Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 9;73(Pt 6):821–824. doi: 10.1107/S2056989017006661

Crystal structure of an apremilast ethanol hemisolvate hemihydrate solvatomorph

Yun-Deng Wu a,*, Xiao-Hong Liu a, Jian Xu a, Si-Han Zhang a, Kun Shen a, Ling Sun b, Yong-Mei He a, Yan Ma a, Ai-Hua Zhang a
PMCID: PMC5458300  PMID: 28638635

The title compound represents another solvatomorph of apremilast, containing half of an ethanol and half of a water solvent mol­ecule per formula unit

Keywords: apremilast, PDE4, psoriatic arthritis, crystal structure, hydrogen bonding, solvatomorph

Abstract

The title compound, C22H24N2O7S·0.5C2H5OH·0.5H2O {systematic name: (S)-4-acetamido-2-[1-(3-eth­oxy-4-meth­oxy­phen­yl)-2-(methyl­sulfon­yl)eth­yl]iso­indo­line-1,3-dione ethanol hemisolvate hemihydrate}, is a novel solvatomorph of apremilast (AP), which is an inhibitor of phosphodiesterase 4 (PDE4) and is indicated for the treatment of adult patients with active psoriatic arthritis. The asymmetric unit contains one mol­ecule of AP and disordered mol­ecules of ethanol and water, both with half occupancy. The dihedral angle between the planes of the phenyl ring and the iso­indole ring is 67.9 (2)°. Extensive intra- and inter­molecular hydrogen bonds help to stabilize the mol­ecular conformation and sustain the crystal packing.

Chemical context  

Analogues of thalidomide have been reported to possibly enhance tumor necrosis factor alpha (TNFα) inhibitory activity (Corral et al., 1996; Muller et al., 1996) and phospho­diesterase type 4 (PD4) inhibition (Muller et al., 1998), hence showing potential for the treatment of inflammatory diseases (de Brito et al., 1997). Among these substances are phen­ethyl­sulfones substituted in the α position to the phenyl group with a 1-oxoisoindoline or 1,3-dioxoisoindoline group that can reduce the levels of TNFα in a mammal. Typical embodiments are (S)-2-[1-(3-eth­oxy-4-meth­oxy­phen­yl)-2-(meth­yl­sulfon­yl)eth­yl]-4-acetamido­isoindoline-1,3-dione] with the generic name apremilast (AP), which is an inhibitor of phosphodiesterase 4 (PDE4) and is indicated for the treatment of adult patients with active psoriatic arthritis (Gottlieb et al., 2008; Man et al., 2009; Duplantier et al., 1996). In our previous studies, we reported three solvatomorphs of AP with ethyl acetate, toluene and di­chloro­methane, respectively (Wu et al., 2017). However, these three solvates exhibit toxicity, in particular the solvates of toluene and di­chloro­methane, which clearly limits the possibility of these compounds being developed into drugs. In a continuation of our work, a novel solvatomorph of AP with ethanol and water solvents in the molar ratio 1:0.5:0.5 was prepared and its crystal structure determined. This solvatomorph of AP appears to be suitable for development into a powerful drug, showing much lower toxicity than the solvatomorphs of ethyl acetate, toluene and di­chloro­methane.graphic file with name e-73-00821-scheme1.jpg

Structural commentary  

The title solvatomorph (I) crystallizes in the same space group (P41212) as the other three structurally characterized solvatomorphs of ethyl acetate, toluene and di­chloro­methane (Wu et al., 2017). The structures of the mol­ecular components of (I) are shown in Fig. 1. The asymmetric unit comprises one mol­ecule of AP and one solvent mol­ecule each of ethanol and water, both being disordered about a twofold rotation axis (occupancy for both solvent mol­ecules = 0.5). A space-filling drawing of the structure is given in Fig. 2, emphasizing the positions of the solvent mol­ecules in the crystal structure. The bond lengths and angles in the AP mol­ecule are in normal ranges and very similar to those in the previous three solvatomorphs (Wu et al., 2017). The same applies to the dihedral angle between the phenyl (C13–C20) and iso­indole (C3–C5/C8–C12/N1) rings, which is 67.9 (2)° in the title structure. The conformation of the AP mol­ecule is stabilized by several intra­molecular hydrogen bonds of types N—H⋯O and C—H⋯O (Table 1).

Figure 1.

Figure 1

The structures of the mol­ecular components in (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2.

Figure 2

The unit cell of (I), with the solvent mol­ecules shown in space-filling mode. [See Table 1 for symmetry codes.]

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.86 2.31 2.986 (7) 136
O8—H8A⋯O9 0.92 2.30 3.20 (3) 166
O9—H9B⋯O1 0.89 2.54 2.994 (17) 112
C8—H8⋯O4 0.93 2.30 2.894 (9) 121
C1—H1A⋯O5 0.97 2.45 3.068 (8) 121
C1—H1A⋯O5i 0.97 2.32 3.172 (8) 147
C1—H1B⋯O4ii 0.97 2.56 3.524 (9) 172
C14—H14⋯O5i 0.93 2.49 3.415 (8) 178
C19—H19C⋯O4iii 0.96 2.61 3.567 (10) 173
C20—H20⋯O2ii 0.93 2.46 3.370 (9) 166
C22—H22C⋯O3iv 0.96 2.44 3.088 (9) 124
C22—H22C⋯O9 0.96 2.61 3.36 (2) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

An extensive network of inter­molecular hydrogen-bonding inter­actions exists in the crystal structure (Figs. 1, 2–4; Table 1). The water mol­ecule (O9) is hydrogen-bonded to the AP mol­ecule by C22—H22C⋯O9 and O9—H9B⋯O1 inter­actions and likewise is bonded by an O8—H8A⋯O9 inter­action to the ethanol solvent mol­ecule. As well as these hydrogen bonds involving the solvent mol­ecules, there are inter­actions between AP mol­ecules. Two AP mol­ecules are arranged into a dimer with an Inline graphic(7) motif (Fig. 3) by C—H⋯O hydrogen bonds, and a zipper-like chain including Inline graphic(18) motifs (Fig. 4) is formed parallel to the a axis by additional C—H··O hydrogen bonds.

Figure 3.

Figure 3

(AP)2 dimers with an Inline graphic(7) motif formed by C—H⋯O hydrogen bonds. [See Table 1 for symmetry code.]

Figure 4.

Figure 4

C1—H1B⋯O4ii and C20—H20⋯O2ii hydrogen bonds incorporating Inline graphic(18) motifs expand the structure parallel to the a-axis direction. [See Table 1 for symmetry codes.]

Synthesis and crystallization  

AP was prepared according to a literature protocol (Muller et al., 2006, 2008a ,b ). A 100 ml round-bottomed flask equipped with a magnetic stirring bar was charged with a solution of (S)-1-(3-eth­oxy-4-meth­oxy­phen­yl)-2-methyl­sulfonyl­ethan­amine N-acetyl leucine salt (5.0 g, 11.2 mmol, 1.0 eq) and 3-acetamido­phthalic anhydride (2.42 g, 11.8 mmol, 1.05 eq) to which glacial acetic acid (50 ml) was added. The mixture was refluxed for 16 h and then cooled to room temperature. The solvent was removed in vacuo, and the residue was dissolved in ethyl acetate. The resulting solution was washed with water (2 × 50 ml), saturated aqueous sodium bicarbonate (2 × 50 ml), brine (2 × 50 ml), and dried over anhydrous sodium sulfate. The solvents were evaporated in vacuo, and the obtained AP recrystallized from an ethanol/acetone mixture (2:1, v/v). Single crystals of (I) were obtained by slow evaporation of an AP-saturated solution from an N,N-di­methyl­formamide/ethanol/water mixture (1:10:2, v/v/v), at room temperature over 90 days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bound to nitro­gen or carbon atoms were placed in calculated positions (N—H = 0.87, C—H = 0.93–0.98 Å) and constrained to ride on their carrier atoms [U iso(H) = 1.2U eq(C,N) or 1.5U eq(Cmeth­yl)]. Hydrogen atoms bound to oxygen atoms were deduced from difference-Fourier maps and their positions relative to donor and possible acceptor atoms. They were refined with U iso(H) = 1.5U eq(O). The solvent ethanol and water mol­ecules are disordered about a twofold rotation axis and were refined with an occupancy of 0.5. To get reasonable shape and displacement parameters for both mol­ecules, they were treated with DFIX, RIGU and ISOR restraints in SHELXL2014 (Sheldrick, 2015b ).

Table 2. Experimental details.

Crystal data
Chemical formula C22H24N2O7S·0.5C2H6O·0.5H2O
M r 492.53
Crystal system, space group Tetragonal, P41212
Temperature (K) 298
a, c (Å) 12.9905 (18), 29.942 (6)
V3) 5052.8 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.3 × 0.3 × 0.2
 
Data collection
Diffractometer Bruker P4
No. of measured, independent and observed [I > 2σ(I)] reflections 9575, 4390, 2811
R int 0.079
(sin θ/λ)max−1) 0.592
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.183, 1.05
No. of reflections 4390
No. of parameters 329
No. of restraints 30
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.30
Absolute structure Flack x determined using 833 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.15 (8)

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017006661/wm5386sup1.cif

e-73-00821-sup1.cif (322.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006661/wm5386Isup2.hkl

e-73-00821-Isup2.hkl (350.1KB, hkl)

CCDC reference: 1504229

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C22H24N2O7S·0.5C2H6O·0.5H2O Dx = 1.295 Mg m3
Mr = 492.53 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 2016 reflections
a = 12.9905 (18) Å θ = 2–20°
c = 29.942 (6) Å µ = 0.18 mm1
V = 5052.8 (17) Å3 T = 298 K
Z = 8 Block, colourless
F(000) = 2080 0.3 × 0.3 × 0.2 mm

Data collection

Bruker P4 diffractometer θmax = 24.9°, θmin = 1.7°
ω scans h = 0→15
9575 measured reflections k = 0→15
4390 independent reflections l = −35→35
2811 reflections with I > 2σ(I) 1 standard reflections every 60 reflections
Rint = 0.079 intensity decay: 1%

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.066 w = 1/[σ2(Fo2) + (0.0992P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.183 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.62 e Å3
4390 reflections Δρmin = −0.30 e Å3
329 parameters Absolute structure: Flack x determined using 833 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
30 restraints Absolute structure parameter: 0.15 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.89768 (15) 0.65667 (14) 0.46183 (6) 0.0537 (5)
O3 0.9782 (4) 0.7422 (4) 0.33313 (15) 0.0565 (12)
O6 1.2492 (4) 1.0317 (4) 0.51740 (15) 0.0650 (15)
O5 0.8948 (4) 0.9600 (4) 0.44709 (16) 0.0618 (14)
O1 0.8059 (4) 0.7045 (4) 0.44502 (17) 0.0690 (14)
O2 0.9386 (4) 0.5729 (4) 0.43657 (18) 0.0728 (16)
O4 0.6990 (5) 0.8281 (4) 0.21258 (18) 0.0774 (16)
O7 1.3846 (4) 1.0504 (4) 0.45344 (16) 0.0660 (14)
N1 0.9578 (4) 0.8403 (4) 0.39684 (16) 0.0425 (12)
N2 0.8221 (4) 0.8054 (5) 0.26522 (17) 0.0544 (15)
H2 0.8764 0.7699 0.2710 0.065*
C3 0.9329 (5) 0.8089 (5) 0.3537 (2) 0.0418 (14)
C2 1.0379 (5) 0.7928 (5) 0.4242 (2) 0.0441 (15)
H2A 1.0637 0.7333 0.4075 0.053*
C12 0.8912 (5) 0.9175 (5) 0.4107 (2) 0.0487 (16)
C11 0.8173 (5) 0.9376 (5) 0.3739 (2) 0.0452 (15)
C13 1.1290 (5) 0.8638 (5) 0.4319 (2) 0.0455 (16)
C14 1.1440 (5) 0.9163 (5) 0.4720 (2) 0.0512 (17)
H14 1.0952 0.9100 0.4945 0.061*
C4 0.8437 (5) 0.8713 (5) 0.3392 (2) 0.0451 (16)
C8 0.7059 (5) 0.9390 (5) 0.2964 (3) 0.0572 (18)
H8 0.6670 0.9408 0.2703 0.069*
C5 0.7893 (5) 0.8709 (5) 0.2996 (2) 0.0477 (16)
C1 0.9941 (5) 0.7515 (5) 0.4684 (2) 0.0467 (15)
H1A 0.9657 0.8086 0.4853 0.056*
H1B 1.0501 0.7225 0.4858 0.056*
C20 1.2874 (5) 0.9370 (6) 0.4048 (2) 0.0575 (18)
H20 1.3353 0.9435 0.3819 0.069*
C6 0.7810 (7) 0.7888 (6) 0.2243 (2) 0.0599 (19)
C18 1.3020 (5) 0.9885 (5) 0.4443 (3) 0.0533 (18)
C15 1.2291 (5) 0.9771 (5) 0.4791 (2) 0.0504 (17)
C21 1.2011 (6) 0.8752 (5) 0.3988 (2) 0.0571 (19)
H21 1.1921 0.8409 0.3718 0.069*
C10 0.7368 (5) 1.0042 (6) 0.3713 (3) 0.0585 (18)
H10 0.7199 1.0481 0.3947 0.070*
C16 1.1741 (5) 1.0248 (6) 0.5523 (2) 0.065 (2)
H16A 1.1668 0.9539 0.5619 0.078*
H16B 1.1078 1.0488 0.5417 0.078*
C9 0.6809 (6) 1.0032 (6) 0.3313 (3) 0.067 (2)
H9 0.6249 1.0473 0.3282 0.081*
C7 0.8411 (6) 0.7188 (7) 0.1951 (2) 0.076 (2)
H7A 0.9067 0.7050 0.2086 0.114*
H7B 0.8513 0.7508 0.1665 0.114*
H7C 0.8043 0.6553 0.1912 0.114*
C22 0.8740 (7) 0.6177 (7) 0.5166 (2) 0.083 (3)
H22A 0.8596 0.6769 0.5347 0.124*
H22B 0.9334 0.5827 0.5281 0.124*
H22C 0.8159 0.5720 0.5171 0.124*
C19 1.4549 (6) 1.0668 (8) 0.4174 (3) 0.086 (3)
H19A 1.4204 1.1022 0.3936 0.128*
H19B 1.4798 1.0017 0.4068 0.128*
H19C 1.5118 1.1076 0.4277 0.128*
C17 1.2096 (8) 1.0901 (9) 0.5904 (3) 0.104 (4)
H17A 1.2163 1.1602 0.5807 0.157*
H17B 1.2750 1.0656 0.6009 0.157*
H17C 1.1602 1.0866 0.6142 0.157*
O8 0.4584 (16) 0.3998 (17) 0.4571 (7) 0.177 (8) 0.5
H8A 0.5022 0.4544 0.4613 0.265* 0.5
C23 0.3896 (19) 0.3736 (17) 0.4889 (8) 0.108 (7) 0.5
H23A 0.3470 0.4341 0.4933 0.130* 0.5
H23B 0.4291 0.3653 0.5161 0.130* 0.5
C24 0.319 (3) 0.287 (3) 0.4878 (12) 0.164 (13) 0.5
H24A 0.3262 0.2506 0.4601 0.247* 0.5
H24B 0.2492 0.3117 0.4904 0.247* 0.5
H24C 0.3334 0.2412 0.5122 0.247* 0.5
O9 0.6400 (13) 0.5606 (12) 0.4753 (9) 0.192 (11) 0.5
H9A 0.6367 0.6301 0.4706 0.289* 0.5
H9B 0.7011 0.5451 0.4635 0.289* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0592 (11) 0.0558 (11) 0.0461 (9) −0.0131 (9) −0.0010 (8) 0.0016 (8)
O3 0.057 (3) 0.067 (3) 0.045 (3) 0.013 (2) 0.002 (2) −0.015 (2)
O6 0.060 (3) 0.082 (4) 0.053 (3) −0.023 (3) 0.007 (2) −0.021 (3)
O5 0.081 (3) 0.062 (3) 0.043 (3) 0.003 (3) 0.006 (2) −0.014 (2)
O1 0.058 (3) 0.083 (4) 0.066 (3) −0.008 (3) −0.010 (3) 0.005 (3)
O2 0.085 (4) 0.058 (3) 0.076 (4) −0.012 (3) 0.002 (3) −0.017 (3)
O4 0.079 (4) 0.092 (4) 0.062 (3) 0.015 (3) −0.021 (3) −0.006 (3)
O7 0.054 (3) 0.080 (4) 0.064 (3) −0.019 (3) 0.007 (3) −0.004 (3)
N1 0.049 (3) 0.043 (3) 0.036 (3) 0.000 (3) 0.004 (2) −0.007 (2)
N2 0.057 (4) 0.064 (4) 0.043 (3) 0.015 (3) −0.006 (3) −0.008 (3)
C3 0.042 (3) 0.046 (4) 0.037 (3) −0.003 (3) 0.009 (3) −0.002 (3)
C2 0.049 (4) 0.048 (4) 0.035 (3) 0.000 (3) 0.000 (3) −0.005 (3)
C12 0.059 (4) 0.045 (4) 0.041 (4) −0.010 (3) 0.008 (3) −0.003 (3)
C11 0.048 (4) 0.043 (4) 0.044 (4) −0.002 (3) 0.008 (3) −0.006 (3)
C13 0.047 (4) 0.045 (4) 0.044 (4) 0.000 (3) 0.003 (3) 0.000 (3)
C14 0.051 (4) 0.052 (4) 0.051 (4) −0.008 (3) 0.013 (3) −0.004 (3)
C4 0.051 (4) 0.042 (4) 0.042 (4) −0.006 (3) 0.011 (3) −0.001 (3)
C8 0.054 (4) 0.054 (4) 0.063 (5) 0.003 (4) −0.005 (4) −0.003 (4)
C5 0.050 (4) 0.046 (4) 0.048 (4) −0.001 (3) 0.003 (3) 0.001 (3)
C1 0.049 (4) 0.050 (4) 0.040 (3) −0.007 (3) −0.001 (3) −0.004 (3)
C20 0.051 (4) 0.069 (5) 0.053 (4) −0.007 (4) 0.013 (4) 0.006 (4)
C6 0.070 (5) 0.068 (5) 0.042 (4) −0.008 (4) −0.001 (4) 0.002 (4)
C18 0.046 (4) 0.055 (4) 0.059 (4) −0.005 (4) 0.002 (3) 0.003 (3)
C15 0.041 (4) 0.055 (4) 0.055 (4) −0.003 (3) −0.001 (3) −0.003 (3)
C21 0.063 (5) 0.065 (5) 0.043 (4) −0.006 (4) 0.005 (3) −0.006 (3)
C10 0.059 (5) 0.053 (4) 0.063 (5) 0.010 (4) 0.009 (4) −0.010 (4)
C16 0.044 (4) 0.090 (6) 0.062 (5) −0.006 (4) 0.004 (3) −0.021 (4)
C9 0.053 (5) 0.059 (5) 0.090 (6) 0.011 (4) 0.007 (4) −0.001 (4)
C7 0.079 (5) 0.098 (6) 0.051 (4) 0.024 (5) −0.009 (4) −0.017 (4)
C22 0.102 (7) 0.096 (7) 0.050 (5) −0.029 (5) 0.010 (4) 0.017 (4)
C19 0.062 (5) 0.123 (8) 0.072 (6) −0.027 (5) 0.004 (4) 0.023 (5)
C17 0.086 (7) 0.148 (9) 0.079 (7) −0.024 (7) 0.014 (5) −0.052 (6)
O8 0.161 (12) 0.190 (14) 0.180 (14) 0.097 (10) −0.023 (11) 0.023 (12)
C23 0.110 (11) 0.086 (10) 0.129 (13) 0.061 (8) −0.053 (9) 0.002 (10)
C24 0.179 (19) 0.150 (17) 0.16 (2) 0.014 (15) −0.043 (16) −0.010 (15)
O9 0.126 (14) 0.125 (14) 0.33 (3) −0.030 (11) 0.032 (16) 0.084 (16)

Geometric parameters (Å, º)

S1—O1 1.436 (5) C20—H20 0.9300
S1—O2 1.428 (6) C20—C18 1.372 (10)
S1—C1 1.768 (6) C20—C21 1.390 (10)
S1—C22 1.744 (7) C6—C7 1.485 (10)
O3—C3 1.214 (7) C18—C15 1.417 (10)
O6—C15 1.373 (8) C21—H21 0.9300
O6—C16 1.433 (8) C10—H10 0.9300
O5—C12 1.221 (7) C10—C9 1.400 (11)
O4—C6 1.232 (9) C16—H16A 0.9700
O7—C18 1.368 (8) C16—H16B 0.9700
O7—C19 1.430 (9) C16—C17 1.495 (11)
N1—C3 1.394 (8) C9—H9 0.9300
N1—C2 1.461 (8) C7—H7A 0.9601
N1—C12 1.388 (8) C7—H7B 0.9599
N2—H2 0.8600 C7—H7C 0.9602
N2—C5 1.401 (8) C22—H22A 0.9600
N2—C6 1.353 (9) C22—H22B 0.9600
C3—C4 1.478 (9) C22—H22C 0.9600
C2—H2A 0.9800 C19—H19A 0.9600
C2—C13 1.518 (9) C19—H19B 0.9600
C2—C1 1.539 (8) C19—H19C 0.9600
C12—C11 1.485 (9) C17—H17A 0.9600
C11—C4 1.392 (8) C17—H17B 0.9600
C11—C10 1.360 (9) C17—H17C 0.9600
C13—C14 1.394 (9) O8—H8A 0.9182
C13—C21 1.372 (9) O8—C23 1.35 (2)
C14—H14 0.9300 C23—H23A 0.9700
C14—C15 1.375 (9) C23—H23B 0.9700
C4—C5 1.381 (9) C23—C24 1.46 (2)
C8—H8 0.9300 C24—H24A 0.9600
C8—C5 1.401 (9) C24—H24B 0.9600
C8—C9 1.377 (10) C24—H24C 0.9600
C1—H1A 0.9700 O9—H9A 0.9150
C1—H1B 0.9700 O9—H9B 0.8918
O1—S1—C1 109.0 (3) C20—C18—C15 119.4 (6)
O1—S1—C22 108.0 (4) O6—C15—C14 125.3 (6)
O2—S1—O1 117.0 (3) O6—C15—C18 115.7 (6)
O2—S1—C1 109.1 (3) C14—C15—C18 118.9 (6)
O2—S1—C22 110.0 (4) C13—C21—C20 121.3 (6)
C22—S1—C1 102.8 (4) C13—C21—H21 119.3
C15—O6—C16 116.6 (5) C20—C21—H21 119.3
C18—O7—C19 115.9 (6) C11—C10—H10 121.9
C3—N1—C2 124.2 (5) C11—C10—C9 116.3 (6)
C12—N1—C3 110.2 (5) C9—C10—H10 121.9
C12—N1—C2 125.5 (5) O6—C16—H16A 110.1
C5—N2—H2 115.3 O6—C16—H16B 110.1
C6—N2—H2 114.8 O6—C16—C17 108.2 (6)
C6—N2—C5 129.9 (6) H16A—C16—H16B 108.4
O3—C3—N1 124.4 (6) C17—C16—H16A 110.1
O3—C3—C4 128.5 (6) C17—C16—H16B 110.1
N1—C3—C4 107.0 (5) C8—C9—C10 122.2 (7)
N1—C2—H2A 106.9 C8—C9—H9 118.9
N1—C2—C13 112.7 (5) C10—C9—H9 118.9
N1—C2—C1 111.5 (5) C6—C7—H7A 109.4
C13—C2—H2A 106.9 C6—C7—H7B 109.4
C13—C2—C1 111.6 (5) C6—C7—H7C 109.6
C1—C2—H2A 106.9 H7A—C7—H7B 109.5
O5—C12—N1 124.8 (6) H7A—C7—H7C 109.5
O5—C12—C11 127.4 (6) H7B—C7—H7C 109.4
N1—C12—C11 107.9 (5) S1—C22—H22A 109.5
C4—C11—C12 106.6 (6) S1—C22—H22B 109.5
C10—C11—C12 130.7 (6) S1—C22—H22C 109.5
C10—C11—C4 122.7 (6) H22A—C22—H22B 109.5
C14—C13—C2 122.5 (5) H22A—C22—H22C 109.5
C21—C13—C2 119.2 (6) H22B—C22—H22C 109.5
C21—C13—C14 118.3 (6) O7—C19—H19A 109.5
C13—C14—H14 119.1 O7—C19—H19B 109.5
C15—C14—C13 121.8 (6) O7—C19—H19C 109.5
C15—C14—H14 119.1 H19A—C19—H19B 109.5
C11—C4—C3 108.3 (6) H19A—C19—H19C 109.5
C5—C4—C3 130.6 (6) H19B—C19—H19C 109.5
C5—C4—C11 121.1 (6) C16—C17—H17A 109.5
C5—C8—H8 119.6 C16—C17—H17B 109.5
C9—C8—H8 119.6 C16—C17—H17C 109.5
C9—C8—C5 120.8 (7) H17A—C17—H17B 109.5
N2—C5—C8 124.6 (6) H17A—C17—H17C 109.5
C4—C5—N2 118.5 (6) H17B—C17—H17C 109.5
C4—C5—C8 116.9 (6) C23—O8—H8A 120.7
S1—C1—H1A 108.7 O8—C23—H23A 105.6
S1—C1—H1B 108.7 O8—C23—H23B 105.6
C2—C1—S1 114.1 (4) O8—C23—C24 127 (3)
C2—C1—H1A 108.7 H23A—C23—H23B 106.1
C2—C1—H1B 108.7 C24—C23—H23A 105.6
H1A—C1—H1B 107.6 C24—C23—H23B 105.6
C18—C20—H20 119.8 C23—C24—H24A 109.5
C18—C20—C21 120.3 (6) C23—C24—H24B 109.5
C21—C20—H20 119.8 C23—C24—H24C 109.5
O4—C6—N2 122.3 (7) H24A—C24—H24B 109.5
O4—C6—C7 122.7 (7) H24A—C24—H24C 109.5
N2—C6—C7 115.1 (7) H24B—C24—H24C 109.5
O7—C18—C20 124.7 (6) H9A—O9—H9B 101.7
O7—C18—C15 116.0 (6)
O3—C3—C4—C11 179.6 (6) C12—C11—C10—C9 −179.1 (7)
O3—C3—C4—C5 −0.2 (11) C11—C4—C5—N2 177.4 (6)
O5—C12—C11—C4 179.6 (6) C11—C4—C5—C8 −1.0 (10)
O5—C12—C11—C10 −1.3 (12) C11—C10—C9—C8 −0.4 (11)
O1—S1—C1—C2 −71.1 (6) C13—C2—C1—S1 −173.0 (4)
O2—S1—C1—C2 57.7 (6) C13—C14—C15—O6 179.5 (7)
O7—C18—C15—O6 1.6 (9) C13—C14—C15—C18 1.6 (10)
O7—C18—C15—C14 179.7 (6) C14—C13—C21—C20 0.2 (10)
N1—C3—C4—C11 −0.2 (7) C4—C11—C10—C9 −0.2 (10)
N1—C3—C4—C5 180.0 (6) C5—N2—C6—O4 −5.0 (12)
N1—C2—C13—C14 102.5 (7) C5—N2—C6—C7 175.8 (7)
N1—C2—C13—C21 −79.2 (7) C5—C8—C9—C10 0.3 (12)
N1—C2—C1—S1 60.1 (6) C1—C2—C13—C14 −23.8 (9)
N1—C12—C11—C4 −0.3 (7) C1—C2—C13—C21 154.5 (6)
N1—C12—C11—C10 178.8 (7) C20—C18—C15—O6 −179.6 (6)
C3—N1—C2—C13 111.8 (6) C20—C18—C15—C14 −1.5 (10)
C3—N1—C2—C1 −121.8 (6) C6—N2—C5—C4 177.9 (7)
C3—N1—C12—O5 −179.8 (6) C6—N2—C5—C8 −3.9 (12)
C3—N1—C12—C11 0.1 (7) C18—C20—C21—C13 −0.1 (11)
C3—C4—C5—N2 −2.9 (11) C15—O6—C16—C17 −179.4 (7)
C3—C4—C5—C8 178.7 (6) C21—C13—C14—C15 −1.0 (10)
C2—N1—C3—O3 −3.8 (9) C21—C20—C18—O7 179.5 (7)
C2—N1—C3—C4 176.1 (5) C21—C20—C18—C15 0.8 (11)
C2—N1—C12—O5 4.3 (10) C10—C11—C4—C3 −178.9 (6)
C2—N1—C12—C11 −175.8 (5) C10—C11—C4—C5 0.9 (10)
C2—C13—C14—C15 177.3 (6) C16—O6—C15—C14 −0.5 (10)
C2—C13—C21—C20 −178.2 (6) C16—O6—C15—C18 177.4 (6)
C12—N1—C3—O3 −179.8 (6) C9—C8—C5—N2 −177.9 (7)
C12—N1—C3—C4 0.1 (6) C9—C8—C5—C4 0.4 (10)
C12—N1—C2—C13 −72.8 (7) C22—S1—C1—C2 174.5 (5)
C12—N1—C2—C1 53.6 (8) C19—O7—C18—C20 4.8 (10)
C12—C11—C4—C3 0.3 (7) C19—O7—C18—C15 −176.4 (7)
C12—C11—C4—C5 −179.9 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3 0.86 2.31 2.986 (7) 136
O8—H8A···O9 0.92 2.30 3.20 (3) 166
O9—H9B···O1 0.89 2.54 2.994 (17) 112
C8—H8···O4 0.93 2.30 2.894 (9) 121
C1—H1A···O5 0.97 2.45 3.068 (8) 121
C1—H1A···O5i 0.97 2.32 3.172 (8) 147
C1—H1B···O4ii 0.97 2.56 3.524 (9) 172
C14—H14···O5i 0.93 2.49 3.415 (8) 178
C19—H19C···O4iii 0.96 2.61 3.567 (10) 173
C20—H20···O2ii 0.93 2.46 3.370 (9) 166
C22—H22C···O3iv 0.96 2.44 3.088 (9) 124
C22—H22C···O9 0.96 2.61 3.36 (2) 136

Symmetry codes: (i) y, x, −z+1; (ii) x+1/2, −y+3/2, −z+3/4; (iii) −y+5/2, x+1/2, z+1/4; (iv) −y+3/2, x−1/2, z+1/4.

References

  1. Brito, F. de, Souness, J. E. & Warne, P. J. (1997). Emerg. Drugs, 2, 249–268.
  2. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Corral, L. G., Muller, G. W., Moreira, A. L., Chen, Y., Wu, M., Stirling, D. I. & Kaplan, G. (1996). Mol. Med. 2, 506–515. [PMC free article] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Duplantier, A. J., Biggers, M. S., Chambers, R. J., Cheng, J. B., Cooper, K., Damon, D. B., Eggler, J. F., Kraus, K. G., Marfat, A., Masamune, H., Pillar, J. S., Shirley, J. T., Umland, J. P. & Watson, J. W. (1996). J. Med. Chem. 39, 120–125. [DOI] [PubMed]
  6. Gottlieb, A. B., Strober, B., Krueger, J. G., Rohane, P., Zeldis, J. B., Hu, C. C. & Kipnis, C. (2008). Curr. Med. Res. Opin. 24, 1529–1538. [DOI] [PubMed]
  7. Man, H. W., Schafer, P., Wong, L. M., Patterson, R. T., Corral, L. G., Raymon, H., Blease, K., Leisten, J., Shirley, M. A., Tang, Y., Babusis, D. M., Chen, R., Stirling, D. & Muller, G. W. (2009). J. Med. Chem. 52, 1522–1524. [DOI] [PubMed]
  8. Muller, G. W., Corral, L. G., Shire, M. G., Wang, H., Moreira, A. L., Kaplan, G. & Stirling, D. I. (1996). J. Med. Chem. 39, 3238–3240. [DOI] [PubMed]
  9. Muller, G. W., Schafer, P. H., Man, H. W. & Ge, C. (2008a). US Patent No. 7427638.
  10. Muller, G. W., Schafer, P. H., Man, H.-W., Ge, C. & Xu, J. (2008b). WO Patent No. 2009120167.
  11. Muller, G. W., Schafer, P. & Rohane, P. (2006). US Patent No. 2006183787.
  12. Muller, G. W., Shire, M. G., Wong, L. M., Corral, L. G., Patterson, R. T., Chen, Y. & Stirling, D. I. (1998). Bioorg. Med. Chem. Lett. 8, 2669–2674. [DOI] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Wu, Y.-D., Zhang, X.-L., Liu, X.-H., Xu, J., Zhang, M., Shen, K., Zhang, S.-H., He, Y.-M., Ma, Y. & Zhang, A.-H. (2017). Acta Cryst. C73, 305–313. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017006661/wm5386sup1.cif

e-73-00821-sup1.cif (322.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006661/wm5386Isup2.hkl

e-73-00821-Isup2.hkl (350.1KB, hkl)

CCDC reference: 1504229

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES