Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 12;73(Pt 6):849–852. doi: 10.1107/S2056989017006922

Crystal structure of phenyl N-(3,5-di­methyl­phenyl)carbamate

Y AaminaNaaz a, Subramaniyan Sathiyaraj b, Sundararaj Kalaimani b, A Sultan Nasar b, A SubbiahPandi a,*
PMCID: PMC5458307  PMID: 28638642

The asymmetric unit of the title carbamate, contains two independent mol­ecules (A and B) with similar conformations. In the crystal, they are arranged alternately, forming –ABAB– chains linked by NHO(carbon­yl) hydrogen bonds, which extend along the a-axis direction.

Keywords: crystal structure, carbamate, ester, (di­methyl­phen­yl)carbamate, N—H⋯O hydrogen bonding, C—H⋯π inter­actions, π–π inter­actions

Abstract

The asymmetric unit of the title compound, C15H15NO2, contains two independent mol­ecules (A and B). The di­methyl­phenyl ring, the phenyl ring and the central carbamate N—C(=O)—O group are not coplanar. In mol­ecule A, the di­methyl­phenyl and phenyl rings are inclined to the carbamate group mean plane by 27.71 (13) and 71.70 (4)°, respectively, and to one another by 84.53 (13)°. The corresponding dihedral angles in mol­ecule B are 34.33 (11), 66.32 (13) and 85.48 (12)°, respectively. In the crystal, the A and B mol­ecules are arranged alternately linked through NHO(carbon­yl) hydrogen bonds, forming –ABAB– chains, which extend along [100]. Within the chains and linking neighbouring chains there are C—H⋯π inter­actions present, forming columns along the a-axis direction. The columns are linked by offset π–π stacking inter­actions, forming a three-dimensional network [shortest centroid–centroid distance = 3.606 (1) Å].

Chemical context  

The The carbamate group is known in biochemistry for its role in biological processes. For example it tunes haemoglobin affinity for O2 during physiological respiration (O’Donnell et al., 1979). Carbamates are widely employed as pharmacological and therapeutic agents (Greig et al., 2005), to inhibit different enzymes such as acetyl- and butyrylcholinesterases (Darvesh et al., 2008), cholesterol esterase (Hosie et al., 1987), elastase (Digenis et al., 1986), chymotrypsin (Lin et al., 2006) and fatty acid amide hydro­lase (FAAH) (Kathuria et al., 2003). In the solid state, the carbamate group acts as both donor and acceptor in hydrogen bonding, favouring the formation of highly stable synthons. Thus, the carbamate group has been proposed as a building block for hydrogen-bonded solids in crystal engineering (Ghosh et al., 2006). Most carbamate compounds of inter­est are phenyl derivatives, similar to the title compound whose synthesis and crystal structure are reported on herein.graphic file with name e-73-00849-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound, Fig. 1, contains two crystallographically independent mol­ecules (A and B), with similar conformations. In mol­ecule A, the di­methyl­phenyl ring (C1–C6) makes a dihedral angle of 84.53 (13)° with the phenyl ring (C10–C15), and in mol­ecule B the di­methyl­phenyl ring (C16–C21) makes a dihedral angle of 85.48 (12)° with the phenyl ring (C25–C30). In mol­ecule A, the aryl rings (C1–C6 and C10–C15) are inclined to the the mean plane of the carbamate N1—C9(=O2)—O1 unit by 27.71 (13) and 71.70 (14)°, respectively. In mol­ecule B, rings C16–C21 and C25–C39 are inclined to the the mean plane of the carbamate N2—C24(=O24)—O13 unit by 34.33 (11) and 66.32 (13)°, respectively. The C9—N1 and C24—N2 distances are 1.336 (3) and 1.335 (3) Å, respectively, indicating partial double-bond character in the carbamate unit.

Figure 1.

Figure 1

A view of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, N—H⋯O(carbon­yl) hydrogen bonds link the mol­ecules to form –ABAB– chains, propagating along the a-axis direction (Table 1 and Fig. 2). Within the chains and linking neighbouring chains there are C—H⋯π inter­actions, between the H16 and H29 hydrogen atoms of the aromatic and phenyl rings (C10–C15, centroid Cg2 and C16–C21, centroid Cg3; see Table 1 and Fig. 3 a). These inter­actions form columns along the a-axis direction, which are linked by offset π–π stacking inter­actions (Fig. 3 b), forming a three-dimensional network, as illustrated in Fig. 4 [Cg1⋯Cg1iii = 3.738 (2) Å, inter­planar distance = 3.521 (1) Å, slippage = 1.257 Å; Cg3⋯Cg3 iv = 3.606 (1) Å, inter­planar distance = 3.462 (1) Å, slippage = 1.007 Å; Cg1 and Cg3 are the centroids of the C1–C6 and C16–C21 rings, respectively; symmetry codes: (iii) −x + 3, −y, −z + 1; (iv) −x + 2, −y + 1, −z + 1].

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of rings C10–C15 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.14 2.957 (2) 159
N2—H2⋯O2 0.86 2.06 2.896 (2) 164
C16—H16⋯Cg2 0.93 2.93 3.659 (2) 136
C29—H29⋯Cg3ii 0.93 2.59 3.508 (3) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound, with the N—H⋯O hydrogen bonds (see Table 1) shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding have been omitted.

Figure 3.

Figure 3

Details of (a) the C—H⋯π inter­actions (thin lines; see Table 1) involving adjacent aromatic rings of the title compound, and (b) the offset π–π inter­actions [dotted lines; Cg1 and Cg3 are the centroids of rings C1–C6 and C16–C21, respectively]. For clarity, H atoms are not involved in these inter­actions have been omitted.

Figure 4.

Figure 4

A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and examples of the C—H⋯π inter­actions as black arrows (see Table 1). The rings involved in π–π inter­actions are blue⋯blue (Cg1; mol­ecule A) and red⋯red (Cg3; mol­ecule B). For clarity, H atoms are not involved in these inter­actions have been omitted.

Database survey  

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016) for the skeleton phenyl phenyl­carbamate yielded 42 hits. Among these structures there are reports of two Pna21 polymorphs of phenyl phenyl­carbamate itself, viz. YEHPOQ (Lehr et al., 2001) and YEHPOQ01 (Shahwar et al., 2009a ), and those of phenyl (4-methyl­phen­yl)carbamate (YOVHOH; Bao et al., 2009) and phen­yl(2-methyl­phen­yl)carbamate (YOVLIF; Shahwar et al., 2009b ). The conformations of all four reported mol­ecules are different. For example, the aromatic rings are inclined to one another by ca 25.8° in YEHPOQ, 42.5° in YEHPOQ01, 59.0° in YOVHOH and 39.2° in YOVLIF, compared to 84.5 (1) and 85.5 (1)°, respectively, in mol­ecules A and B of the title compound.

Synthesis and crystallization  

To a stirred solution of 1.0 g (5.45 mmol) of 3,5 dimethyl aniline dissolved in 100 ml of dry THF was added a calculated 5% excess of phenyl­chloro­foramate in 50 ml of dry THF. The addition rate was such that it took 1.5 h for complete transfer. After the addition was complete, stirring was continued overnight. Excess THF was removed under vacuum at room temperature. The crude product was extracted with ethyl acetate (3 × 100 ml), and then the organic layer was dried over anhydrous sodium sulfate. Removing the solvent under vacuum at room temperature, yielded a light-yellow product which was dried under vacuum to constant weight. Yellow block-like crystals were obtained by slow evaporation of an ethyl acetate solution at room temperature (yield 99%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N– and C-bound H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(N,C) for the H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C15H15NO2
M r 241.28
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 9.4257 (4), 12.2054 (5), 13.2067 (6)
α, β, γ (°) 62.979 (3), 82.329 (3), 87.145 (3)
V3) 1341.29 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.18 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.984, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 31199, 4723, 3376
R int 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.143, 1.09
No. of reflections 4723
No. of parameters 325
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.20

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008) (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017006922/su5370sup1.cif

e-73-00849-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006922/su5370Isup2.hkl

e-73-00849-Isup2.hkl (231.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017006922/su5370Isup3.cml

CCDC reference: 1548793

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Crystal data

C15H15NO2 Z = 4
Mr = 241.28 F(000) = 512
Triclinic, P1 Dx = 1.195 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.4257 (4) Å Cell parameters from 3376 reflections
b = 12.2054 (5) Å θ = 1.7–25.0°
c = 13.2067 (6) Å µ = 0.08 mm1
α = 62.979 (3)° T = 293 K
β = 82.329 (3)° Block, yellow
γ = 87.145 (3)° 0.20 × 0.18 × 0.17 mm
V = 1341.29 (10) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 4723 independent reflections
Radiation source: fine-focus sealed tube 3376 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω and φ scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→11
Tmin = 0.984, Tmax = 0.987 k = −14→14
31199 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.5754P] where P = (Fo2 + 2Fc2)/3
4723 reflections (Δ/σ)max < 0.001
325 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.58017 (15) 0.50462 (14) 0.15809 (14) 0.0562 (5)
O2 1.41427 (14) 0.39474 (15) 0.30750 (13) 0.0566 (6)
N1 1.64082 (17) 0.32555 (16) 0.29043 (15) 0.0457 (6)
C1 1.7338 (2) 0.1239 (2) 0.3932 (2) 0.0532 (8)
C2 1.7388 (3) 0.0131 (2) 0.4911 (3) 0.0626 (9)
C3 1.6482 (3) −0.0046 (2) 0.5884 (2) 0.0642 (9)
O3 1.16793 (15) 0.29093 (14) 0.18417 (14) 0.0529 (6)
C4 1.5555 (3) 0.0854 (2) 0.5912 (2) 0.0590 (8)
O4 0.94345 (14) 0.36607 (14) 0.18663 (13) 0.0491 (5)
C5 1.5507 (2) 0.1955 (2) 0.4921 (2) 0.0503 (8)
C6 1.6388 (2) 0.21386 (19) 0.39347 (19) 0.0435 (7)
C7 1.8376 (4) −0.0869 (3) 0.4895 (3) 0.0977 (13)
C8 1.4618 (4) 0.0653 (3) 0.6999 (2) 0.0914 (13)
C9 1.5337 (2) 0.40501 (19) 0.25803 (18) 0.0420 (7)
C10 1.4810 (2) 0.5974 (2) 0.10787 (19) 0.0505 (7)
C11 1.5007 (3) 0.7082 (2) 0.1060 (3) 0.0703 (10)
C12 1.4096 (4) 0.8039 (3) 0.0507 (3) 0.0948 (13)
C13 1.3023 (4) 0.7864 (3) −0.0004 (3) 0.0933 (12)
C14 1.2842 (3) 0.6744 (3) 0.0022 (2) 0.0795 (12)
C15 1.3748 (2) 0.5789 (3) 0.0561 (2) 0.0595 (9)
N2 1.11656 (17) 0.40705 (15) 0.27069 (15) 0.0425 (6)
C16 1.1256 (2) 0.58070 (18) 0.30825 (17) 0.0422 (7)
C17 1.0624 (2) 0.66070 (19) 0.34863 (18) 0.0468 (7)
C18 0.9176 (2) 0.6468 (2) 0.38825 (19) 0.0505 (8)
C19 0.8359 (2) 0.5547 (2) 0.39031 (18) 0.0467 (7)
C20 0.9016 (2) 0.47436 (19) 0.35201 (17) 0.0418 (7)
C21 1.0452 (2) 0.48834 (17) 0.30963 (16) 0.0365 (6)
C22 1.1512 (3) 0.7594 (2) 0.3502 (3) 0.0725 (10)
C23 0.6792 (3) 0.5403 (3) 0.4352 (3) 0.0721 (10)
C24 1.0631 (2) 0.35729 (17) 0.21212 (17) 0.0382 (6)
C25 1.1406 (2) 0.24132 (19) 0.11142 (18) 0.0417 (7)
C26 1.1482 (3) 0.1170 (2) 0.1526 (2) 0.0724 (10)
C27 1.1370 (4) 0.0660 (3) 0.0796 (3) 0.0925 (13)
C28 1.1152 (3) 0.1379 (3) −0.0306 (3) 0.0758 (12)
C29 1.1068 (3) 0.2615 (3) −0.0702 (2) 0.0630 (9)
C30 1.1207 (2) 0.3150 (2) 0.0001 (2) 0.0522 (8)
H1 1.71910 0.34390 0.24420 0.0550*
H1A 1.79470 0.13780 0.32690 0.0640*
H3 1.64960 −0.07930 0.65390 0.0770*
H5 1.48810 0.25680 0.49240 0.0600*
H7A 1.89210 −0.05870 0.41510 0.1470*
H7B 1.78230 −0.15830 0.50600 0.1470*
H7C 1.90150 −0.10750 0.54620 0.1470*
H8A 1.40440 0.13660 0.68630 0.1370*
H8B 1.52060 0.05130 0.75850 0.1370*
H8C 1.40060 −0.00500 0.72410 0.1370*
H11 1.57400 0.71960 0.14110 0.0840*
H12 1.42170 0.88010 0.04850 0.1140*
H13 1.24120 0.85060 −0.03710 0.1120*
H14 1.21060 0.66280 −0.03260 0.0950*
H15 1.36370 0.50310 0.05710 0.0710*
H2 1.20280 0.38790 0.28630 0.0510*
H16 1.22240 0.58930 0.28020 0.0510*
H18 0.87400 0.70090 0.41420 0.0610*
H20 0.84890 0.41050 0.35480 0.0500*
H22A 1.24840 0.75510 0.31950 0.1090*
H22B 1.14850 0.74710 0.42760 0.1090*
H22C 1.11320 0.83870 0.30460 0.1090*
H23A 0.65130 0.60320 0.45820 0.1080*
H23B 0.66170 0.46090 0.49980 0.1080*
H23C 0.62440 0.54770 0.37610 0.1080*
H26 1.16080 0.06710 0.22880 0.0870*
H27 1.14440 −0.01860 0.10650 0.1110*
H28 1.10600 0.10280 −0.07880 0.0910*
H29 1.09160 0.31090 −0.14580 0.0760*
H30 1.11650 0.40000 −0.02780 0.0630*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0349 (8) 0.0558 (9) 0.0593 (10) 0.0080 (7) −0.0001 (7) −0.0123 (8)
O2 0.0302 (8) 0.0715 (11) 0.0554 (10) 0.0058 (7) −0.0035 (7) −0.0187 (8)
N1 0.0295 (8) 0.0500 (10) 0.0534 (11) 0.0029 (7) −0.0028 (8) −0.0207 (9)
C1 0.0442 (12) 0.0516 (13) 0.0670 (15) 0.0033 (10) −0.0101 (11) −0.0291 (12)
C2 0.0626 (15) 0.0462 (14) 0.0798 (19) 0.0059 (11) −0.0270 (14) −0.0250 (13)
C3 0.0729 (17) 0.0495 (14) 0.0649 (17) −0.0067 (13) −0.0275 (14) −0.0155 (13)
O3 0.0406 (8) 0.0657 (10) 0.0743 (11) 0.0177 (7) −0.0184 (7) −0.0493 (9)
C4 0.0623 (15) 0.0627 (15) 0.0514 (14) −0.0125 (12) −0.0131 (12) −0.0223 (12)
O4 0.0303 (7) 0.0692 (10) 0.0590 (10) 0.0036 (7) −0.0066 (6) −0.0388 (8)
C5 0.0461 (12) 0.0536 (13) 0.0551 (14) −0.0013 (10) −0.0083 (11) −0.0272 (12)
C6 0.0359 (10) 0.0447 (12) 0.0534 (13) −0.0014 (9) −0.0127 (10) −0.0231 (11)
C7 0.101 (2) 0.0603 (18) 0.126 (3) 0.0280 (17) −0.033 (2) −0.0349 (19)
C8 0.108 (3) 0.099 (2) 0.0551 (17) −0.0149 (19) −0.0002 (17) −0.0254 (17)
C9 0.0308 (11) 0.0498 (12) 0.0473 (12) 0.0006 (9) −0.0068 (9) −0.0230 (11)
C10 0.0377 (11) 0.0548 (14) 0.0459 (13) 0.0068 (10) 0.0015 (10) −0.0138 (11)
C11 0.0558 (15) 0.0610 (16) 0.087 (2) 0.0000 (12) −0.0054 (14) −0.0282 (15)
C12 0.084 (2) 0.0554 (18) 0.120 (3) 0.0092 (16) 0.006 (2) −0.0237 (18)
C13 0.075 (2) 0.086 (2) 0.077 (2) 0.0306 (18) −0.0041 (17) −0.0048 (18)
C14 0.0532 (15) 0.123 (3) 0.0531 (16) 0.0237 (17) −0.0125 (12) −0.0324 (18)
C15 0.0443 (13) 0.0827 (18) 0.0530 (14) 0.0074 (12) −0.0024 (11) −0.0337 (13)
N2 0.0291 (8) 0.0530 (10) 0.0556 (11) 0.0062 (7) −0.0086 (7) −0.0332 (9)
C16 0.0387 (11) 0.0465 (12) 0.0404 (12) −0.0029 (9) −0.0024 (9) −0.0192 (10)
C17 0.0582 (13) 0.0401 (11) 0.0411 (12) −0.0021 (10) −0.0078 (10) −0.0169 (10)
C18 0.0579 (14) 0.0536 (13) 0.0463 (13) 0.0118 (11) −0.0064 (11) −0.0291 (11)
C19 0.0407 (11) 0.0610 (14) 0.0447 (12) 0.0064 (10) −0.0052 (9) −0.0299 (11)
C20 0.0358 (10) 0.0506 (12) 0.0431 (12) −0.0009 (9) −0.0025 (9) −0.0252 (10)
C21 0.0345 (10) 0.0395 (10) 0.0353 (11) 0.0036 (8) −0.0058 (8) −0.0168 (9)
C22 0.090 (2) 0.0568 (15) 0.0774 (19) −0.0152 (14) −0.0020 (15) −0.0368 (15)
C23 0.0452 (13) 0.105 (2) 0.085 (2) 0.0088 (13) 0.0023 (13) −0.0629 (18)
C24 0.0307 (10) 0.0400 (11) 0.0419 (11) 0.0010 (8) −0.0021 (8) −0.0176 (9)
C25 0.0350 (10) 0.0473 (12) 0.0492 (13) 0.0049 (9) −0.0086 (9) −0.0269 (11)
C26 0.118 (2) 0.0460 (14) 0.0578 (16) 0.0122 (14) −0.0381 (16) −0.0215 (12)
C27 0.156 (3) 0.0517 (16) 0.090 (2) 0.0190 (18) −0.057 (2) −0.0402 (16)
C28 0.095 (2) 0.081 (2) 0.077 (2) 0.0157 (16) −0.0331 (16) −0.0534 (17)
C29 0.0631 (15) 0.0784 (18) 0.0446 (14) 0.0112 (13) −0.0104 (11) −0.0253 (13)
C30 0.0514 (13) 0.0453 (12) 0.0529 (14) 0.0058 (10) −0.0045 (11) −0.0172 (11)

Geometric parameters (Å, º)

O1—C9 1.361 (3) C11—H11 0.9300
O1—C10 1.405 (3) C12—H12 0.9300
O2—C9 1.205 (2) C13—H13 0.9300
N1—C6 1.422 (3) C14—H14 0.9300
N1—C9 1.336 (3) C15—H15 0.9300
C1—C2 1.387 (4) N2—H2 0.8600
C1—C6 1.383 (3) C16—C21 1.381 (3)
N1—H1 0.8600 C16—C17 1.387 (3)
C2—C3 1.379 (4) C17—C18 1.385 (3)
C2—C7 1.504 (5) C17—C22 1.510 (4)
O3—C25 1.402 (3) C18—C19 1.382 (3)
O3—C24 1.365 (3) C19—C20 1.381 (3)
C3—C4 1.380 (4) C19—C23 1.504 (4)
C4—C5 1.390 (3) C20—C21 1.382 (3)
C4—C8 1.505 (4) C25—C30 1.364 (3)
O4—C24 1.206 (2) C25—C26 1.361 (4)
C5—C6 1.379 (3) C26—C27 1.381 (5)
C10—C15 1.366 (3) C27—C28 1.354 (5)
C10—C11 1.363 (4) C28—C29 1.356 (5)
C11—C12 1.388 (5) C29—C30 1.378 (4)
C12—C13 1.363 (5) C16—H16 0.9300
C13—C14 1.370 (6) C18—H18 0.9300
C14—C15 1.380 (4) C20—H20 0.9300
C1—H1A 0.9300 C22—H22A 0.9600
N2—C24 1.335 (3) C22—H22B 0.9600
N2—C21 1.416 (3) C22—H22C 0.9600
C3—H3 0.9300 C23—H23A 0.9600
C5—H5 0.9300 C23—H23B 0.9600
C7—H7C 0.9600 C23—H23C 0.9600
C7—H7B 0.9600 C26—H26 0.9300
C7—H7A 0.9600 C27—H27 0.9300
C8—H8A 0.9600 C28—H28 0.9300
C8—H8C 0.9600 C29—H29 0.9300
C8—H8B 0.9600 C30—H30 0.9300
C9—O1—C10 117.78 (16) C14—C15—H15 120.00
C6—N1—C9 126.72 (17) C10—C15—H15 121.00
C2—C1—C6 120.4 (2) C21—N2—H2 117.00
C6—N1—H1 117.00 C24—N2—H2 117.00
C9—N1—H1 117.00 C17—C16—C21 120.19 (18)
C3—C2—C7 120.9 (3) C18—C17—C22 121.3 (2)
C1—C2—C3 118.6 (3) C16—C17—C18 118.5 (2)
C1—C2—C7 120.5 (3) C16—C17—C22 120.18 (19)
C2—C3—C4 121.8 (2) C17—C18—C19 121.9 (2)
C24—O3—C25 118.46 (16) C20—C19—C23 120.4 (2)
C3—C4—C5 118.9 (2) C18—C19—C20 118.64 (19)
C3—C4—C8 120.6 (2) C18—C19—C23 121.0 (2)
C5—C4—C8 120.4 (3) C19—C20—C21 120.4 (2)
C4—C5—C6 120.0 (2) C16—C21—C20 120.3 (2)
C1—C6—C5 120.2 (2) N2—C21—C20 122.0 (2)
N1—C6—C5 122.4 (2) N2—C21—C16 117.65 (17)
N1—C6—C1 117.29 (19) O3—C24—O4 123.5 (2)
O1—C9—O2 123.5 (2) O3—C24—N2 108.53 (17)
O1—C9—N1 109.16 (17) O4—C24—N2 127.9 (2)
O2—C9—N1 127.3 (2) O3—C25—C26 117.45 (19)
C11—C10—C15 121.6 (3) C26—C25—C30 120.9 (2)
O1—C10—C11 117.6 (2) O3—C25—C30 121.4 (2)
O1—C10—C15 120.6 (3) C25—C26—C27 119.0 (2)
C10—C11—C12 118.9 (3) C26—C27—C28 120.7 (4)
C11—C12—C13 120.2 (4) C27—C28—C29 119.6 (3)
C12—C13—C14 120.2 (3) C28—C29—C30 120.9 (3)
C13—C14—C15 120.2 (3) C25—C30—C29 118.9 (3)
C10—C15—C14 119.0 (3) C17—C16—H16 120.00
C6—C1—H1A 120.00 C21—C16—H16 120.00
C2—C1—H1A 120.00 C17—C18—H18 119.00
C21—N2—C24 126.38 (17) C19—C18—H18 119.00
C2—C3—H3 119.00 C19—C20—H20 120.00
C4—C3—H3 119.00 C21—C20—H20 120.00
C6—C5—H5 120.00 C17—C22—H22A 109.00
C4—C5—H5 120.00 C17—C22—H22B 109.00
C2—C7—H7C 110.00 C17—C22—H22C 110.00
H7A—C7—H7B 109.00 H22A—C22—H22B 109.00
H7A—C7—H7C 109.00 H22A—C22—H22C 110.00
H7B—C7—H7C 109.00 H22B—C22—H22C 109.00
C2—C7—H7A 109.00 C19—C23—H23A 109.00
C2—C7—H7B 109.00 C19—C23—H23B 110.00
C4—C8—H8A 109.00 C19—C23—H23C 109.00
H8A—C8—H8B 110.00 H23A—C23—H23B 110.00
H8A—C8—H8C 109.00 H23A—C23—H23C 109.00
H8B—C8—H8C 109.00 H23B—C23—H23C 109.00
C4—C8—H8B 109.00 C25—C26—H26 121.00
C4—C8—H8C 109.00 C27—C26—H26 120.00
C10—C11—H11 121.00 C26—C27—H27 120.00
C12—C11—H11 121.00 C28—C27—H27 120.00
C11—C12—H12 120.00 C27—C28—H28 120.00
C13—C12—H12 120.00 C29—C28—H28 120.00
C14—C13—H13 120.00 C28—C29—H29 120.00
C12—C13—H13 120.00 C30—C29—H29 119.00
C13—C14—H14 120.00 C25—C30—H30 120.00
C15—C14—H14 120.00 C29—C30—H30 121.00
C10—O1—C9—N1 178.0 (2) C10—C11—C12—C13 0.2 (5)
C9—O1—C10—C15 −72.6 (3) C11—C12—C13—C14 −0.3 (5)
C9—O1—C10—C11 111.8 (3) C12—C13—C14—C15 −0.3 (5)
C10—O1—C9—O2 −3.0 (3) C13—C14—C15—C10 0.9 (4)
C6—N1—C9—O2 −3.2 (4) C21—N2—C24—O4 −4.3 (4)
C9—N1—C6—C1 156.0 (2) C24—N2—C21—C16 −144.0 (2)
C9—N1—C6—C5 −26.5 (4) C24—N2—C21—C20 38.5 (3)
C6—N1—C9—O1 175.8 (2) C21—N2—C24—O3 176.05 (18)
C6—C1—C2—C3 −0.6 (4) C21—C16—C17—C18 −1.0 (3)
C6—C1—C2—C7 177.4 (3) C21—C16—C17—C22 178.3 (2)
C2—C1—C6—N1 179.3 (2) C17—C16—C21—N2 −178.04 (18)
C2—C1—C6—C5 1.7 (4) C17—C16—C21—C20 −0.5 (3)
C7—C2—C3—C4 −179.2 (3) C22—C17—C18—C19 −178.2 (2)
C1—C2—C3—C4 −1.2 (4) C16—C17—C18—C19 1.1 (3)
C2—C3—C4—C8 −177.7 (3) C17—C18—C19—C23 179.2 (2)
C25—O3—C24—O4 7.3 (3) C17—C18—C19—C20 0.3 (3)
C2—C3—C4—C5 1.9 (4) C18—C19—C20—C21 −1.8 (3)
C24—O3—C25—C26 −120.5 (2) C23—C19—C20—C21 179.3 (2)
C25—O3—C24—N2 −173.11 (18) C19—C20—C21—N2 179.34 (19)
C24—O3—C25—C30 65.6 (3) C19—C20—C21—C16 1.9 (3)
C3—C4—C5—C6 −0.7 (4) O3—C25—C26—C27 −173.2 (3)
C8—C4—C5—C6 178.9 (3) C30—C25—C26—C27 0.7 (4)
C4—C5—C6—C1 −1.1 (3) O3—C25—C30—C29 174.3 (2)
C4—C5—C6—N1 −178.5 (2) C26—C25—C30—C29 0.7 (3)
C11—C10—C15—C14 −1.0 (4) C25—C26—C27—C28 −1.6 (5)
O1—C10—C15—C14 −176.5 (2) C26—C27—C28—C29 1.2 (5)
O1—C10—C11—C12 176.1 (3) C27—C28—C29—C30 0.3 (4)
C15—C10—C11—C12 0.5 (4) C28—C29—C30—C25 −1.2 (4)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of rings C10–C15 and C16–C21, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O4i 0.86 2.14 2.957 (2) 159
N2—H2···O2 0.86 2.06 2.896 (2) 164
C16—H16···Cg2 0.93 2.93 3.659 (2) 136
C29—H29···Cg3ii 0.93 2.59 3.508 (3) 173

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z.

References

  1. Bao, S.-X., Fang, Z., Wang, Y.-L. & Wei, P. (2009). Acta Cryst. E65, o1606. [DOI] [PMC free article] [PubMed]
  2. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Darvesh, S., Darvesh, K. V., McDonald, R. S., Mataija, D., Walsh, R., Mothana, S., Lockridge, O. & Martin, E. (2008). J. Med. Chem. 51, 4200–4212. [DOI] [PubMed]
  4. Digenis, G. A., Agha, B. J., Tsuji, K., Kato, M. & Shinogi, M. (1986). J. Med. Chem. 29, 1468–1476. [DOI] [PubMed]
  5. Ghosh, K., Adhikari, S. & Fröhlich, R. (2006). J. Mol. Struct. 785, 63–67.
  6. Greig, N. H., Sambamurti, K., Yu, Q.-S., Brossi, A., Bruinsma, G. B. & Lahiri, D. K. (2005). Curr. Alzheimer Res. 2, 281–290. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hosie, L., Sutton, L. D. & Quinn, D. M. (1987). J. Biol. Chem. 262, 260–264. [PubMed]
  9. Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., La Rana, G., Calignano, A., Giustino, A., Tattoli, M., Palmery, M., Cuomo, V. & Piomelli, D. (2003). Nat. Med. 9, 76–81. [DOI] [PubMed]
  10. Lehr, A., Reggelin, M. & Schollmeyer, D. (2001). Private communication (refcode YEHPOQ). CCDC, Cambridge, England.
  11. Lin, G., Chiou, S.-Y., Hwu, B.-C. & Hsieh, C.-W. (2006). Protein J. 25, 33–43. [DOI] [PubMed]
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. O’Donnell, S., Mandaro, R., Schuster, T. M. & Arnone, A. (1979). J. Biol. Chem. 254, 12204–12208. [PubMed]
  14. Shahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009b). Acta Cryst. E65, o1629. [DOI] [PMC free article] [PubMed]
  15. Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009a). Acta Cryst. E65, o1363. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017006922/su5370sup1.cif

e-73-00849-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006922/su5370Isup2.hkl

e-73-00849-Isup2.hkl (231.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017006922/su5370Isup3.cml

CCDC reference: 1548793

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES