Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 9;73(Pt 6):829–831. doi: 10.1107/S2056989017006405

Crystal structure of chlorido­[1-(4-nitro­phen­yl)thio­urea-κS]bis­(tri­phenyl­phosphane-κP)silver(I)

Arunpatcha Nimthong-Roldán a, Paramee Sripa b, Yupa Wattanakanjana b,*
PMCID: PMC5458302  PMID: 28638637

Reaction of silver(I) chloride with 1-(4-nitro­phen­yl)thio­urea and tri­phenyl­phosphane ligands of 1:2:1 ratio leads to the mononuclear complex [AgCl(C7H7N3O2S)(C18H15P)2]. In the crystal, bifurcated N—H⋯Cl and a weak C—H⋯O hydrogen bonds link mol­ecules into a two-dimensional network.

Keywords: crystal structure, N—H⋯Cl hydrogen bonding, intra­molecular hydrogen bonding, inter­molecular hydrogen bonding

Abstract

In the title compound, [AgCl(C7H7N3O2S)(C18H15P)2], the AgI ion is in a distorted tetra­hedral coordination environment formed by P atoms from two tri­phenyl­phosphane ligands, one terminal S atom from the 1-(4-nitro­phen­yl)thio­urea ligand and a chloride ion. In the crystal, bifurcated (N—H)2⋯Cl hydrogen bonds [with graph-set motif R 2 1(6)] connect complex mol­ecules, forming zigzag chains along [001]. These chains are linked via weak C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (100). An intra­molecular N—H⋯Cl hydrogen bond forming an S(6) ring is also observed.

Chemical context  

Studies of thio­urea and thio­urea derivatives have recently attracted considerable attention because of their variety of biological properties such as increasing technologies for plasma membrane proteomics (Cordwell & Thingholm, 2010), anti­microbial and cytotoxic activity (Bielenica et al., 2015) and significant anti­fungal and anti-viral activity of curative rates (Wu et al., 2012). Silver(I) complexes containing tri­phenyl­phosphane as precursors have been studied extensively for the preparation of mixed ligands with thio­urea derivatives (Mekarat et al., 2014; Wattanakanjana et al., 2014). Recently, we reported a complex that was prepared by reacting copper(I) chloride containing tri­phenyl­phosphane and 1-(4-nitro­phen­yl)thio­urea ligands (Nimthong-Roldán et al., 2017). Herein, we report the crystal structure of the compound formed using silver(I) instead of copper(I) under the same conditions, [AgCl(C7H7N3O2S)(C18H15P)2] (I).graphic file with name e-73-00829-scheme1.jpg

Structural commentary  

In compound (I), tri­phenyl­phosphane, PPh3, and a 1-(4-nitro­phen­yl)thio­urea ligand, NPTU, as co-ligands coordinate the AgI ion with two P atoms from two PPh3 ligands, one terminal S atom from the NPTU ligand and one chloride ion, resulting in a distorted tetra­hedral environment (Fig. 1). The Ag—S bond length of 2.6316 (5) is similar to that of 2.603 (4) Å found in [Ag2Cl2(CH5N3S)2(C18H15P)2], (Wattanakanjana et al., 2012). An intra­molecular N2—H2B⋯Cl1 hydrogen bond with graph-set motif S(6) is observed (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.88 2.41 3.2454 (17) 159
N2—H2A⋯Cl1i 0.88 (2) 2.39 (2) 3.2257 (18) 160 (2)
N2—H2B⋯Cl1 0.87 (2) 2.50 (2) 3.3247 (18) 159 (2)
C12—H12⋯O2ii 0.95 2.60 3.272 (3) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, N2—H2A⋯Cl1 and N1—H1⋯Cl1 hydrogen bonds link the mol­ecules, forming a zigzag chain along [001]. These chains are linked by weak C12—H12⋯O2 hydrogen bonds, leading to the formation of a two-dimensional network parallel to (100) (Fig. 2 and Table 1).

Figure 2.

Figure 2

Part of the crystal structure of (I), showing the two-dimensional network formed by inter­molecular N—H⋯Cl and C—H⋯O hydrogen bonds (shown as dashed lines) parallel to (100).

Database survey  

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016) revealed no complexes with the 1-(4-nitro­phen­yl)thio­urea ligand, and only the crystal structure of the ligand itself has been reported (LONSEN; Xian et al., 2008). A search for phenyl­thio­urea ligands with substitutions on the phenyl ring yielded 34 hits. Of these, four hits were AgI complexes, namely TUYZAQ (Wattanakanjana et al., 2015), SUFDUU (Nimthong-Roldán et al., 2015b ), WUFBIK (Nimthong-Roldán et al., 2015a ), and XOFDED (Mekarat et al., 2014)

Synthesis and crystallization  

Tri­phenyl­phosphane, PPh3 (0.16 g, 0.51 mmol) was dissolved in 30 ml of aceto­nitrile at 340 K and then silver(I) chloride, AgCl (0.04 g, 0.25 mmol) , was added. The mixture was stirred for 3 h and then 1-(4-nitro­phen­yl)-2- thio­urea, NPTU (0.05 g, 0.25 mmol), was added. The resulting reaction mixture was heated under reflux for 3 h during which the precipitate gradually disappeared. The resulting clear solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for a couple of days, was filtered off and dried in vacuo (0.16 g, 66% yield). M.p. 465–467 K. IR bands (KBr, cm−1): 3259 (w), 3134 (w), 3051(w), 2366 (w), 2345 (w), 1584 (w), 1509 (w), 1498 (w), 1458 (w), 1433 (w), 1399 (w), 1334 (s), 1297 (w), 1259 (w), 1181 (w), 1157 (w), 1110 (w), 1095 (w), 1027 (w), 998 (w), 890 (w), 851 (w), 746 (m), 720 (w), 694 (s), 670 (w), 594 (w), 515 (m), 501 (m), 491 (m).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms attached to carbon atoms and atom H1 attached to nitro­gen atom N1 were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å and N1—H1 = 0.88 Å. The other nitro­gen-bound H atoms were located in difference-Fourier maps and were refined with an N—H distance restraint of 0.88 (2) Å. U iso(H) values were set to 1.2U eq(C/N). Reflections 1 1 0, Inline graphic 1 1, 0 2 0, 1 2 0, 0 4 0, Inline graphic 2 1, 0 2 1, 0 1 1, 1 0 0, −5 11, 13 8 1, 6 15 10, 12 10 4, Inline graphic 15 13, Inline graphic 20 2, 0 22 11, 12 1 5, Inline graphic 23 11, Inline graphic 26 10, 4 9 12, 10 14 6, Inline graphic 20 9, 7 22 7, Inline graphic 8 5, 10 10 7, 0 5 14, 7 5 10, Inline graphic 8 4, Inline graphic 25 10, Inline graphic 20 12 and Inline graphic 14 9 were affected by the beam stop and were omitted from the refinement.

Table 2. Experimental details.

Crystal data
Chemical formula [AgCl(C7H7N3O2S)(C18H15P)2]
M r 865.07
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.8581 (2), 28.5087 (4), 12.0272 (2)
β (°) 104.9338 (17)
V3) 3928.57 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.33
Crystal size (mm) 0.25 × 0.23 × 0.18
 
Data collection
Diffractometer Rigaku RAPID II curved image plate diffractometer
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997)
T min, T max 0.253, 0.395
No. of measured, independent and observed [I > 2σ(I)] reflections 73254, 7590, 7495
R int 0.051
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.068, 1.08
No. of reflections 7590
No. of parameters 485
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.37

Computer programs: CrystalClear-SM Expert (Rigaku, 2014), HKL-3000 (Otwinowski & Minor, 1997), SHELXS97 and SHELXL97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017006405/lh5841sup1.cif

e-73-00829-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006405/lh5841Isup2.hkl

e-73-00829-Isup2.hkl (602.9KB, hkl)

CCDC reference: 1546767

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Department of Chemistry, Faculty of Science, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Matthias Zeller and Purdue University for assistance with the X-ray structure determination and use of structure refinement programs based on funding by the National Science Foundation of the United States (CHE-1625543).

supplementary crystallographic information

Crystal data

[AgCl(C7H7N3O2S)(C18H15P)2] F(000) = 1768
Mr = 865.07 Dx = 1.463 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 11.8581 (2) Å Cell parameters from 73254 reflections
b = 28.5087 (4) Å θ = 6.0–72.3°
c = 12.0272 (2) Å µ = 6.33 mm1
β = 104.9338 (17)° T = 100 K
V = 3928.57 (11) Å3 Fragment, colourless
Z = 4 0.25 × 0.23 × 0.18 mm

Data collection

Rigaku RAPID II curved image plate diffractometer 7590 independent reflections
Radiation source: microfocus X-ray tube 7495 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromator Rint = 0.051
ω scans θmax = 72.3°, θmin = 6.0°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −13→14
Tmin = 0.253, Tmax = 0.395 k = −34→34
73254 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0286P)2 + 4.5052P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
7590 reflections Δρmax = 0.43 e Å3
485 parameters Δρmin = −0.37 e Å3
2 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00032 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. NH2 hydrogen positions were refined with an N-H distance restraint of 0.88 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.82775 (17) 0.17354 (7) 0.72805 (16) 0.0133 (4)
C2 0.96312 (17) 0.14219 (7) 0.61654 (16) 0.0139 (4)
C3 1.03535 (18) 0.16067 (7) 0.55233 (18) 0.0165 (4)
H3 1.0332 0.1933 0.5361 0.020*
C4 1.10993 (18) 0.13194 (7) 0.51217 (18) 0.0190 (4)
H4 1.1578 0.1444 0.4670 0.023*
C5 1.11381 (18) 0.08464 (7) 0.53871 (17) 0.0174 (4)
C6 1.04603 (19) 0.06567 (7) 0.60585 (18) 0.0194 (4)
H6 1.0514 0.0333 0.6249 0.023*
C7 0.97043 (19) 0.09454 (7) 0.64472 (18) 0.0187 (4)
H7 0.9235 0.0819 0.6906 0.022*
C8 0.74747 (17) 0.13044 (7) 1.26846 (16) 0.0138 (4)
C9 0.65144 (19) 0.15917 (7) 1.26283 (18) 0.0179 (4)
H9 0.6270 0.1806 1.2007 0.022*
C10 0.5909 (2) 0.15680 (7) 1.3476 (2) 0.0210 (5)
H10 0.5264 0.1770 1.3442 0.025*
C11 0.62485 (18) 0.12492 (7) 1.43677 (18) 0.0189 (4)
H11 0.5831 0.1230 1.4943 0.023*
C12 0.71971 (18) 0.09583 (7) 1.44220 (17) 0.0190 (4)
H12 0.7422 0.0737 1.5030 0.023*
C13 0.78211 (18) 0.09879 (7) 1.35929 (17) 0.0166 (4)
H13 0.8482 0.0793 1.3644 0.020*
C14 0.93770 (17) 0.17768 (6) 1.20401 (16) 0.0136 (4)
C15 0.93999 (18) 0.20815 (7) 1.29504 (17) 0.0164 (4)
H15 0.8819 0.2059 1.3364 0.020*
C16 1.02734 (19) 0.24204 (7) 1.32554 (18) 0.0205 (4)
H16 1.0283 0.2629 1.3873 0.025*
C17 1.11251 (19) 0.24539 (7) 1.26628 (19) 0.0225 (5)
H17 1.1731 0.2680 1.2886 0.027*
C18 1.10938 (19) 0.21572 (8) 1.17397 (19) 0.0235 (5)
H18 1.1675 0.2182 1.1326 0.028*
C19 1.02183 (18) 0.18265 (8) 1.14223 (18) 0.0192 (4)
H19 1.0188 0.1631 1.0776 0.023*
C20 0.89340 (19) 0.07855 (7) 1.15416 (17) 0.0181 (4)
C21 1.0099 (2) 0.06968 (8) 1.21129 (18) 0.0233 (5)
H21 1.0565 0.0936 1.2558 0.028*
C22 1.0570 (3) 0.02535 (9) 1.2023 (2) 0.0361 (6)
H22 1.1365 0.0193 1.2399 0.043*
C23 0.9895 (3) −0.00974 (9) 1.1395 (2) 0.0416 (7)
H23 1.0225 −0.0397 1.1336 0.050*
C24 0.8739 (3) −0.00123 (8) 1.0852 (2) 0.0399 (7)
H24 0.8268 −0.0256 1.0435 0.048*
C25 0.8263 (2) 0.04271 (8) 1.0911 (2) 0.0294 (5)
H25 0.7472 0.0485 1.0518 0.035*
C26 0.40317 (17) 0.12920 (7) 0.91747 (17) 0.0144 (4)
C27 0.43678 (19) 0.11373 (8) 1.03101 (18) 0.0211 (4)
H27 0.5168 0.1076 1.0661 0.025*
C28 0.3548 (2) 0.10713 (8) 1.0934 (2) 0.0258 (5)
H28 0.3784 0.0962 1.1705 0.031*
C29 0.2380 (2) 0.11659 (8) 1.0429 (2) 0.0251 (5)
H29 0.1817 0.1122 1.0855 0.030*
C30 0.20359 (19) 0.13244 (8) 0.9305 (2) 0.0236 (5)
H30 0.1237 0.1393 0.8966 0.028*
C31 0.28542 (18) 0.13847 (7) 0.86665 (19) 0.0189 (4)
H31 0.2613 0.1488 0.7891 0.023*
C32 0.45452 (17) 0.17405 (7) 0.72094 (17) 0.0145 (4)
C33 0.45617 (18) 0.22199 (7) 0.74552 (19) 0.0190 (4)
H33 0.4862 0.2326 0.8224 0.023*
C34 0.41417 (19) 0.25422 (7) 0.6582 (2) 0.0229 (5)
H34 0.4137 0.2867 0.6758 0.028*
C35 0.37279 (19) 0.23917 (8) 0.5452 (2) 0.0237 (5)
H35 0.3453 0.2613 0.4853 0.028*
C36 0.37170 (19) 0.19174 (8) 0.52005 (19) 0.0225 (4)
H36 0.3438 0.1814 0.4427 0.027*
C37 0.41126 (18) 0.15910 (7) 0.60767 (18) 0.0178 (4)
H37 0.4087 0.1266 0.5901 0.021*
C38 0.51237 (17) 0.07648 (7) 0.77110 (17) 0.0151 (4)
C39 0.4272 (2) 0.04295 (8) 0.7711 (2) 0.0248 (5)
H39 0.3669 0.0495 0.8077 0.030*
C40 0.4301 (2) −0.00014 (8) 0.7180 (2) 0.0308 (5)
H40 0.3719 −0.0229 0.7187 0.037*
C41 0.5173 (2) −0.01007 (7) 0.66374 (19) 0.0252 (5)
H41 0.5186 −0.0395 0.6270 0.030*
C42 0.60271 (19) 0.02319 (7) 0.66335 (18) 0.0212 (4)
H42 0.6624 0.0166 0.6259 0.025*
C43 0.60110 (19) 0.06598 (7) 0.71745 (18) 0.0186 (4)
H43 0.6606 0.0884 0.7182 0.022*
N1 0.88013 (15) 0.17306 (6) 0.64028 (14) 0.0148 (3)
H1 0.8585 0.1958 0.5899 0.018*
N2 0.74178 (15) 0.20477 (6) 0.71595 (15) 0.0162 (3)
H2A 0.727 (2) 0.2227 (8) 0.6547 (17) 0.019*
H2B 0.721 (2) 0.2127 (8) 0.7774 (17) 0.019*
N3 1.18951 (16) 0.05374 (6) 0.49253 (16) 0.0226 (4)
O1 1.25615 (14) 0.07175 (6) 0.44157 (15) 0.0309 (4)
O2 1.18095 (15) 0.01114 (6) 0.50467 (15) 0.0314 (4)
S1 0.86821 (4) 0.13848 (2) 0.84576 (4) 0.01445 (10)
Cl1 0.73410 (4) 0.24665 (2) 0.97189 (4) 0.01787 (10)
Ag1 0.70884 (2) 0.15453 (2) 0.95816 (2) 0.01254 (6)
P1 0.51614 (4) 0.13383 (2) 0.83979 (4) 0.01185 (10)
P2 0.82115 (4) 0.13508 (2) 1.15318 (4) 0.01158 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0103 (9) 0.0120 (9) 0.0179 (9) −0.0021 (7) 0.0045 (7) −0.0016 (7)
C2 0.0143 (10) 0.0136 (9) 0.0140 (9) 0.0017 (7) 0.0042 (7) −0.0015 (7)
C3 0.0171 (11) 0.0123 (9) 0.0214 (10) −0.0012 (7) 0.0072 (8) −0.0011 (7)
C4 0.0163 (11) 0.0192 (10) 0.0233 (10) −0.0021 (8) 0.0082 (8) −0.0030 (8)
C5 0.0146 (10) 0.0176 (10) 0.0202 (10) 0.0040 (8) 0.0049 (8) −0.0038 (8)
C6 0.0235 (11) 0.0126 (9) 0.0230 (10) 0.0048 (8) 0.0076 (9) 0.0022 (8)
C7 0.0222 (11) 0.0156 (10) 0.0214 (10) 0.0022 (8) 0.0113 (8) 0.0022 (8)
C8 0.0136 (10) 0.0127 (9) 0.0157 (9) −0.0030 (7) 0.0047 (7) −0.0008 (7)
C9 0.0188 (11) 0.0146 (10) 0.0213 (10) 0.0012 (8) 0.0068 (8) 0.0018 (8)
C10 0.0192 (12) 0.0178 (10) 0.0293 (12) 0.0029 (8) 0.0118 (9) −0.0001 (8)
C11 0.0185 (11) 0.0180 (10) 0.0234 (10) −0.0045 (8) 0.0113 (8) −0.0033 (8)
C12 0.0207 (11) 0.0178 (10) 0.0192 (10) −0.0020 (8) 0.0064 (8) 0.0031 (8)
C13 0.0140 (10) 0.0152 (9) 0.0208 (10) 0.0011 (7) 0.0052 (8) 0.0019 (8)
C14 0.0120 (10) 0.0103 (9) 0.0179 (9) 0.0008 (7) 0.0028 (7) 0.0028 (7)
C15 0.0173 (10) 0.0130 (9) 0.0192 (10) 0.0013 (7) 0.0056 (8) 0.0005 (7)
C16 0.0251 (12) 0.0116 (9) 0.0219 (10) −0.0014 (8) 0.0009 (9) −0.0014 (8)
C17 0.0177 (11) 0.0165 (10) 0.0289 (11) −0.0052 (8) −0.0020 (9) 0.0039 (8)
C18 0.0150 (11) 0.0290 (12) 0.0278 (11) −0.0047 (9) 0.0077 (9) 0.0037 (9)
C19 0.0136 (10) 0.0227 (11) 0.0215 (10) −0.0018 (8) 0.0050 (8) −0.0021 (8)
C20 0.0256 (11) 0.0145 (10) 0.0177 (9) 0.0016 (8) 0.0116 (8) 0.0019 (8)
C21 0.0290 (12) 0.0211 (11) 0.0218 (10) 0.0117 (9) 0.0105 (9) 0.0064 (8)
C22 0.0482 (16) 0.0373 (14) 0.0283 (12) 0.0303 (12) 0.0197 (11) 0.0134 (11)
C23 0.085 (2) 0.0183 (12) 0.0312 (13) 0.0258 (13) 0.0327 (14) 0.0094 (10)
C24 0.076 (2) 0.0108 (11) 0.0357 (14) 0.0014 (12) 0.0192 (14) −0.0020 (9)
C25 0.0399 (15) 0.0176 (11) 0.0316 (12) −0.0019 (10) 0.0110 (11) −0.0044 (9)
C26 0.0130 (10) 0.0102 (9) 0.0215 (10) −0.0009 (7) 0.0072 (8) −0.0034 (7)
C27 0.0159 (11) 0.0244 (11) 0.0234 (10) 0.0003 (8) 0.0061 (8) 0.0003 (8)
C28 0.0268 (12) 0.0283 (12) 0.0262 (11) −0.0029 (9) 0.0137 (9) 0.0009 (9)
C29 0.0224 (12) 0.0209 (11) 0.0390 (13) −0.0035 (9) 0.0208 (10) −0.0038 (9)
C30 0.0125 (11) 0.0210 (11) 0.0400 (13) −0.0005 (8) 0.0115 (9) −0.0033 (9)
C31 0.0152 (10) 0.0157 (10) 0.0255 (10) 0.0003 (8) 0.0049 (8) −0.0028 (8)
C32 0.0082 (9) 0.0146 (9) 0.0218 (10) −0.0002 (7) 0.0056 (7) 0.0013 (7)
C33 0.0131 (10) 0.0168 (10) 0.0262 (10) 0.0000 (8) 0.0034 (8) 0.0000 (8)
C34 0.0152 (11) 0.0150 (10) 0.0380 (12) 0.0000 (8) 0.0059 (9) 0.0027 (9)
C35 0.0147 (11) 0.0254 (11) 0.0299 (11) 0.0012 (8) 0.0041 (9) 0.0124 (9)
C36 0.0159 (11) 0.0321 (12) 0.0201 (10) −0.0002 (9) 0.0054 (8) 0.0043 (9)
C37 0.0121 (10) 0.0200 (10) 0.0224 (10) −0.0012 (7) 0.0064 (8) −0.0004 (8)
C38 0.0147 (10) 0.0120 (9) 0.0177 (9) 0.0017 (7) 0.0027 (8) 0.0005 (7)
C39 0.0241 (12) 0.0201 (11) 0.0333 (12) −0.0063 (9) 0.0131 (10) −0.0074 (9)
C40 0.0374 (14) 0.0161 (11) 0.0423 (14) −0.0132 (10) 0.0165 (11) −0.0091 (10)
C41 0.0345 (13) 0.0134 (10) 0.0283 (11) −0.0011 (9) 0.0089 (10) −0.0050 (8)
C42 0.0228 (11) 0.0169 (10) 0.0252 (10) 0.0034 (8) 0.0088 (9) −0.0027 (8)
C43 0.0185 (11) 0.0142 (10) 0.0242 (10) −0.0020 (8) 0.0073 (8) −0.0027 (8)
N1 0.0176 (9) 0.0113 (8) 0.0181 (8) 0.0044 (6) 0.0091 (7) 0.0038 (6)
N2 0.0171 (9) 0.0159 (8) 0.0181 (8) 0.0049 (6) 0.0090 (7) 0.0037 (7)
N3 0.0205 (10) 0.0211 (9) 0.0262 (9) 0.0052 (7) 0.0063 (8) −0.0058 (7)
O1 0.0248 (9) 0.0320 (9) 0.0425 (10) 0.0001 (7) 0.0205 (8) −0.0101 (7)
O2 0.0366 (10) 0.0196 (8) 0.0410 (10) 0.0112 (7) 0.0158 (8) −0.0010 (7)
S1 0.0120 (2) 0.0160 (2) 0.0164 (2) 0.00335 (17) 0.00569 (17) 0.00330 (17)
Cl1 0.0236 (3) 0.0121 (2) 0.0184 (2) −0.00173 (17) 0.00615 (18) −0.00192 (16)
Ag1 0.00999 (9) 0.01314 (8) 0.01461 (8) −0.00147 (4) 0.00338 (6) 0.00063 (5)
P1 0.0085 (2) 0.0110 (2) 0.0165 (2) −0.00051 (16) 0.00401 (18) −0.00144 (17)
P2 0.0108 (2) 0.0098 (2) 0.0145 (2) −0.00040 (17) 0.00404 (18) 0.00016 (17)

Geometric parameters (Å, º)

C1—N2 1.333 (3) C24—C25 1.384 (3)
C1—N1 1.356 (2) C24—H24 0.9500
C1—S1 1.698 (2) C25—H25 0.9500
C2—C3 1.396 (3) C26—C27 1.392 (3)
C2—C7 1.397 (3) C26—C31 1.398 (3)
C2—N1 1.403 (2) C26—P1 1.825 (2)
C3—C4 1.381 (3) C27—C28 1.386 (3)
C3—H3 0.9500 C27—H27 0.9500
C4—C5 1.384 (3) C28—C29 1.387 (3)
C4—H4 0.9500 C28—H28 0.9500
C5—C6 1.388 (3) C29—C30 1.384 (3)
C5—N3 1.465 (3) C29—H29 0.9500
C6—C7 1.384 (3) C30—C31 1.394 (3)
C6—H6 0.9500 C30—H30 0.9500
C7—H7 0.9500 C31—H31 0.9500
C8—C9 1.390 (3) C32—C37 1.393 (3)
C8—C13 1.395 (3) C32—C33 1.398 (3)
C8—P2 1.824 (2) C32—P1 1.831 (2)
C9—C10 1.391 (3) C33—C34 1.388 (3)
C9—H9 0.9500 C33—H33 0.9500
C10—C11 1.385 (3) C34—C35 1.389 (3)
C10—H10 0.9500 C34—H34 0.9500
C11—C12 1.385 (3) C35—C36 1.385 (3)
C11—H11 0.9500 C35—H35 0.9500
C12—C13 1.389 (3) C36—C37 1.393 (3)
C12—H12 0.9500 C36—H36 0.9500
C13—H13 0.9500 C37—H37 0.9500
C14—C15 1.392 (3) C38—C39 1.391 (3)
C14—C19 1.396 (3) C38—C43 1.401 (3)
C14—P2 1.823 (2) C38—P1 1.827 (2)
C15—C16 1.395 (3) C39—C40 1.389 (3)
C15—H15 0.9500 C39—H39 0.9500
C16—C17 1.381 (3) C40—C41 1.387 (3)
C16—H16 0.9500 C40—H40 0.9500
C17—C18 1.389 (3) C41—C42 1.388 (3)
C17—H17 0.9500 C41—H41 0.9500
C18—C19 1.381 (3) C42—C43 1.385 (3)
C18—H18 0.9500 C42—H42 0.9500
C19—H19 0.9500 C43—H43 0.9500
C20—C25 1.394 (3) N1—H1 0.8800
C20—C21 1.398 (3) N2—H2A 0.877 (16)
C20—P2 1.824 (2) N2—H2B 0.870 (16)
C21—C22 1.397 (3) N3—O1 1.230 (3)
C21—H21 0.9500 N3—O2 1.231 (2)
C22—C23 1.379 (4) S1—Ag1 2.6316 (5)
C22—H22 0.9500 Cl1—Ag1 2.6435 (5)
C23—C24 1.379 (4) Ag1—P1 2.4330 (5)
C23—H23 0.9500 Ag1—P2 2.4440 (5)
N2—C1—N1 114.37 (17) C28—C27—H27 119.6
N2—C1—S1 121.88 (15) C26—C27—H27 119.6
N1—C1—S1 123.74 (15) C27—C28—C29 119.8 (2)
C3—C2—C7 119.50 (18) C27—C28—H28 120.1
C3—C2—N1 116.00 (17) C29—C28—H28 120.1
C7—C2—N1 124.28 (18) C30—C29—C28 120.1 (2)
C4—C3—C2 120.63 (19) C30—C29—H29 120.0
C4—C3—H3 119.7 C28—C29—H29 120.0
C2—C3—H3 119.7 C29—C30—C31 120.4 (2)
C3—C4—C5 118.92 (19) C29—C30—H30 119.8
C3—C4—H4 120.5 C31—C30—H30 119.8
C5—C4—H4 120.5 C30—C31—C26 119.6 (2)
C4—C5—C6 121.62 (19) C30—C31—H31 120.2
C4—C5—N3 119.05 (19) C26—C31—H31 120.2
C6—C5—N3 119.31 (18) C37—C32—C33 119.18 (19)
C7—C6—C5 119.18 (19) C37—C32—P1 122.97 (15)
C7—C6—H6 120.4 C33—C32—P1 117.79 (15)
C5—C6—H6 120.4 C34—C33—C32 120.3 (2)
C6—C7—C2 120.08 (19) C34—C33—H33 119.8
C6—C7—H7 120.0 C32—C33—H33 119.8
C2—C7—H7 120.0 C33—C34—C35 120.2 (2)
C9—C8—C13 119.44 (18) C33—C34—H34 119.9
C9—C8—P2 117.84 (15) C35—C34—H34 119.9
C13—C8—P2 122.70 (15) C36—C35—C34 119.7 (2)
C8—C9—C10 120.44 (19) C36—C35—H35 120.1
C8—C9—H9 119.8 C34—C35—H35 120.1
C10—C9—H9 119.8 C35—C36—C37 120.3 (2)
C11—C10—C9 119.8 (2) C35—C36—H36 119.8
C11—C10—H10 120.1 C37—C36—H36 119.8
C9—C10—H10 120.1 C32—C37—C36 120.2 (2)
C10—C11—C12 120.00 (19) C32—C37—H37 119.9
C10—C11—H11 120.0 C36—C37—H37 119.9
C12—C11—H11 120.0 C39—C38—C43 118.99 (18)
C11—C12—C13 120.40 (19) C39—C38—P1 123.24 (16)
C11—C12—H12 119.8 C43—C38—P1 117.76 (15)
C13—C12—H12 119.8 C40—C39—C38 120.3 (2)
C12—C13—C8 119.86 (19) C40—C39—H39 119.9
C12—C13—H13 120.1 C38—C39—H39 119.9
C8—C13—H13 120.1 C41—C40—C39 120.4 (2)
C15—C14—C19 118.90 (18) C41—C40—H40 119.8
C15—C14—P2 122.60 (15) C39—C40—H40 119.8
C19—C14—P2 118.24 (15) C40—C41—C42 119.7 (2)
C14—C15—C16 120.11 (19) C40—C41—H41 120.2
C14—C15—H15 119.9 C42—C41—H41 120.2
C16—C15—H15 119.9 C43—C42—C41 120.1 (2)
C17—C16—C15 120.3 (2) C43—C42—H42 119.9
C17—C16—H16 119.9 C41—C42—H42 119.9
C15—C16—H16 119.9 C42—C43—C38 120.50 (19)
C16—C17—C18 119.86 (19) C42—C43—H43 119.7
C16—C17—H17 120.1 C38—C43—H43 119.7
C18—C17—H17 120.1 C1—N1—C2 130.59 (17)
C19—C18—C17 120.0 (2) C1—N1—H1 114.7
C19—C18—H18 120.0 C2—N1—H1 114.7
C17—C18—H18 120.0 C1—N2—H2A 117.7 (16)
C18—C19—C14 120.8 (2) C1—N2—H2B 117.4 (16)
C18—C19—H19 119.6 H2A—N2—H2B 122 (2)
C14—C19—H19 119.6 O1—N3—O2 123.66 (18)
C25—C20—C21 119.2 (2) O1—N3—C5 118.22 (18)
C25—C20—P2 116.29 (17) O2—N3—C5 118.10 (18)
C21—C20—P2 124.46 (17) C1—S1—Ag1 103.88 (7)
C22—C21—C20 119.3 (2) P1—Ag1—P2 134.741 (17)
C22—C21—H21 120.3 P1—Ag1—S1 110.349 (16)
C20—C21—H21 120.3 P2—Ag1—S1 99.654 (16)
C23—C22—C21 120.8 (3) P1—Ag1—Cl1 110.591 (16)
C23—C22—H22 119.6 P2—Ag1—Cl1 98.075 (15)
C21—C22—H22 119.6 S1—Ag1—Cl1 96.894 (15)
C22—C23—C24 119.8 (2) C26—P1—C38 103.36 (9)
C22—C23—H23 120.1 C26—P1—C32 104.31 (9)
C24—C23—H23 120.1 C38—P1—C32 104.41 (9)
C23—C24—C25 120.3 (3) C26—P1—Ag1 114.88 (7)
C23—C24—H24 119.9 C38—P1—Ag1 113.04 (7)
C25—C24—H24 119.9 C32—P1—Ag1 115.51 (6)
C24—C25—C20 120.5 (3) C14—P2—C20 105.80 (9)
C24—C25—H25 119.7 C14—P2—C8 105.29 (9)
C20—C25—H25 119.7 C20—P2—C8 104.31 (9)
C27—C26—C31 119.35 (19) C14—P2—Ag1 110.44 (6)
C27—C26—P1 117.57 (15) C20—P2—Ag1 110.21 (7)
C31—C26—P1 123.02 (16) C8—P2—Ag1 119.78 (7)
C28—C27—C26 120.7 (2)
C7—C2—C3—C4 2.9 (3) C38—C39—C40—C41 −0.4 (4)
N1—C2—C3—C4 −171.96 (18) C39—C40—C41—C42 0.4 (4)
C2—C3—C4—C5 −1.4 (3) C40—C41—C42—C43 0.4 (3)
C3—C4—C5—C6 −1.0 (3) C41—C42—C43—C38 −1.2 (3)
C3—C4—C5—N3 177.66 (18) C39—C38—C43—C42 1.2 (3)
C4—C5—C6—C7 1.7 (3) P1—C38—C43—C42 −179.65 (16)
N3—C5—C6—C7 −176.90 (19) N2—C1—N1—C2 −171.97 (19)
C5—C6—C7—C2 −0.1 (3) S1—C1—N1—C2 9.2 (3)
C3—C2—C7—C6 −2.1 (3) C3—C2—N1—C1 −153.6 (2)
N1—C2—C7—C6 172.30 (19) C7—C2—N1—C1 31.8 (3)
C13—C8—C9—C10 0.6 (3) C4—C5—N3—O1 7.4 (3)
P2—C8—C9—C10 179.24 (16) C6—C5—N3—O1 −173.91 (19)
C8—C9—C10—C11 −1.4 (3) C4—C5—N3—O2 −171.0 (2)
C9—C10—C11—C12 0.7 (3) C6—C5—N3—O2 7.7 (3)
C10—C11—C12—C13 0.8 (3) N2—C1—S1—Ag1 7.68 (17)
C11—C12—C13—C8 −1.5 (3) N1—C1—S1—Ag1 −173.58 (15)
C9—C8—C13—C12 0.8 (3) C27—C26—P1—C38 91.38 (17)
P2—C8—C13—C12 −177.71 (15) C31—C26—P1—C38 −85.81 (18)
C19—C14—C15—C16 −1.9 (3) C27—C26—P1—C32 −159.69 (16)
P2—C14—C15—C16 −175.92 (15) C31—C26—P1—C32 23.13 (19)
C14—C15—C16—C17 −0.5 (3) C27—C26—P1—Ag1 −32.24 (18)
C15—C16—C17—C18 1.7 (3) C31—C26—P1—Ag1 150.58 (15)
C16—C17—C18—C19 −0.6 (3) C39—C38—P1—C26 8.1 (2)
C17—C18—C19—C14 −1.8 (3) C43—C38—P1—C26 −170.92 (16)
C15—C14—C19—C18 3.1 (3) C39—C38—P1—C32 −100.71 (19)
P2—C14—C19—C18 177.33 (17) C43—C38—P1—C32 80.22 (17)
C25—C20—C21—C22 1.1 (3) C39—C38—P1—Ag1 132.96 (17)
P2—C20—C21—C22 −177.62 (17) C43—C38—P1—Ag1 −46.11 (17)
C20—C21—C22—C23 −1.0 (3) C37—C32—P1—C26 −104.98 (18)
C21—C22—C23—C24 −0.3 (4) C33—C32—P1—C26 77.84 (17)
C22—C23—C24—C25 1.6 (4) C37—C32—P1—C38 3.18 (19)
C23—C24—C25—C20 −1.6 (4) C33—C32—P1—C38 −174.00 (16)
C21—C20—C25—C24 0.2 (3) C37—C32—P1—Ag1 127.96 (16)
P2—C20—C25—C24 179.03 (19) C33—C32—P1—Ag1 −49.22 (17)
C31—C26—C27—C28 0.5 (3) C15—C14—P2—C20 −126.80 (16)
P1—C26—C27—C28 −176.77 (17) C19—C14—P2—C20 59.16 (17)
C26—C27—C28—C29 −0.8 (3) C15—C14—P2—C8 −16.70 (18)
C27—C28—C29—C30 0.2 (3) C19—C14—P2—C8 169.26 (16)
C28—C29—C30—C31 0.8 (3) C15—C14—P2—Ag1 113.94 (15)
C29—C30—C31—C26 −1.1 (3) C19—C14—P2—Ag1 −60.09 (16)
C27—C26—C31—C30 0.5 (3) C25—C20—P2—C14 −163.63 (17)
P1—C26—C31—C30 177.59 (16) C21—C20—P2—C14 15.1 (2)
C37—C32—C33—C34 0.6 (3) C25—C20—P2—C8 85.58 (18)
P1—C32—C33—C34 177.89 (16) C21—C20—P2—C8 −95.71 (19)
C32—C33—C34—C35 −1.6 (3) C25—C20—P2—Ag1 −44.22 (18)
C33—C34—C35—C36 1.1 (3) C21—C20—P2—Ag1 134.49 (16)
C34—C35—C36—C37 0.4 (3) C9—C8—P2—C14 92.78 (17)
C33—C32—C37—C36 0.9 (3) C13—C8—P2—C14 −88.67 (17)
P1—C32—C37—C36 −176.27 (16) C9—C8—P2—C20 −156.06 (16)
C35—C36—C37—C32 −1.4 (3) C13—C8—P2—C20 22.50 (19)
C43—C38—C39—C40 −0.4 (3) C9—C8—P2—Ag1 −32.22 (18)
P1—C38—C39—C40 −179.50 (19) C13—C8—P2—Ag1 146.34 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1i 0.88 2.41 3.2454 (17) 159
N2—H2A···Cl1i 0.88 (2) 2.39 (2) 3.2257 (18) 160 (2)
N2—H2B···Cl1 0.87 (2) 2.50 (2) 3.3247 (18) 159 (2)
C12—H12···O2ii 0.95 2.60 3.272 (3) 129

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y, −z+2.

References

  1. Bielenica, A., Stefańska, J., Stępień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M. & Struga, M. (2015). Eur. J. Med. Chem. 101, 111–125. [DOI] [PubMed]
  2. Cordwell, S. C. & Thingholm, T. E. (2010). Proteomics, 10, 611–627. [DOI] [PubMed]
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Mekarat, S., Pakawatchai, C. & Saithong, S. (2014). Acta Cryst. E70, m281–m282. [DOI] [PMC free article] [PubMed]
  7. Nimthong-Roldán, A., Promsuwhan, N., Puetpaiboon, W. & Wattanakanjana, Y. (2017). Acta Cryst. E73, 41–44. [DOI] [PMC free article] [PubMed]
  8. Nimthong-Roldán, A., Ratthiwal, J. & Wattanakanjana, Y. (2015a). Acta Cryst. E71, m133–m134. [DOI] [PMC free article] [PubMed]
  9. Nimthong-Roldán, A., Wattanakanjana, Y. & Rodkeaw, J. (2015b). Acta Cryst. E71, m89–m90. [DOI] [PMC free article] [PubMed]
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Rigaku (2014). CrystalClear-SM Expert. Rigaku Corporation, The Woodlands, Texas, USA.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Wattanakanjana, Y., Nimthong, A. & Darasuriyong, C. (2014). Acta Cryst. E70, m337–m338. [DOI] [PMC free article] [PubMed]
  15. Wattanakanjana, Y., Nimthong-Roldán, A., Palavat, S. & Puetpaiboon, W. (2015). Acta Cryst. E71, m187–m188. [DOI] [PMC free article] [PubMed]
  16. Wattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572–m1573. [DOI] [PMC free article] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Wu, J., Shi, Q., Chen, Z., He, M., Jin, L. & Hu, D. (2012). Molecules, 17, 5139–5150. [DOI] [PMC free article] [PubMed]
  19. Xian, L., Wang, Y. & Zhang, B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 411–412.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017006405/lh5841sup1.cif

e-73-00829-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006405/lh5841Isup2.hkl

e-73-00829-Isup2.hkl (602.9KB, hkl)

CCDC reference: 1546767

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES