respect to the inversion centre located on the A row. The last row (C) includes units with corner-sharing between P1O4 tetra­hedra and Mg2O10 dimers, which consist of edge-sharing MgiO6 (i = 2, 3) octa­hedra. These units alternate with RbO12 polyhedra to form a –P1–[Mg2,Mg3]–P1–Rb– sequence. These rows, connected to each other through common corners or edges, occur with a sequence of ABCB′.

Figure 2.

Figure 2

A view down the b axis, showing ABCB’ rows made of PO4 tetra­hedra and Mg, Na and Rb atoms.

Figure 3.

Figure 3

A view of parallel rows of ABC polyhedra.

There are five distinct Mg sites. The Mg1 atom is displaced slightly from the inversion center, statistically occupying two symmetry-related positions. As a consequence, the Mg1O6 polyhedron exhibits two distances that are long [2.241 (5) Å] compared to the other Mg1—O distances, which vary from 1.969 (10) to 2.030 (10) Å. Thus, this environment can be considered as [4 + 1]. The average value of 2.005 (10) Å calculated from the four short distances is slightly higher but consistent with that of 1.930 (2) Å reported for the tetra-coordinated Mg2+ cation in KMgPO4 (Wallez et al.,1998). Sites Mg2 and Mg3 are located on twofold rotation axes and have slightly distorted octa­hedral environments with Mg—O distances varying from 2.052 (3) to 2.202 (2) Å for Mg2 and from 2.042 (2) to 2.169 (2) Å for Mg3. The corresponding average values of 2.123 and 2.103 Å, respectively, are in a good agreement with that of 2.14 Å observed for hexa-coordinated Mg2+ ions in Mg3(PO4)2 (Jaulmes et al., 1997). Site Mg4 is [5 + 1]-coordinated, with five short distances varying from 1.981 (3) to 2.050 (3) Å and a sixth longer distance of 2.5734 (3) Å. A similar environment has already been observed in Mg3(PO4)2 (Jaulmes et al., 1997). Site Mg5 is five-coordinated with Mg—O distances ranging from 2.020 (3) to 2.148 (3) Å. The corresponding mean distance of 2.07 Å is close to that of 2.08 Å observed for Mg2+ with the same coordination in NaMg4(PO4)3 (Ben Amara et al., 1983). The P—O distances within the PO4 tetra­hedra are in the range of 1.518 (2)–1.552 (2) Å with an overall mean value of 1.539 Å, very close to that of 1.537 Å predicted by Baur (1974) for monophosphate groups.

The environments of the alkali cations are shown in Fig. 4. Those of the two crystallographic distinct Na sites were determined assuming a maximum sodium–oxygen distance L max of 3.13 Å, as suggested by Donnay & Allmann (1970). As in the case of the Mg1 atom, the sodium atom Na1 is also moved slightly away from the inversion center and statistically occupying two symmetry-related positions. This moving probably occurs to accommodate the environment of the Na1 site, which then consists of eight oxygen atoms with Na—O distances varying from 2.303 (7) to 2.963 (6) Å. Na2 is bound to only six oxygen atoms, with Na2—O distances in the range 2.246 (3)–2.962 (3) Å. The Rb+ ion is located on a twofold rotation axis and occupies a single site whose environment was determined assuming all Rb—O distances to be shorter than the shortest distance between Rb+ and its nearest cation. This environment then consists of twelve oxygen atoms with Rb—O distances ranging from 2.923 (3) to 3.517 (2) Å.

Figure 4.

Figure 4

The environment of the (a) Na1+, (b) Na2+ and (c) Rb+ cations, showing displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization  

Single crystals of Na3RbMg7(PO4)6 were grown in a flux of sodium molybdate, Na2MoO4, with a P:Mo atomic ratio of 2:1. Appropriate amounts of the starting reactants (NH4)H2PO4, Na2CO3, Rb2CO3, (MgCO3)4Mg(OH)2·5H2O and Na2MoO4·2H2O were dissolved in nitric acid and the obtained solution was evaporated to dryness. The residue was homogenized by grinding in an agate mortar, and subsequently heated in a platinum crucible for 24 h at 673 K and then for 12 h at 873 K. After being reground, the sample was melted for 2 h at 1273 K and then cooled slowly down to room temperature at a rate of 10 K h−1. The solidified melt was washed with boiling water to dissolve the flux. Colourless, irregularly shaped crystals were extracted from the final product.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The refinement was performed on the basis of electric neutrality and similar works. The atomic positions are determined by comparison with the refinements reported by Jerbi et al. (2010a ) and McCoy et al. (1994).

Table 1. Experimental details.

Crystal data
Chemical formula Na3RbMg7(PO4)6
M r 894.43
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 12.734 (3), 10.685 (3), 15.498 (5)
β (°) 112.83 (2)
V3) 1943.5 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.47
Crystal size (mm) 0.16 × 0.10 × 0.07
 
Data collection
Diffractometer Enraf–Nonius Turbo CAD-4
Absorption correction Part of the refinement model (ΔF) (Parkin et al., 1995)
T min, T max 0.377, 0.485
No. of measured, independent and observed [I > 2σ(I)] reflections 2333, 2333, 1968
R int 0.020
(sin θ/λ)max−1) 0.660
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.100, 1.07
No. of reflections 2333
No. of parameters 196
Δρmax, Δρmin (e Å−3) 0.87, −1.49

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg et al., 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017006363/br2264sup1.cif

e-73-00817-sup1.cif (102KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006363/br2264Isup2.hkl

e-73-00817-Isup2.hkl (187.4KB, hkl)

CCDC reference: 1546558

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

Mg7Na3O24P6Rb F(000) = 1744
Mr = 894.43 Dx = 3.057 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 12.734 (3) Å Cell parameters from 25 reflections
b = 10.685 (3) Å θ = 7.5–10.8°
c = 15.498 (5) Å µ = 3.47 mm1
β = 112.83 (2)° T = 293 K
V = 1943.5 (10) Å3 Prism, colourless
Z = 4 0.16 × 0.10 × 0.07 mm

Data collection

Enraf–Nonius Turbo CAD-4 diffractometer Rint = 0.020
non–profiled ω/2τ scans θmax = 28.0°, θmin = 2.6°
Absorption correction: part of the refinement model (ΔF) (Parkin et al., 1995) h = −16→15
Tmin = 0.377, Tmax = 0.485 k = 0→14
2333 measured reflections l = 0→20
2333 independent reflections 2 standard reflections every 60 min
1968 reflections with I > 2σ(I) intensity decay: −2%

Refinement

Refinement on F2 196 parameters
Least-squares matrix: full 0 restraints
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0549P)2 + 7.6361P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.87 e Å3
2333 reflections Δρmin = −1.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rb 0.5000 0.74607 (5) 0.7500 0.02406 (16)
Na1 0.2552 (5) 0.7550 (6) 0.0226 (3) 0.0279 (12) 0.5
Na2 −0.01858 (14) 0.76242 (14) 0.98277 (13) 0.0226 (4)
Mg1 0.2487 (8) 0.2471 (9) 0.0142 (4) 0.0098 (10) 0.5
Mg2 0.0000 0.58859 (15) 0.7500 0.0071 (3)
Mg3 0.5000 0.62142 (14) 0.2500 0.0059 (3)
Mg4 0.18422 (9) 0.54259 (10) 0.12717 (7) 0.0065 (2)
Mg5 0.19042 (9) 0.99696 (11) 0.14183 (7) 0.0081 (2)
P1 0.28980 (7) 0.76938 (7) 0.27439 (6) 0.00668 (18)
O11 0.41297 (19) 0.7658 (2) 0.27801 (17) 0.0097 (5)
O12 0.25429 (18) 0.9074 (2) 0.27435 (15) 0.0084 (4)
O13 0.2043 (2) 0.7106 (3) 0.18543 (18) 0.0164 (5)
O14 0.2884 (2) 0.6963 (2) 0.36018 (17) 0.0146 (5)
P2 0.41165 (6) 0.50005 (7) 0.08098 (5) 0.00531 (18)
O21 0.53692 (18) 0.5150 (2) 0.15135 (15) 0.0084 (4)
O22 0.38853 (19) 0.5698 (2) 0.98959 (16) 0.0113 (5)
O23 0.34627 (19) 0.5654 (2) 0.13363 (15) 0.0085 (4)
O24 0.38345 (19) 0.3619 (2) 0.06370 (17) 0.0119 (5)
P3 0.09357 (6) 0.50198 (7) 0.92791 (5) 0.00484 (18)
O31 −0.03126 (18) 0.4851 (2) 0.86059 (16) 0.0100 (5)
O32 0.10990 (18) 0.6126 (2) 0.99444 (15) 0.0103 (5)
O33 0.15211 (18) 0.5301 (2) 0.85956 (16) 0.0109 (5)
O34 0.1418 (2) 0.3884 (2) 0.99025 (18) 0.0136 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb 0.0278 (3) 0.0250 (3) 0.0200 (3) 0.000 0.0099 (2) 0.000
Na1 0.0132 (16) 0.0218 (17) 0.050 (4) −0.0034 (12) 0.014 (3) 0.009 (3)
Na2 0.0180 (8) 0.0166 (7) 0.0412 (10) −0.0006 (6) 0.0202 (7) −0.0027 (6)
Mg1 0.0043 (9) 0.0081 (11) 0.015 (3) 0.0002 (8) 0.001 (2) −0.001 (3)
Mg2 0.0052 (7) 0.0109 (7) 0.0054 (7) 0.000 0.0021 (5) 0.000
Mg3 0.0044 (7) 0.0099 (7) 0.0050 (6) 0.000 0.0037 (5) 0.000
Mg4 0.0035 (5) 0.0114 (5) 0.0052 (5) −0.0010 (4) 0.0024 (4) 0.0014 (4)
Mg5 0.0036 (5) 0.0166 (6) 0.0055 (5) 0.0009 (4) 0.0033 (4) −0.0002 (4)
P1 0.0030 (3) 0.0093 (4) 0.0098 (4) −0.0003 (3) 0.0046 (3) −0.0010 (3)
O11 0.0045 (10) 0.0115 (11) 0.0158 (11) 0.0007 (8) 0.0070 (9) 0.0000 (9)
O12 0.0059 (10) 0.0106 (11) 0.0097 (11) 0.0019 (8) 0.0042 (9) −0.0004 (8)
O13 0.0076 (11) 0.0216 (13) 0.0179 (12) −0.0027 (10) 0.0026 (9) −0.0117 (11)
O14 0.0149 (12) 0.0142 (12) 0.0203 (13) 0.0005 (10) 0.0129 (10) 0.0051 (10)
P2 0.0029 (4) 0.0105 (4) 0.0038 (4) −0.0006 (3) 0.0028 (3) −0.0011 (3)
O21 0.0027 (10) 0.0169 (11) 0.0056 (10) −0.0002 (8) 0.0017 (8) −0.0028 (8)
O22 0.0098 (11) 0.0191 (12) 0.0060 (10) −0.0007 (9) 0.0043 (9) 0.0011 (9)
O23 0.0065 (10) 0.0139 (11) 0.0072 (10) 0.0000 (8) 0.0049 (8) −0.0026 (9)
O24 0.0081 (11) 0.0112 (11) 0.0165 (12) −0.0023 (9) 0.0049 (9) −0.0042 (9)
P3 0.0025 (4) 0.0090 (4) 0.0040 (4) 0.0005 (3) 0.0024 (3) 0.0008 (3)
O31 0.0027 (10) 0.0181 (12) 0.0089 (11) −0.0016 (9) 0.0018 (8) −0.0003 (9)
O32 0.0091 (11) 0.0144 (11) 0.0082 (11) 0.0003 (9) 0.0041 (9) −0.0034 (9)
O33 0.0044 (10) 0.0232 (12) 0.0066 (10) 0.0001 (9) 0.0037 (8) 0.0014 (9)
O34 0.0093 (11) 0.0141 (11) 0.0197 (12) 0.0061 (9) 0.0080 (9) 0.0088 (10)

Geometric parameters (Å, º)

Rb—O24i 2.923 (3) Mg2—O33xvi 2.115 (2)
Rb—O24ii 2.923 (3) Mg2—O33 2.115 (2)
Rb—O13iii 3.163 (3) Mg2—O31 2.202 (2)
Rb—O13iv 3.163 (3) Mg2—O31xvi 2.202 (2)
Rb—O31v 3.186 (2) Mg3—O11 2.042 (2)
Rb—O31vi 3.186 (2) Mg3—O11xvii 2.042 (2)
Rb—O21i 3.301 (2) Mg3—O21 2.100 (2)
Rb—O21ii 3.301 (2) Mg3—O21xvii 2.100 (2)
Rb—O14iii 3.452 (3) Mg3—O23xvii 2.169 (2)
Rb—O14iv 3.452 (3) Mg3—O23 2.169 (2)
Rb—O12iv 3.517 (2) Mg4—O13 1.981 (3)
Rb—O12iii 3.517 (2) Mg4—O12xv 2.026 (3)
Na1—O32vii 2.303 (7) Mg4—O23 2.041 (2)
Na1—O32iv 2.318 (7) Mg4—O32vii 2.043 (3)
Na1—O22iv 2.573 (7) Mg4—O31xviii 2.050 (2)
Na1—O23 2.620 (7) Mg4—O34vii 2.573 (3)
Na1—O22vii 2.782 (7) Mg5—O22iv 2.020 (3)
Na1—O13 2.878 (5) Mg5—O21xix 2.026 (2)
Na1—O33iv 2.886 (6) Mg5—O33iv 2.034 (2)
Na1—O23viii 2.963 (6) Mg5—O12 2.121 (3)
Na2—O32 2.246 (3) Mg5—O14xx 2.148 (3)
Na2—O24ix 2.340 (3) P1—O13 1.521 (3)
Na2—O22x 2.365 (3) P1—O12 1.542 (2)
Na2—O34xi 2.396 (3) P1—O11 1.548 (2)
Na2—O14xii 2.495 (3) P1—O14 1.548 (2)
Na2—O11xii 2.962 (3) P2—O24 1.518 (2)
Mg1—O34vii 1.969 (10) P2—O22vii 1.524 (2)
Mg1—O24 2.004 (10) P2—O23 1.541 (2)
Mg1—O24xiii 2.017 (10) P2—O21 1.552 (2)
Mg1—O34xiv 2.030 (10) P3—O34 1.524 (2)
Mg1—O14xv 2.241 (4) P3—O32 1.528 (2)
Mg2—O11iv 2.052 (3) P3—O31 1.537 (2)
Mg2—O11xii 2.052 (3) P3—O33 1.543 (2)
O24i—Rb—O24ii 133.51 (9) O24ix—Na2—O22x 92.29 (10)
O24i—Rb—O13iii 84.83 (7) O32—Na2—O34xi 90.71 (10)
O24ii—Rb—O13iii 101.86 (7) O24ix—Na2—O34xi 71.97 (10)
O24i—Rb—O13iv 101.86 (7) O22x—Na2—O34xi 159.77 (12)
O24ii—Rb—O13iv 84.83 (7) O32—Na2—O14xii 131.25 (11)
O13iii—Rb—O13iv 163.19 (10) O24ix—Na2—O14xii 75.82 (9)
O24i—Rb—O31v 136.57 (6) O22x—Na2—O14xii 114.69 (10)
O24ii—Rb—O31v 84.63 (6) O34xi—Na2—O14xii 74.54 (9)
O13iii—Rb—O31v 110.05 (7) O32—Na2—O11xii 85.19 (9)
O13iv—Rb—O31v 54.74 (6) O24ix—Na2—O11xii 128.61 (10)
O24i—Rb—O31vi 84.63 (6) O22x—Na2—O11xii 99.52 (9)
O24ii—Rb—O31vi 136.57 (6) O34xi—Na2—O11xii 100.27 (10)
O13iii—Rb—O31vi 54.74 (6) O14xii—Na2—O11xii 53.75 (8)
O13iv—Rb—O31vi 110.05 (7) O34vii—Mg1—O24 91.7 (4)
O31v—Rb—O31vi 73.42 (9) O34vii—Mg1—O24xiii 88.6 (4)
O24i—Rb—O21i 47.00 (6) O24—Mg1—O24xiii 166.9 (2)
O24ii—Rb—O21i 90.86 (6) O34vii—Mg1—O34xiv 167.0 (2)
O13iii—Rb—O21i 72.22 (6) O24—Mg1—O34xiv 87.2 (4)
O13iv—Rb—O21i 123.54 (6) O24xiii—Mg1—O34xiv 89.6 (4)
O31v—Rb—O21i 175.28 (6) O34vii—Mg1—O14xv 89.2 (3)
O31vi—Rb—O21i 110.99 (6) O24—Mg1—O14xv 104.7 (3)
O24i—Rb—O21ii 90.86 (6) O24xiii—Mg1—O14xv 88.4 (3)
O24ii—Rb—O21ii 47.00 (6) O34xiv—Mg1—O14xv 103.6 (3)
O13iii—Rb—O21ii 123.54 (6) O11iv—Mg2—O11xii 81.37 (14)
O13iv—Rb—O21ii 72.22 (7) O11iv—Mg2—O33xvi 117.11 (10)
O31v—Rb—O21ii 110.99 (6) O11xii—Mg2—O33xvi 89.56 (10)
O31vi—Rb—O21ii 175.28 (6) O11iv—Mg2—O33 89.56 (10)
O21i—Rb—O21ii 64.66 (8) O11xii—Mg2—O33 117.11 (10)
O24i—Rb—O14iii 126.45 (6) O33xvi—Mg2—O33 145.64 (16)
O24ii—Rb—O14iii 63.05 (6) O11iv—Mg2—O31 145.19 (10)
O13iii—Rb—O14iii 44.16 (6) O11xii—Mg2—O31 86.60 (9)
O13iv—Rb—O14iii 131.70 (6) O33xvi—Mg2—O31 95.21 (10)
O31v—Rb—O14iii 85.51 (6) O33—Mg2—O31 67.21 (9)
O31vi—Rb—O14iii 78.00 (6) O11iv—Mg2—O31xvi 86.60 (9)
O21i—Rb—O14iii 93.70 (6) O11xii—Mg2—O31xvi 145.19 (10)
O21ii—Rb—O14iii 103.71 (6) O33xvi—Mg2—O31xvi 67.21 (9)
O24i—Rb—O14iv 63.05 (6) O33—Mg2—O31xvi 95.20 (9)
O24ii—Rb—O14iv 126.45 (6) O31—Mg2—O31xvi 119.70 (14)
O13iii—Rb—O14iv 131.70 (6) O11—Mg3—O11xvii 81.88 (14)
O13iv—Rb—O14iv 44.16 (6) O11—Mg3—O21 149.00 (10)
O31v—Rb—O14iv 78.00 (6) O11xvii—Mg3—O21 87.76 (9)
O31vi—Rb—O14iv 85.51 (6) O11—Mg3—O21xvii 87.76 (9)
O21i—Rb—O14iv 103.71 (6) O11xvii—Mg3—O21xvii 149.00 (10)
O21ii—Rb—O14iv 93.70 (6) O21—Mg3—O21xvii 114.43 (14)
O14iii—Rb—O14iv 159.44 (9) O11—Mg3—O23xvii 114.89 (10)
O24i—Rb—O12iv 67.45 (6) O11xvii—Mg3—O23xvii 89.77 (9)
O24ii—Rb—O12iv 90.89 (6) O21—Mg3—O23xvii 94.09 (9)
O13iii—Rb—O12iv 150.50 (6) O21xvii—Mg3—O23xvii 68.28 (9)
O13iv—Rb—O12iv 42.77 (6) O11—Mg3—O23 89.77 (9)
O31v—Rb—O12iv 97.43 (6) O11xvii—Mg3—O23 114.89 (10)
O31vi—Rb—O12iv 128.18 (6) O21—Mg3—O23 68.28 (9)
O21i—Rb—O12iv 81.20 (5) O21xvii—Mg3—O23 94.09 (9)
O21ii—Rb—O12iv 50.59 (5) O23xvii—Mg3—O23 147.97 (14)
O14iii—Rb—O12iv 153.49 (6) O13—Mg4—O12xv 111.06 (11)
O14iv—Rb—O12iv 43.24 (6) O13—Mg4—O23 85.41 (10)
O24i—Rb—O12iii 90.89 (6) O12xv—Mg4—O23 87.74 (10)
O24ii—Rb—O12iii 67.45 (6) O13—Mg4—O32vii 93.13 (12)
O13iii—Rb—O12iii 42.77 (6) O12xv—Mg4—O32vii 155.80 (11)
O13iv—Rb—O12iii 150.50 (6) O23—Mg4—O32vii 94.02 (10)
O31v—Rb—O12iii 128.18 (6) O13—Mg4—O31xviii 92.75 (11)
O31vi—Rb—O12iii 97.43 (6) O12xv—Mg4—O31xviii 86.03 (10)
O21i—Rb—O12iii 50.59 (5) O23—Mg4—O31xviii 172.38 (11)
O21ii—Rb—O12iii 81.20 (5) O32vii—Mg4—O31xviii 93.46 (10)
O14iii—Rb—O12iii 43.24 (6) O13—Mg4—O34vii 154.80 (11)
O14iv—Rb—O12iii 153.49 (6) O12xv—Mg4—O34vii 93.48 (10)
O12iv—Rb—O12iii 124.43 (8) O23—Mg4—O34vii 90.10 (9)
O32vii—Na1—O32iv 163.38 (18) O32vii—Mg4—O34vii 62.42 (9)
O32vii—Na1—O22iv 88.3 (2) O31xviii—Mg4—O34vii 94.64 (9)
O32iv—Na1—O22iv 94.9 (3) O22iv—Mg5—O21xix 89.44 (10)
O32vii—Na1—O23 74.4 (2) O22iv—Mg5—O33iv 92.64 (10)
O32iv—Na1—O23 112.8 (3) O21xix—Mg5—O33iv 175.75 (11)
O22iv—Na1—O23 137.03 (19) O22iv—Mg5—O12 132.14 (11)
O32vii—Na1—O22vii 89.9 (2) O21xix—Mg5—O12 89.48 (10)
O32iv—Na1—O22vii 83.2 (2) O33iv—Mg5—O12 86.38 (10)
O22iv—Na1—O22vii 166.37 (17) O22iv—Mg5—O14xx 110.57 (11)
O23—Na1—O22vii 54.84 (15) O21xix—Mg5—O14xx 92.12 (10)
Na1viii—Na1—O13 150.6 (12) O33iv—Mg5—O14xx 90.63 (10)
O32vii—Na1—O13 67.64 (15) O12—Mg5—O14xx 117.28 (10)
O32iv—Na1—O13 129.0 (2) O13—P1—O12 106.71 (14)
O22iv—Na1—O13 77.79 (16) O13—P1—O11 112.40 (14)
O23—Na1—O13 59.29 (12) O12—P1—O11 108.47 (12)
O22vii—Na1—O13 113.9 (2) O13—P1—O14 109.11 (15)
O32vii—Na1—O33iv 138.3 (2) O12—P1—O14 112.44 (13)
O32iv—Na1—O33iv 56.44 (15) O11—P1—O14 107.79 (13)
O22iv—Na1—O33iv 64.67 (16) O24—P2—O22vii 111.34 (14)
O23—Na1—O33iv 103.37 (17) O24—P2—O23 113.25 (13)
O22vii—Na1—O33iv 123.6 (2) O22vii—P2—O23 108.74 (13)
O13—Na1—O33iv 75.63 (12) O24—P2—O21 109.41 (13)
O32vii—Na1—O23viii 102.1 (2) O22vii—P2—O21 112.20 (13)
O32iv—Na1—O23viii 67.63 (16) O23—P2—O21 101.56 (12)
O22iv—Na1—O23viii 52.91 (14) O34—P3—O32 105.79 (14)
O23—Na1—O23viii 168.2 (2) O34—P3—O31 113.15 (14)
O22vii—Na1—O23viii 114.48 (15) O32—P3—O31 112.52 (13)
O13—Na1—O23viii 130.4 (2) O34—P3—O33 114.02 (13)
O33iv—Na1—O23viii 86.8 (2) O32—P3—O33 109.69 (14)
O32—Na2—O24ix 143.52 (12) O31—P3—O33 101.82 (13)
O32—Na2—O22x 95.11 (10)

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+3/2, z+1/2; (iv) −x+1/2, −y+3/2, −z+1; (v) x+1/2, y+1/2, z; (vi) −x+1/2, y+1/2, −z+3/2; (vii) x, y, z−1; (viii) −x+1/2, −y+3/2, −z; (ix) x−1/2, y+1/2, z+1; (x) −x+1/2, −y+3/2, −z+2; (xi) −x, −y+1, −z+2; (xii) x−1/2, −y+3/2, z+1/2; (xiii) −x+1/2, −y+1/2, −z; (xiv) −x+1/2, −y+1/2, −z+1; (xv) −x+1/2, y−1/2, −z+1/2; (xvi) −x, y, −z+3/2; (xvii) −x+1, y, −z+1/2; (xviii) −x, −y+1, −z+1; (xix) x−1/2, y+1/2, z; (xx) −x+1/2, y+1/2, −z+1/2.

References

  1. Ait Benhamou, R., Wallez, G., Loiseau, P., Viana, B., Elaatmani, M., Daoud, M. & Zegzouti, A. (2010). J. Solid State Chem. 183, 2082–2086.
  2. Alkemper, J. & Fuess, H. (1998). Z. Kristallogr. 213, 282–287.
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  4. Baur, W. H. (1974). Acta Cryst. B30, 1195–1215.
  5. Ben Amara, M., Vlasse, M., Olazcuaga, R., Le Flem, G. & Hagenmuller, P. (1983). Acta Cryst. C39, 936–939.
  6. Boukhris, A., Glorieux, B. & Ben Amara, M. (2015). J. Mol. Struct. 1083, 319–329.
  7. Boukhris, A., Hidouri, M., Glorieux, B. & Ben Amara, M. (2013). J. Rare Earths, 31, 849–856.
  8. Boukhris, A., Hidouri, M., Glorieux, B. & Ben Amara, M. (2012). Mater. Chem. Phys. 137, 26–33.
  9. Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.
  10. Domanskii, A. I., Smolin, Yu. I., Shepelev, Yu. F. & Majling, J. (1982). Sov. Phys. Crystallogr 27, 535–537.
  11. Donnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003–1015.
  12. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Net.
  13. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  14. Ghorbel, A., d’Yvoire, F. & Dorrmieux-Morin, C. (1974). Bull. Soc. Chim. Fr. pp. 1239–1242.
  15. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  16. Imura, H. & Kawahara, A. (1997). Acta Cryst. C53, 1733–1735.
  17. Jaulmes, S., Elfakir, A., Quarton, M., Brunet, F. & Chopin, C. (1997). J. Solid State Chem. 129, 341–345.
  18. Jerbi, H., Hidouri, M. & Ben Amara, M. (2010a). J. Rare Earths, 28, 481–487.
  19. Jerbi, H., Hidouri, M., Glorieux, B., Darriet, J., Garcia, A., Jubera, V. & Ben Amara, M. (2010b). J. Solid State Chem. 183, 1752–1760.
  20. Jerbi, H., Hidouri, M. & Ben Amara, M. (2012). Acta Cryst. E68, i44.
  21. Kim, S. W., Hasegawa, T., Ishigaki, T. K., Uematsu, K., Toda, K. & Sato, M. (2013). ECS Solid State Letters, 2, R49–R51.
  22. McCoy, T. J., Steele, I. M., Keil, K., Leonard, B. F. & Endress, M. (1994). Am. Mineral. 79, 375–380.
  23. Morozov, V. A., Presnyakov, I. A., Belik, A. A., Khasanov, S. S. & Lazoryak, B. I. (1997). Kristallografiya, 42, 825–836.
  24. Orlova, M., Khainakov, S., Michailov, D., Perfler, L., Langes, Ch., Kahlenberg, V. & Orlova, A. (2015). J. Solid State Chem. 221, 224–229.
  25. Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.
  26. Seo, H. J. (2013). J. Ceram. Process. Res. 14(1), 22–25.
  27. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  28. Wallez, G., Colbeau-Justin, C., Le Mercier, T., Quarton, M. & Robert, F. (1998). J. Solid State Chem. 136, 175–180.
  29. Yamakawa, J., Yamada, T. & Kawahara, A. (1994). Acta Cryst. C50, 986–988.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017006363/br2264sup1.cif

e-73-00817-sup1.cif (102KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006363/br2264Isup2.hkl

e-73-00817-Isup2.hkl (187.4KB, hkl)

CCDC reference: 1546558

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES