Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 9;73(Pt 6):825–828. doi: 10.1107/S2056989017006764

Crystal structure and electrochemical properties of [Ni(bztmpen)(CH3CN)](BF4)2 {bztmpen is N-benzyl-N,N′,N′-tris­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine}

Lin Chen a, Gan Ren a, Yakun Guo a, Ge Sang b,*
PMCID: PMC5458301  PMID: 28638636

The structure and electrochemical properties of a nickel tri­pyridine–di­amine complex are reported. The complex has two redox couples at −1.50 and −1.80 V (versus F c +/0) based on nickel.

Keywords: crystal structure, nickel, poly-pyridine-di­amine, electro-catalyst

Abstract

The mononuclear nickel title complex (acetonitrile-κN){N-benzyl-N,N′,N′-tris­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine}­nickel(II) bis­(tetra­fluor­ido­borate), [Ni(C30H35N5)(CH3CN)](BF4)2, was prepared from the reaction of Ni(BF4)2·6H2O with N-benzyl-N,N′,N′-tris­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine (bztmpen) in aceto­nitrile at room temperature. With an open site occupied by the aceto­nitrile mol­ecule, the nickel(II) atom is chelated by five N-atom sites from the ligand and one N atom from the ligand, showing an overall octa­hedral coordination environment. Compared with analogues where the 6–methyl substituent is absent, the bond length around the Ni2+ cation are evidently longer. Upon reductive dissociation of the acetro­nitrile mol­ecule, the title complex has an open site for a catalytic reaction. The title complex has two redox couples at −1.50 and −1.80 V (versus F c +/0) based on nickel. The F atoms of the two BF4 counter-anions are split into two groups and the occupancy ratios refined to 0.611 (18):0.389 (18) and 0.71 (2):0.29 (2).

Chemical context  

Nickel complexes with polypyridine–amine ligands are of great inter­est in catalytic reactions. For example, nickel complexes containing N5-penta­dentate ligands with different amine-to-pyridine ratios have been studied for electrochemical H2 production in water at pH = 7 and the complex with a di­amine–tri­pyridine ligand displays a TON (turn-over number) of up to 308000 over 60 h electrolysis at −1.25 V vs the standard hydrogen electrode (SHE), with a Faradaic efficiency of 91% (Zhang et al., 2014). The nickel-based complex Ni–PY5 {PY5 = 2,6-bis­[1,1-bis­(2-pyrid­yl)eth­yl]pyridine} has been found to act as an electro-catalyst for oxidizing water to di­oxy­gen in aqueous phosphate buffer solutions (Wang et al., 2016). The rate of water oxidation catalyzed by the Ni–PY5 complex is enhanced remarkably by the proton-acceptor base HPO4 2−, with a rate constant of 1820 M−1 s−1. A stable configuration is important for the stability of a catalyst. In the title complex, the Ni2+ cation is chelated by five N-atom sites, so the configuration is stable. With the reductive dissociation of aceto­nitrile, the title complex would give an open site for a catalytic reaction. Herein, we describe the crystal structure and electrochemical properties of the title complex.graphic file with name e-73-00825-scheme1.jpg

Structural commentary  

In the title complex (Fig. 1), the coordination sphere of the nickel(II) atom adopts a normal octa­hedral geometry. The Ni2+ cation lies almost in the equatorial plane. One pyridine nitro­gen atom (N1) and two amino nitro­gen atoms (N2, N3) as well as the nitrogen atom of an acetonitrile ligand (N4) form the equatorial plane. The latter can easily be dissociated from nickel. The axial positions are occupied by two pyridine nitro­gen atoms (N5, N6). The Ni—N bond lengths for the two axial pyridine–nitro­gen atoms [Ni—N5 = 2.209 (3) and Ni—N6 = 2.187 (3) Å] are significantly longer than that for the other four nitro­gen atoms [Ni—N1 = 2.151 (3), Ni—N2 = 2.082 (3), Ni—N3 = 2.188 (2), Ni—N4 = 2.061 (3) Å]. The presence of the 6-methyl substit­uent hinders the approach of the pyridine group to the Ni2+ core. A a result of the steric hindrance from the methyl substituent, the three atoms N5, Ni1 and N6 are not completely linear in the axial direction, with a contact angle of 170.89 (9)°. Two intra­molecular C—H⋯N contacts occur (Table 1).

Figure 1.

Figure 1

The structures of the molecular components in the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯N4 0.96 2.94 3.251 (6) 100
C3—H3A⋯F8i 0.93 2.57 3.457 (14) 159
C8—H8B⋯F7 0.97 2.57 3.371 (13) 140
C8—H8B⋯F5A 0.97 2.42 3.36 (4) 163
C9—H9B⋯F4ii 0.97 2.61 3.291 (16) 128
C10—H10A⋯N6 0.97 2.67 3.273 (5) 1213
C12—H12A⋯F8A iii 0.93 2.53 3.35 (2) 146
C17—H17B⋯N1 0.96 2.64 3.071 (7) 108
C21—H21A⋯F3ii 0.93 2.62 3.122 (10) 114
C23—H23B⋯F6A iii 0.97 2.33 3.241 (16) 157
C24—H24A⋯F7 0.97 2.53 3.443 (15) 156
C24—H24B⋯F3iv 0.97 2.32 3.179 (13) 148
C24—H24B⋯F1A iv 0.97 2.54 3.43 (3) 153
C28—H28A⋯F4iii 0.93 2.59 3.345 (19) 138
C30—H30A⋯F4iii 0.96 2.60 3.390 (17) 140
C30—H30A⋯F4A iii 0.96 2.50 3.26 (3) 136
C30—H30B⋯N4 0.96 2.85 3.126 (6) 98
C32—H32A⋯F6iii 0.96 2.40 3.196 (14) 140
C32—H32A⋯F7A iii 0.96 2.33 3.19 (3) 150
C32—H32B⋯F3v 0.96 2.55 3.145 (15) 121
C32—H32B⋯F3A v 0.96 2.32 3.11 (4) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Electrochemical commentary  

Generally, the reduction of a metal complex is accompanied by the dissociation of the ligand, or the weakest ligand if more than one ligand is present, which could induce the appearance of an open site for a catalytic reaction (Knoll et al., 2014; Johnson et al., 2016). The introduction of o-methyl in the title complex is in favor of the dissociation of aceto­nitrile. On the cathodic scan under Ar, the title complex features one reversible couple at −1.50 V and one half-reversible couple at −1.80 V (vs F c +/0) based on nickel, assigned to NiII/I and NiI/0 respectively (Fig. 2). The third couple at −2.15 V could be assigned to the reduction of pyridine. The free ligand bztmpen itself is electrochemically silent in the potential range (Fig. 3). The coordination with nickel leads to a positive shift of the reduction on pyridine. The good reversibility of the couple indicates a negligible change in the configuration of the title complex after one electron reduction. The second reduction might result in a change of the configuration. Analogues in the absence of o-methyl show only one redox couple more negative than −1.50 V (vs Fc+/0; Zhang et al., 2014). The positive shift of the first redox couple for the title complex results from the weaker electron-donating ability of the pyridine ligands, which are farther from the nickel core. The electrochemical properties of these analogues are consistent with the differences shown in the structure.

Figure 2.

Figure 2

Cyclic voltammograms of the title complex (1 mM) with a varied scan range under Ar in CH3CN with 0.1 M nBu4NBF4 as the supporting electrolyte.

Figure 3.

Figure 3

Cyclic voltammograms of ligand bztmpen (1 mM) under Ar in CH3CN with 0.1 M nBu4NBF4 as the supporting electrolyte.

Supra­molecular features  

In the title crystal, no classical hydrogen bonds have been found. Weak C—H⋯F contacts (Table 1) link the components into a three-dimensional network. The crytal paacking is illustrated in Fig. 4.

Figure 4.

Figure 4

Packing plot of the mol­ecular components in the title compound viewed down the a axis. C—H⋯F weak bonds are shown as dotted lines.

Database survey  

There are three published nickel complexes with poly-pyridine groups (Shi et al., 2015; Zhang et al., 2014; Wang et al., 2016), but to the best of our knowledge, the title compound has not been reported previously. The nickel complex with N,N,N′,N′-tetra­(2-pyridyl­meth­yl)ethyl­enedi­amine (tpen) adopts a normal octa­hedral geometry (Shi et al., 2015). In the Ni2+(tpen) complex, the Ni—N1, Ni—N2, Ni—N3, Ni—N4, Ni—N5 and Ni—N6 bonds [2.106 (3), 2.099 (3), 2.114 (3), 2.086 (3), 2.094 (3) and 2.120 (2) Å, respectively] are shorter than the corresponding bond lengths in the title complex. Among the earliest reports, the nickel complex with N-benzyl-N,N′,N′-tris­(2-pyridyl­meth­yl)ethyl­enedi­amine (bztpen) ligand is most similar to the title complex (Zhang et al., 2014). Under reductive conditions, Ni2+(bztpen) displays a high activity on electro-catalytic water reduction. The title complex possesses a higher steric hindrance than Ni2+(bztpen), which affects evidently the bond lengths, especially in the axial direction. The bonds lengths in the title complex [Ni—N5 = 2.209 (3), Ni—N6 = 2.187 (3) Å] are longer than those in Ni2+(bztpen) [Ni—N5 = 2.149 (3), Ni—N6 = 2.096 (3) Å]. The nickel complex with a PY5 ligand {PY5 = 2,6-bis­[1,1-bis­(2-pyrid­yl)eth­yl]pyridine} displays a similar configuration to the title complex, but the labile ligand is at the axial site (Wang et al., 2016). Ni2+(PY5) has been found to act as an electro-catalyst for oxidizing water to di­oxy­gen in an aqueous phosphate buffer solution.

Synthesis and crystallization  

The tri­pyridine-di­amine ligand N-benzyl-N,N′,N′-tris­[(6-methyl­pyridin-2-yl)meth­yl]ethane-1,2-di­amine (bztmpen) was prepared according to literature procedures (Zhang et al., 2013), 1H NMR (CDCl3, 600 MHz): δ 7.44 (m, 4H), 7.25 (m, 6H), 6.96 (m, 4H), 3.74 (s, 6H), 3.58 (s, 2H), 2.75 (d, 4H), 2.49 (s, 9H). ESI–MS: calculated for [M + H]+: m/z 466.63; found: 466.27.

Preparation of [Ni(bztmpen)(CH3CN)](BF4)2. Compound Ni(BF4)2·6H2O (0.16 g, 0.5 mmol) was added to an aceto­nitrile solution (5 mL) of bztmpen (0.2 g, 0.5 mmol). The mixture was stirred at room temperature for 6 h. The purple solution was then transferred to tubes, which were placed in a flask containing ether. Block-shaped blue crystals were obtained in a yield of 85% (0.25 g). Analysis calculated for C32H38B2F8N6Ni (%): C, 50.01; H, 5.18; N, 11.37; found: 50.01; H, 5.19; N, 11.36; MS (TOF–ES): m/z = 282.6341 {[M−2BF4 ]/2}+, 599.3015 [M – 2BF4 + Cl]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The F atoms of the two BF4 counter-anions were split into two groups and the occupancies refined to 0.611 (18)/0.389 (18) and 0.71 (2)/0.29 (2). The hydrogen atoms were refined in a riding mode with C—H = 0.93–0.97 Å and U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Ni(C30H35N5)(C2H3N)](BF4)2
M r 739.01
Crystal system, space group Monoclinic, C c
Temperature (K) 298
a, b, c (Å) 11.230 (3), 17.204 (5), 18.110 (6)
β (°) 103.248 (7)
V3) 3405.7 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.847, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 14710, 6476, 6304
R int 0.032
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.092, 1.03
No. of reflections 6476
No. of parameters 520
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.25
Absolute structure Classical Flack (1983) method preferred over Parsons because s.u. lower.
Absolute structure parameter −0.017 (12)

Computer programs: SMART and SAINT (Bruker, 2016), SHELXTL (Sheldrick, 2008) and SHELXL2016 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017006764/vn2128sup1.cif

e-73-00825-sup1.cif (467.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006764/vn2128Isup4.hkl

e-73-00825-Isup4.hkl (514.8KB, hkl)

CCDC reference: 1548052

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ni(C30H35N5)(C2H3N)](BF4)2 F(000) = 1528
Mr = 739.01 Dx = 1.441 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 11.230 (3) Å Cell parameters from 8509 reflections
b = 17.204 (5) Å θ = 2.3–28.4°
c = 18.110 (6) Å µ = 0.65 mm1
β = 103.248 (7)° T = 298 K
V = 3405.7 (18) Å3 Block, blue
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area detector diffractometer 6304 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.032
phi and ω scans θmax = 28.4°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −14→11
Tmin = 0.847, Tmax = 0.955 k = −22→22
14710 measured reflections l = −24→24
6476 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.060P)2 + 1.7104P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035 (Δ/σ)max = 0.001
wR(F2) = 0.092 Δρmax = 0.29 e Å3
S = 1.03 Δρmin = −0.25 e Å3
6476 reflections Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
520 parameters Extinction coefficient: 0.0091 (17)
2 restraints Absolute structure: Classical Flack method preferred over Parsons because s.u. lower.
Hydrogen site location: mixed Absolute structure parameter: −0.017 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.73459 (2) −0.19011 (2) 0.24468 (2) 0.02752 (12)
N1 0.6542 (3) −0.29110 (15) 0.18272 (14) 0.0333 (5)
N2 0.5812 (3) −0.20749 (17) 0.28899 (14) 0.0331 (5)
N3 0.7742 (3) −0.09858 (14) 0.33073 (13) 0.0325 (5)
N4 0.8969 (3) −0.17465 (19) 0.21169 (18) 0.0395 (6)
N5 0.8531 (3) −0.25827 (15) 0.33616 (14) 0.0361 (5)
N6 0.6119 (2) −0.11087 (13) 0.16863 (13) 0.0303 (5)
C1 0.7455 (4) −0.2798 (2) 0.0724 (2) 0.0515 (9)
H1A 0.727964 −0.299078 0.021314 0.077*
H1B 0.830687 −0.287160 0.095248 0.077*
H1C 0.726121 −0.225425 0.072011 0.077*
C2 0.6698 (3) −0.32319 (17) 0.11726 (17) 0.0354 (6)
C3 0.6181 (4) −0.3937 (2) 0.0906 (2) 0.0460 (8)
H3A 0.631892 −0.414716 0.045975 0.055*
C4 0.5459 (4) −0.4324 (2) 0.1306 (3) 0.0599 (10)
H4A 0.510311 −0.479825 0.113295 0.072*
C5 0.5270 (5) −0.3999 (2) 0.1971 (3) 0.0569 (10)
H5A 0.478334 −0.425011 0.224961 0.068*
C6 0.5816 (3) −0.32968 (18) 0.22115 (19) 0.0382 (6)
C7 0.5658 (4) −0.29254 (19) 0.29387 (19) 0.0421 (7)
H7A 0.485006 −0.304199 0.301634 0.051*
H7B 0.626011 −0.313171 0.336524 0.051*
C8 0.6011 (3) −0.1684 (2) 0.36392 (17) 0.0405 (7)
H8A 0.653812 −0.200003 0.402342 0.049*
H8B 0.523544 −0.161637 0.378152 0.049*
C9 0.6601 (3) −0.08985 (19) 0.35846 (17) 0.0379 (6)
H9A 0.603190 −0.056630 0.324016 0.046*
H9B 0.678916 −0.065285 0.407993 0.046*
C10 0.8122 (4) −0.02283 (16) 0.30210 (16) 0.0376 (6)
H10A 0.747853 −0.006513 0.259492 0.045*
H10B 0.884650 −0.032304 0.282792 0.045*
C11 0.8397 (3) 0.04463 (17) 0.35776 (17) 0.0387 (6)
C12 0.9533 (4) 0.0523 (2) 0.4080 (2) 0.0506 (8)
H12A 1.011855 0.013546 0.410691 0.061*
C13 0.9795 (5) 0.1177 (3) 0.4540 (2) 0.0639 (12)
H13A 1.055817 0.122176 0.487139 0.077*
C14 0.8960 (6) 0.1749 (3) 0.4515 (3) 0.0665 (15)
H14A 0.915001 0.218324 0.482537 0.080*
C15 0.7850 (7) 0.1685 (3) 0.4038 (4) 0.0741 (17)
H15A 0.727325 0.207599 0.402322 0.089*
C16 0.7555 (5) 0.1034 (2) 0.3562 (3) 0.0588 (10)
H16A 0.678691 0.099906 0.323433 0.071*
C17 0.8769 (5) −0.3819 (2) 0.2717 (2) 0.0618 (11)
H17A 0.947332 −0.415222 0.279414 0.093*
H17B 0.877006 −0.347513 0.229995 0.093*
H17C 0.803989 −0.412999 0.260617 0.093*
C18 0.8809 (4) −0.3350 (2) 0.3424 (2) 0.0462 (7)
C19 0.9179 (5) −0.3706 (2) 0.4121 (3) 0.0648 (12)
H19A 0.935934 −0.423435 0.414915 0.078*
C20 0.9283 (6) −0.3275 (3) 0.4778 (3) 0.0703 (14)
H20A 0.946599 −0.351625 0.525012 0.084*
C21 0.9112 (4) −0.2481 (2) 0.4721 (2) 0.0530 (9)
H21A 0.923136 −0.217195 0.515292 0.064*
C22 0.8758 (3) −0.21540 (18) 0.40064 (17) 0.0374 (6)
C23 0.8742 (3) −0.12851 (18) 0.39211 (17) 0.0391 (6)
H23A 0.866918 −0.105272 0.439683 0.047*
H23B 0.951744 −0.111991 0.382379 0.047*
C24 0.4730 (3) −0.1755 (2) 0.23570 (19) 0.0376 (6)
H24A 0.416027 −0.156355 0.264446 0.045*
H24B 0.432739 −0.217051 0.203176 0.045*
C25 0.5017 (3) −0.11045 (16) 0.18656 (15) 0.0328 (5)
C26 0.4120 (4) −0.0560 (2) 0.1587 (2) 0.0485 (8)
H26A 0.338511 −0.056083 0.174092 0.058*
C27 0.4340 (4) −0.0012 (2) 0.1072 (3) 0.0581 (10)
H27A 0.374968 0.035766 0.087176 0.070*
C28 0.5429 (4) −0.00225 (18) 0.0866 (2) 0.0481 (8)
H28A 0.557883 0.033626 0.051338 0.058*
C29 0.6327 (3) −0.05676 (16) 0.11773 (16) 0.0356 (6)
C30 0.7518 (4) −0.0552 (2) 0.0947 (2) 0.0522 (9)
H30A 0.749443 −0.015746 0.056818 0.078*
H30B 0.766266 −0.104850 0.074227 0.078*
H30C 0.816492 −0.043836 0.138065 0.078*
C31 0.9942 (4) −0.1705 (3) 0.2068 (2) 0.0524 (9)
C32 1.1190 (6) −0.1620 (6) 0.1991 (5) 0.116 (3)
H32A 1.151132 −0.112648 0.219080 0.139*
H32B 1.121102 −0.165218 0.146450 0.139*
H32C 1.167603 −0.203008 0.226670 0.139*
B1 −0.2984 (7) 0.1828 (4) 0.0952 (4) 0.0668 (16)
B2 0.2397 (7) −0.0699 (4) 0.3807 (4) 0.0734 (15)
F1 −0.2730 (12) 0.1428 (8) 0.1633 (4) 0.118 (4) 0.71 (2)
F2 −0.4166 (9) 0.1922 (5) 0.0757 (8) 0.124 (5) 0.71 (2)
F3 −0.2264 (10) 0.2458 (7) 0.1037 (7) 0.111 (4) 0.71 (2)
F4 −0.275 (2) 0.1337 (9) 0.0395 (8) 0.093 (5) 0.71 (2)
F1A −0.233 (2) 0.181 (2) 0.1638 (17) 0.138 (11) 0.29 (2)
F2A −0.411 (3) 0.185 (2) 0.111 (3) 0.21 (2) 0.29 (2)
F3A −0.287 (4) 0.2622 (10) 0.067 (2) 0.127 (12) 0.29 (2)
F4A −0.251 (6) 0.1297 (18) 0.054 (2) 0.098 (10) 0.29 (2)
F5 0.205 (2) −0.1435 (7) 0.3810 (10) 0.208 (10) 0.611 (18)
F6 0.1540 (9) −0.0300 (7) 0.3264 (5) 0.122 (4) 0.611 (18)
F7 0.3403 (11) −0.0688 (7) 0.3563 (10) 0.135 (5) 0.611 (18)
F8 0.2472 (17) −0.0380 (11) 0.4477 (6) 0.137 (6) 0.611 (18)
F5A 0.348 (2) −0.105 (3) 0.414 (4) 0.30 (2) 0.389 (18)
F6A 0.1583 (13) −0.1213 (13) 0.3817 (13) 0.125 (8) 0.389 (18)
F7A 0.246 (7) −0.0368 (13) 0.3222 (13) 0.30 (3) 0.389 (18)
F8A 0.2379 (16) −0.0186 (17) 0.4387 (13) 0.126 (8) 0.389 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02251 (17) 0.03240 (16) 0.02857 (16) −0.00093 (15) 0.00773 (11) 0.00228 (14)
N1 0.0299 (13) 0.0365 (11) 0.0343 (11) −0.0040 (11) 0.0090 (10) 0.0032 (9)
N2 0.0284 (14) 0.0418 (11) 0.0315 (11) −0.0022 (12) 0.0119 (10) 0.0037 (10)
N3 0.0326 (14) 0.0335 (10) 0.0312 (10) 0.0008 (10) 0.0068 (10) 0.0013 (9)
N4 0.0288 (15) 0.0488 (13) 0.0434 (14) −0.0049 (13) 0.0132 (12) −0.0014 (12)
N5 0.0320 (13) 0.0372 (12) 0.0362 (11) 0.0008 (11) 0.0021 (10) 0.0009 (10)
N6 0.0281 (12) 0.0332 (10) 0.0294 (10) −0.0016 (9) 0.0065 (9) 0.0017 (8)
C1 0.066 (3) 0.0537 (18) 0.0417 (15) −0.0160 (18) 0.0256 (17) −0.0068 (14)
C2 0.0337 (16) 0.0370 (12) 0.0347 (13) −0.0021 (12) 0.0060 (12) 0.0009 (11)
C3 0.044 (2) 0.0420 (15) 0.0517 (18) −0.0067 (15) 0.0094 (16) −0.0100 (14)
C4 0.056 (3) 0.0379 (16) 0.088 (3) −0.0169 (17) 0.022 (2) −0.0129 (17)
C5 0.059 (3) 0.0411 (16) 0.078 (3) −0.0205 (17) 0.031 (2) −0.0019 (17)
C6 0.0331 (16) 0.0349 (13) 0.0491 (16) −0.0040 (12) 0.0147 (13) 0.0065 (12)
C7 0.0426 (19) 0.0430 (14) 0.0469 (16) −0.0064 (14) 0.0229 (15) 0.0086 (13)
C8 0.0397 (17) 0.0529 (16) 0.0331 (13) −0.0016 (15) 0.0171 (13) 0.0012 (12)
C9 0.0375 (16) 0.0451 (14) 0.0323 (12) 0.0035 (13) 0.0104 (12) −0.0047 (11)
C10 0.0492 (19) 0.0302 (12) 0.0334 (12) −0.0008 (12) 0.0092 (12) 0.0013 (10)
C11 0.0458 (19) 0.0350 (12) 0.0376 (13) −0.0027 (13) 0.0143 (13) −0.0011 (11)
C12 0.055 (2) 0.0464 (17) 0.0496 (17) −0.0074 (17) 0.0103 (17) −0.0017 (14)
C13 0.076 (3) 0.069 (2) 0.0478 (18) −0.029 (2) 0.016 (2) −0.0131 (17)
C14 0.093 (4) 0.057 (2) 0.060 (2) −0.020 (2) 0.038 (3) −0.0246 (19)
C15 0.088 (5) 0.053 (2) 0.091 (4) 0.008 (3) 0.041 (4) −0.021 (3)
C16 0.059 (3) 0.0444 (17) 0.074 (2) 0.0061 (18) 0.016 (2) −0.0109 (17)
C17 0.067 (3) 0.0478 (19) 0.062 (2) 0.025 (2) −0.003 (2) −0.0082 (16)
C18 0.0418 (19) 0.0396 (14) 0.0519 (18) 0.0044 (15) −0.0004 (15) −0.0004 (14)
C19 0.077 (3) 0.0410 (18) 0.065 (2) 0.011 (2) −0.006 (2) 0.0104 (17)
C20 0.094 (4) 0.057 (2) 0.048 (2) 0.011 (3) −0.008 (2) 0.0191 (17)
C21 0.062 (3) 0.0508 (18) 0.0377 (15) 0.0027 (18) −0.0049 (16) 0.0066 (13)
C22 0.0342 (16) 0.0367 (13) 0.0366 (13) 0.0000 (13) −0.0017 (12) 0.0033 (11)
C23 0.0385 (17) 0.0373 (13) 0.0358 (13) −0.0018 (13) −0.0031 (12) −0.0006 (11)
C24 0.0218 (14) 0.0504 (15) 0.0420 (15) −0.0030 (12) 0.0104 (12) 0.0007 (12)
C25 0.0257 (14) 0.0377 (13) 0.0330 (12) 0.0018 (11) 0.0025 (10) −0.0031 (10)
C26 0.0308 (17) 0.0517 (17) 0.0593 (19) 0.0097 (15) 0.0027 (15) 0.0021 (15)
C27 0.048 (2) 0.0453 (17) 0.071 (2) 0.0153 (17) −0.0058 (18) 0.0078 (16)
C28 0.060 (2) 0.0326 (13) 0.0449 (16) 0.0005 (15) −0.0022 (16) 0.0093 (12)
C29 0.0428 (18) 0.0313 (12) 0.0300 (11) −0.0028 (12) 0.0030 (12) 0.0020 (10)
C30 0.055 (2) 0.0528 (18) 0.0553 (19) −0.0033 (17) 0.0252 (18) 0.0177 (16)
C31 0.038 (2) 0.066 (2) 0.059 (2) −0.0107 (18) 0.0219 (17) −0.0207 (18)
C32 0.047 (3) 0.176 (7) 0.139 (6) −0.035 (4) 0.050 (4) −0.083 (6)
B1 0.062 (4) 0.071 (3) 0.062 (3) −0.015 (3) 0.004 (3) −0.014 (2)
B2 0.081 (4) 0.073 (3) 0.072 (3) 0.004 (3) 0.029 (3) 0.004 (3)
F1 0.127 (8) 0.174 (9) 0.049 (3) 0.013 (6) 0.014 (3) 0.000 (4)
F2 0.066 (5) 0.090 (5) 0.181 (10) 0.003 (4) −0.044 (6) −0.009 (5)
F3 0.106 (6) 0.105 (6) 0.136 (7) −0.057 (5) 0.055 (5) −0.073 (6)
F4 0.157 (13) 0.077 (5) 0.052 (3) −0.032 (6) 0.036 (6) −0.014 (3)
F1A 0.069 (12) 0.17 (3) 0.15 (2) 0.006 (12) −0.033 (12) −0.037 (17)
F2A 0.14 (2) 0.20 (3) 0.34 (5) −0.10 (2) 0.18 (3) −0.16 (3)
F3A 0.20 (3) 0.060 (6) 0.17 (2) 0.013 (11) 0.14 (2) 0.025 (10)
F4A 0.135 (19) 0.047 (8) 0.11 (2) −0.006 (9) 0.017 (18) −0.020 (10)
F5 0.35 (3) 0.080 (6) 0.159 (11) −0.074 (10) −0.018 (14) 0.039 (6)
F6 0.125 (7) 0.170 (9) 0.071 (4) 0.085 (7) 0.020 (4) 0.029 (4)
F7 0.098 (7) 0.134 (8) 0.207 (13) 0.026 (5) 0.105 (9) −0.001 (7)
F8 0.174 (13) 0.183 (13) 0.053 (4) −0.015 (9) 0.025 (5) 0.006 (6)
F5A 0.087 (14) 0.37 (5) 0.44 (6) 0.09 (2) 0.06 (3) −0.03 (5)
F6A 0.056 (6) 0.179 (19) 0.151 (13) −0.046 (8) 0.047 (8) −0.033 (12)
F7A 0.73 (8) 0.102 (13) 0.113 (13) −0.14 (3) 0.18 (3) −0.021 (10)
F8A 0.061 (7) 0.163 (15) 0.155 (17) −0.008 (8) 0.029 (9) −0.090 (13)

Geometric parameters (Å, º)

Ni1—N4 2.061 (3) C15—H15A 0.9300
Ni1—N2 2.082 (3) C16—H16A 0.9300
Ni1—N1 2.151 (3) C17—C18 1.505 (5)
Ni1—N6 2.187 (3) C17—H17A 0.9600
Ni1—N3 2.188 (2) C17—H17B 0.9600
Ni1—N5 2.209 (3) C17—H17C 0.9600
N1—C2 1.355 (4) C18—C19 1.378 (6)
N1—C6 1.361 (4) C19—C20 1.385 (7)
N2—C24 1.475 (5) C19—H19A 0.9300
N2—C7 1.479 (4) C20—C21 1.381 (6)
N2—C8 1.485 (4) C20—H20A 0.9300
N3—C23 1.480 (4) C21—C22 1.382 (4)
N3—C9 1.488 (4) C21—H21A 0.9300
N3—C10 1.500 (4) C22—C23 1.503 (4)
N4—C31 1.119 (5) C23—H23A 0.9700
N5—C22 1.355 (4) C23—H23B 0.9700
N5—C18 1.356 (4) C24—C25 1.509 (4)
N6—C25 1.350 (4) C24—H24A 0.9700
N6—C29 1.367 (3) C24—H24B 0.9700
C1—C2 1.502 (4) C25—C26 1.384 (5)
C1—H1A 0.9600 C26—C27 1.386 (6)
C1—H1B 0.9600 C26—H26A 0.9300
C1—H1C 0.9600 C27—C28 1.360 (7)
C2—C3 1.383 (4) C27—H27A 0.9300
C3—C4 1.377 (5) C28—C29 1.398 (5)
C3—H3A 0.9300 C28—H28A 0.9300
C4—C5 1.388 (6) C29—C30 1.490 (5)
C4—H4A 0.9300 C30—H30A 0.9600
C5—C6 1.380 (5) C30—H30B 0.9600
C5—H5A 0.9300 C30—H30C 0.9600
C6—C7 1.510 (4) C31—C32 1.448 (6)
C7—H7A 0.9700 C32—H32A 0.9600
C7—H7B 0.9700 C32—H32B 0.9600
C8—C9 1.519 (5) C32—H32C 0.9598
C8—H8A 0.9700 B1—F1A 1.29 (3)
C8—H8B 0.9700 B1—F2 1.303 (12)
C9—H9A 0.9700 B1—F3 1.339 (10)
C9—H9B 0.9700 B1—F4A 1.36 (4)
C10—C11 1.522 (4) B1—F2A 1.36 (2)
C10—H10A 0.9700 B1—F1 1.384 (11)
C10—H10B 0.9700 B1—F4 1.385 (14)
C11—C16 1.380 (5) B1—F3A 1.470 (16)
C11—C12 1.392 (6) B2—F7A 1.219 (16)
C12—C13 1.391 (5) B2—F6A 1.276 (17)
C12—H12A 0.9300 B2—F7 1.305 (10)
C13—C14 1.352 (8) B2—F8 1.317 (14)
C13—H13A 0.9300 B2—F5 1.324 (12)
C14—C15 1.349 (9) B2—F5A 1.36 (3)
C14—H14A 0.9300 B2—F8A 1.38 (2)
C15—C16 1.405 (7) B2—F6 1.389 (10)
N4—Ni1—N2 174.24 (13) C13—C14—H14A 120.2
N4—Ni1—N1 104.24 (12) C14—C15—C16 120.7 (5)
N2—Ni1—N1 78.45 (10) C14—C15—H15A 119.6
N4—Ni1—N6 102.02 (11) C16—C15—H15A 119.6
N2—Ni1—N6 82.81 (10) C11—C16—C15 120.5 (5)
N1—Ni1—N6 92.67 (10) C11—C16—H16A 119.8
N4—Ni1—N3 93.70 (11) C15—C16—H16A 119.8
N2—Ni1—N3 83.11 (10) C18—C17—H17A 109.5
N1—Ni1—N3 160.94 (9) C18—C17—H17B 109.5
N6—Ni1—N3 89.77 (9) H17A—C17—H17B 109.5
N4—Ni1—N5 82.24 (12) C18—C17—H17C 109.5
N2—Ni1—N5 92.54 (11) H17A—C17—H17C 109.5
N1—Ni1—N5 94.07 (11) H17B—C17—H17C 109.5
N6—Ni1—N5 170.89 (9) N5—C18—C19 121.6 (3)
N3—Ni1—N5 81.87 (10) N5—C18—C17 119.3 (3)
C2—N1—C6 117.5 (3) C19—C18—C17 119.0 (4)
C2—N1—Ni1 131.5 (2) C18—C19—C20 119.8 (4)
C6—N1—Ni1 110.9 (2) C18—C19—H19A 120.1
C24—N2—C7 108.6 (3) C20—C19—H19A 120.1
C24—N2—C8 111.0 (3) C21—C20—C19 118.8 (4)
C7—N2—C8 112.9 (2) C21—C20—H20A 120.6
C24—N2—Ni1 108.95 (18) C19—C20—H20A 120.6
C7—N2—Ni1 106.5 (2) C20—C21—C22 118.6 (4)
C8—N2—Ni1 108.8 (2) C20—C21—H21A 120.7
C23—N3—C9 110.2 (2) C22—C21—H21A 120.7
C23—N3—C10 109.6 (3) N5—C22—C21 122.8 (3)
C9—N3—C10 111.4 (2) N5—C22—C23 117.2 (3)
C23—N3—Ni1 106.27 (18) C21—C22—C23 119.7 (3)
C9—N3—Ni1 105.24 (19) N3—C23—C22 114.4 (3)
C10—N3—Ni1 113.98 (16) N3—C23—H23A 108.7
C31—N4—Ni1 167.3 (4) C22—C23—H23A 108.7
C22—N5—C18 117.7 (3) N3—C23—H23B 108.7
C22—N5—Ni1 108.6 (2) C22—C23—H23B 108.7
C18—N5—Ni1 131.8 (2) H23A—C23—H23B 107.6
C25—N6—C29 117.8 (3) N2—C24—C25 114.0 (3)
C25—N6—Ni1 109.39 (18) N2—C24—H24A 108.7
C29—N6—Ni1 131.9 (2) C25—C24—H24A 108.7
C2—C1—H1A 109.5 N2—C24—H24B 108.7
C2—C1—H1B 109.5 C25—C24—H24B 108.7
H1A—C1—H1B 109.5 H24A—C24—H24B 107.6
C2—C1—H1C 109.5 N6—C25—C26 123.1 (3)
H1A—C1—H1C 109.5 N6—C25—C24 118.0 (3)
H1B—C1—H1C 109.5 C26—C25—C24 118.8 (3)
N1—C2—C3 122.3 (3) C25—C26—C27 118.6 (4)
N1—C2—C1 118.2 (3) C25—C26—H26A 120.7
C3—C2—C1 119.4 (3) C27—C26—H26A 120.7
C4—C3—C2 119.4 (3) C28—C27—C26 119.1 (3)
C4—C3—H3A 120.3 C28—C27—H27A 120.5
C2—C3—H3A 120.3 C26—C27—H27A 120.5
C3—C4—C5 119.2 (3) C27—C28—C29 120.6 (3)
C3—C4—H4A 120.4 C27—C28—H28A 119.7
C5—C4—H4A 120.4 C29—C28—H28A 119.7
C6—C5—C4 118.8 (3) N6—C29—C28 120.7 (3)
C6—C5—H5A 120.6 N6—C29—C30 120.3 (3)
C4—C5—H5A 120.6 C28—C29—C30 119.0 (3)
N1—C6—C5 122.8 (3) C29—C30—H30A 109.5
N1—C6—C7 116.3 (3) C29—C30—H30B 109.5
C5—C6—C7 120.9 (3) H30A—C30—H30B 109.5
N2—C7—C6 109.1 (2) C29—C30—H30C 109.5
N2—C7—H7A 109.9 H30A—C30—H30C 109.5
C6—C7—H7A 109.9 H30B—C30—H30C 109.5
N2—C7—H7B 109.9 N4—C31—C32 177.5 (7)
C6—C7—H7B 109.9 C31—C32—H32A 110.0
H7A—C7—H7B 108.3 C31—C32—H32B 109.6
N2—C8—C9 108.6 (2) H32A—C32—H32B 109.5
N2—C8—H8A 110.0 C31—C32—H32C 108.8
C9—C8—H8A 110.0 H32A—C32—H32C 109.5
N2—C8—H8B 110.0 H32B—C32—H32C 109.5
C9—C8—H8B 110.0 F2—B1—F3 118.9 (9)
H8A—C8—H8B 108.3 F1A—B1—F4A 107 (3)
N3—C9—C8 110.8 (2) F1A—B1—F2A 99 (2)
N3—C9—H9A 109.5 F4A—B1—F2A 129 (3)
C8—C9—H9A 109.5 F2—B1—F1 107.0 (9)
N3—C9—H9B 109.5 F3—B1—F1 107.7 (8)
C8—C9—H9B 109.5 F2—B1—F4 103.1 (13)
H9A—C9—H9B 108.1 F3—B1—F4 111.7 (10)
N3—C10—C11 117.7 (2) F1—B1—F4 108.1 (9)
N3—C10—H10A 107.9 F1A—B1—F3A 106.1 (18)
C11—C10—H10A 107.9 F4A—B1—F3A 111.3 (18)
N3—C10—H10B 107.9 F2A—B1—F3A 102 (2)
C11—C10—H10B 107.9 F7A—B2—F6A 122 (3)
H10A—C10—H10B 107.2 F7—B2—F8 115.4 (12)
C16—C11—C12 117.7 (3) F7—B2—F5 106.9 (13)
C16—C11—C10 120.7 (4) F8—B2—F5 110.6 (12)
C12—C11—C10 121.4 (3) F7A—B2—F5A 111 (3)
C13—C12—C11 120.3 (4) F6A—B2—F5A 105 (2)
C13—C12—H12A 119.9 F7A—B2—F8A 112.3 (16)
C11—C12—H12A 119.9 F6A—B2—F8A 107.4 (13)
C14—C13—C12 121.2 (5) F5A—B2—F8A 97 (2)
C14—C13—H13A 119.4 F7—B2—F6 105.5 (9)
C12—C13—H13A 119.4 F8—B2—F6 109.6 (10)
C15—C14—C13 119.6 (4) F5—B2—F6 108.6 (12)
C15—C14—H14A 120.2
C6—N1—C2—C3 −2.1 (5) C22—N5—C18—C19 7.0 (6)
Ni1—N1—C2—C3 173.2 (3) Ni1—N5—C18—C19 −155.3 (4)
C6—N1—C2—C1 177.5 (3) C22—N5—C18—C17 −170.0 (4)
Ni1—N1—C2—C1 −7.2 (5) Ni1—N5—C18—C17 27.7 (6)
N1—C2—C3—C4 1.4 (6) N5—C18—C19—C20 −0.4 (8)
C1—C2—C3—C4 −178.2 (4) C17—C18—C19—C20 176.6 (5)
C2—C3—C4—C5 −0.2 (7) C18—C19—C20—C21 −5.4 (9)
C3—C4—C5—C6 −0.2 (7) C19—C20—C21—C22 4.5 (8)
C2—N1—C6—C5 1.7 (5) C18—N5—C22—C21 −8.1 (6)
Ni1—N1—C6—C5 −174.5 (3) Ni1—N5—C22—C21 158.1 (3)
C2—N1—C6—C7 −179.9 (3) C18—N5—C22—C23 165.5 (3)
Ni1—N1—C6—C7 3.8 (4) Ni1—N5—C22—C23 −28.3 (4)
C4—C5—C6—N1 −0.6 (7) C20—C21—C22—N5 2.3 (7)
C4—C5—C6—C7 −178.9 (4) C20—C21—C22—C23 −171.1 (4)
C24—N2—C7—C6 72.3 (3) C9—N3—C23—C22 84.2 (3)
C8—N2—C7—C6 −164.3 (3) C10—N3—C23—C22 −152.9 (3)
Ni1—N2—C7—C6 −44.9 (3) Ni1—N3—C23—C22 −29.3 (3)
N1—C6—C7—N2 27.5 (4) N5—C22—C23—N3 41.5 (4)
C5—C6—C7—N2 −154.1 (4) C21—C22—C23—N3 −144.7 (4)
C24—N2—C8—C9 −78.0 (3) C7—N2—C24—C25 −142.1 (3)
C7—N2—C8—C9 159.8 (3) C8—N2—C24—C25 93.4 (3)
Ni1—N2—C8—C9 41.8 (3) Ni1—N2—C24—C25 −26.5 (3)
C23—N3—C9—C8 −75.9 (3) C29—N6—C25—C26 −3.1 (4)
C10—N3—C9—C8 162.3 (3) Ni1—N6—C25—C26 167.6 (3)
Ni1—N3—C9—C8 38.3 (3) C29—N6—C25—C24 173.2 (3)
N2—C8—C9—N3 −55.1 (4) Ni1—N6—C25—C24 −16.2 (3)
C23—N3—C10—C11 −62.0 (4) N2—C24—C25—N6 29.8 (4)
C9—N3—C10—C11 60.2 (4) N2—C24—C25—C26 −153.7 (3)
Ni1—N3—C10—C11 179.1 (3) N6—C25—C26—C27 2.9 (5)
N3—C10—C11—C16 −102.0 (4) C24—C25—C26—C27 −173.3 (3)
N3—C10—C11—C12 82.8 (4) C25—C26—C27—C28 −0.7 (6)
C16—C11—C12—C13 −0.5 (5) C26—C27—C28—C29 −1.3 (6)
C10—C11—C12—C13 174.8 (3) C25—N6—C29—C28 1.0 (4)
C11—C12—C13—C14 0.3 (6) Ni1—N6—C29—C28 −167.1 (2)
C12—C13—C14—C15 0.2 (7) C25—N6—C29—C30 −179.0 (3)
C13—C14—C15—C16 −0.5 (8) Ni1—N6—C29—C30 13.0 (4)
C12—C11—C16—C15 0.2 (6) C27—C28—C29—N6 1.1 (5)
C10—C11—C16—C15 −175.1 (4) C27—C28—C29—C30 −178.9 (4)
C14—C15—C16—C11 0.2 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1C···N4 0.96 2.94 3.251 (6) 100
C3—H3A···F8i 0.93 2.57 3.457 (14) 159
C8—H8B···F7 0.97 2.57 3.371 (13) 140
C8—H8B···F5A 0.97 2.42 3.36 (4) 163
C9—H9B···F4ii 0.97 2.61 3.291 (16) 128
C10—H10A···N6 0.97 2.67 3.273 (5) 1213
C12—H12A···F8Aiii 0.93 2.53 3.35 (2) 146
C17—H17B···N1 0.96 2.64 3.071 (7) 108
C21—H21A···F3ii 0.93 2.62 3.122 (10) 114
C23—H23B···F6Aiii 0.97 2.33 3.241 (16) 157
C24—H24A···F7 0.97 2.53 3.443 (15) 156
C24—H24B···F3iv 0.97 2.32 3.179 (13) 148
C24—H24B···F1Aiv 0.97 2.54 3.43 (3) 153
C28—H28A···F4iii 0.93 2.59 3.345 (19) 138
C30—H30A···F4iii 0.96 2.60 3.390 (17) 140
C30—H30A···F4Aiii 0.96 2.50 3.26 (3) 136
C30—H30B···N4 0.96 2.85 3.126 (6) 98
C32—H32A···F6iii 0.96 2.40 3.196 (14) 140
C32—H32A···F7Aiii 0.96 2.33 3.19 (3) 150
C32—H32B···F3v 0.96 2.55 3.145 (15) 121
C32—H32B···F3Av 0.96 2.32 3.11 (4) 140

Symmetry codes: (i) x+1/2, −y−1/2, z−1/2; (ii) x+1, −y, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y−1/2, z; (v) x+3/2, y−1/2, z.

References

  1. Bruker (2016). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Johnson, B. A., Maji, S., Agarwala, H., White, T. A., Mijangos, E. & Ott, S. (2016). Angew. Chem. Int. Ed. 55, 1825–1829. [DOI] [PubMed]
  4. Knoll, J.-D., Albani, B. A., Durr, C. B. & Turro, C. (2014). J. Phys. Chem. A, 118, 10603–10610. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  7. Shi, W. D., Zheng, D. H. & Wang, M. (2015). Chin. J. Inorg. Chem. 31, 2205–2212.
  8. Wang, L., Duan, L. L., Ambre, R. B., Daniel, Q., Chen, H., Sun, J. L., Das, B., Thapper, A., Uhlig, J., Dinér, P. & Sun, L. C. (2016). J. Catal. 335, 72–78.
  9. Zhang, P.-L., Wang, M., Gloaguen, F., Chen, L., Quentel, F. & Sun, L.-C. (2013). Chem. Commun. 49, 9455–9457. [DOI] [PubMed]
  10. Zhang, P.-L., Wang, M., Yang, Y., Zheng, D. H., Han, K. & Sun, L.-C. (2014). Chem. Commun. 50, 14153–14156. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017006764/vn2128sup1.cif

e-73-00825-sup1.cif (467.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006764/vn2128Isup4.hkl

e-73-00825-Isup4.hkl (514.8KB, hkl)

CCDC reference: 1548052

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES