Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 16;73(Pt 6):853–855. doi: 10.1107/S2056989017006995

Crystal structure of dilead(II) oxochromate(VI) oxotellurate(IV)

Matthias Weil a,*
PMCID: PMC5458308  PMID: 28638643

The crystal structure of Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3). Comparison between the structures is made with the COMPSTRU program.

Keywords: crystal structure, lead, oxochromate(VI), oxotellurate(IV), isotypism

Abstract

Reaction of chromium(III) precursors with TeO2 in PbF2/PbO melts in air led to oxidation of chromium(III) to chromium(VI), whereas tellurium remained its oxidation state of IV. In the resulting title compound, Pb2(CrO4)(TeO3), the two types of anions are isolated from each other, hence a double salt is formed. The two independent Pb2+ cations exhibit coordination number nine under formation of very distorted coordination polyhedra [bond-length range = 2.363 (6)–3.276 (7) Å]. The oxochromate(VI) and oxotellurate(IV) anions have tetra­hedral and trigonal–pyramidal configurations, respectively. In the crystal structure, (001) layers of metal cations alternate with layers of TeO3 2− and CrO4 2− anions along [001], forming a three-dimensional framework structure. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) and is comparatively discussed.

Chemical context  

Pb3Fe2Te2O12 is an oxotellurate(VI) with inter­esting structural features. It crystallizes in the non-centrosymmetric space group Cc and has TeVI and FeIII atoms occupationally disordered at the same sites (Müller-Buschbaum & Wedel, 1997). This compound has been prepared by solid-state reactions from a PbO, Fe2O3 and TeO2 mixture in air, which led to oxidation of TeIV to TeVI. During an attempt to replace iron(III) by chromium(III) to prepare a possible phase with composition ‘Pb3Cr2Te2O12’, the title compound, Pb2(CrO4)(TeO3), was obtained instead while working under similar conditions. Inter­estingly, chromium was then oxidized (CrIII → CrVI) while tellurium remained its oxidation state of IV. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017).

Structural commentary  

All atoms in the asymmetric unit, viz. two Pb, one Cr, one Te and seven O sites, are located on general positions.

The coordination environments of the two Pb2+ cations are markedly different. If only Pb—O bond lengths < 2.8 Å are considered, atom Pb1 is surrounded by six O atoms in the range 2.4–2.8 Å whereas atom Pb2 has four oxygen atoms as coordination partners, three at ∼2.38 Å and one at 2.75 Å. Taking into account the more remote oxygen atoms as well, the coordination numbers are increased to nine for both Pb2+ cations (Fig. 1, Table 1).

Figure 1.

Figure 1

Coordination environments around the two Pb2+ cations in Pb2(CrO4)(TeO3). Pb—O bonds < 2.8 Å are given in full and longer Pb–O bonds are open. Symmetry operators refer to Table 1.

Table 1. Comparison of bond lengths between isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3).

Bond Pb2(CrO4)(TeO3) Pb2(SO4)(TeO3)
Pb1—O2i 2.429 (6) 2.397 (3)
Pb1—O3ii 2.573 (6) 2.594 (3)
Pb1—O2iii 2.594 (6) 2.536 (3)
Pb1—O7iv 2.617 (7) 2.632 (3)
Pb1—O5v 2.750 (7) 2.789 (3)
Pb1—O4i 2.777 (7) 2.677 (3)
Pb1—O6iii 2.850 (7) 3.107 (4)
Pb1—O1ii 2.968 (6) 2.993 (3)
Pb1—O3iii 3.170 (6) 3.206 (3)
Pb2—O3iii 2.363 (6) 2.335 (3)
Pb2—O1ii 2.390 (6) 2.375 (3)
Pb2—O1 2.410 (6) 2.384 (3)
Pb2—O2 2.746 (6) 2.753 (3)
Pb2—O5vi 2.956 (7) 2.981 (4)
Pb2—O4vii 3.128 (7) 3.029 (3)
Pb2—O6iii 3.176 (7) 3.164 (3)
Pb2—O5vii 3.225 (7) 3.200 (4)
Pb2—O4vi 3.276 (7) 3.455 (3)
Te1—O2 1.891 (6) 1.890 (2)
Te1—O3 1.901 (6) 1.878 (2)
Te1—O1 1.902 (6) 1.895 (3)
Cr1—O7 1.634 (7) 1.462 (3)
Cr1—O5 1.640 (7) 1.476 (3)
Cr1—O4 1.653 (7) 1.488 (3)
Cr1—O6 1.667 (7) 1.484 (3)

Symmetry codes: (i) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (ii) −x + 2, −y + 1, −z + 1; (iii) −x + Inline graphic, y − Inline graphic, −z + Inline graphic; (iv) −x + Inline graphic, y − Inline graphic, −z + Inline graphic; (v) −x + 2, −y + 1, −z + 2; (vi) x, y, z − 1; (vii) −x + 3, −y + 1, −z + 2.

The chromium atom shows a tetra­hedral and the tellurium a trigonal–pyramidal coordination by oxygen atoms. These two coordination polyhedra and the corresponding bond lengths ranges are typical for oxochromates(VI) (Pressprich et al., 1988) and oxotellurates(IV) (Christy et al., 2016), respectively.

In the crystal structure, the Pb2+ cations are arranged in layers parallel to (001) at z ∼ 0, ½ and in turn are stacked into columns extending along [010]. The two types of anion polyhedra are isolated and are likewise arranged into columnar arrangements along [010], forming anion layers situated at z ∼ ¼ and ¾. The metal cation and anion layers alternate along [001] and build up the three-dimensional framework of the crystal structure. The 5s 2 and 6s 2 electron lone pairs of the TeIV atoms of the oxotellurate anions and of the Pb2+ cations, respectively, are stereochemically active and point into channels running parallel to the two types of columns along [010] (Fig. 2).

Figure 2.

Figure 2

The crystal structure of Pb2(CrO4)(TeO3) in a projection along [010]. Te atoms and TeO3 2– trigonal pyramids are given in red, CrO4 2− tetra­hedra in green, Pb2+ cations in blue, O atoms are colourless. For clarity, only Pb—O bonds < 2.8 Å are displayed. Displacement ellipsoids are given at the 50% probability level.

Relevant bond lengths of isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3) are compared in Table 1. Whereas the TeO3 2− anions in the two structures show only marginal differences, the expected differences in the X—O bond lengths (X = Cr, S) of the chromate and sulfate tetra­hedra (average values 1.65 and 1.48 Å, respectively) also have consequences for those Pb—O bonds where the corresponding atoms O4–O7 are involved. These Pb—O bonds differ by up to 0.20 Å. A more qu­anti­tative comparison of the two isotypic structures was made with the program COMPSTRU (de la Flor et al., 2016). The degree of lattice distortion, S, is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3) and amounts to 0.007. The maximum distance shows the maximal displacement between atomic positions of paired atoms and is 0.31 Å for atom pair O4. The next largest distances are 0.23 Å for pair O6, 0.17 Å for O5 and 0.13 Å for O7. The pairs of heavy atoms and the Cr/S pair show comparatively small distances of 0.095 Å (Pb1), 0.061 Å (Pb2), 0.087 Å (Te1) and 0.095 Å (Cr1/S1). The arithmetic mean of the distances is 0.12 Å. The measure of similarity (Δ) (Bergerhoff et al., 1999) is 0.034, revealing a close relation between the two structures. Δ takes into consideration the differences in atomic positions and the ratios of the corresponding lattice parameters of the structures.

Synthesis and crystallization  

Cr(NO3)3·9H2O, PbF2, PbO and TeO2 were mixed thoroughly in a stoichiometric ratio of 1:1:2:1 and heated in an open alumina crucible to 1033 K within six h, held at this temperature for 30 h and cooled within eight h to room temperature. Most of the material had evaporated, and only a few orange plates of the title compound were left.

Alternatively, replacement of Cr(NO3)3·9H2O with Cr2O3 under the same reaction conditions likewise led to the formation of Pb2(CrO4)(TeO3).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Starting coordinates were taken from isotypic Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017). The maximum and minimum electron densities are located 1.26 and 0.81 Å, respectively, from atom Pb2.

Table 2. Experimental details.

Crystal data
Chemical formula Pb2(CrO4)(TeO3)
M r 705.98
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.4736 (12), 10.8091 (16), 9.4065 (14)
β (°) 111.098 (12)
V3) 708.95 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 52.91
Crystal size (mm) 0.09 × 0.06 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.264, 0.494
No. of measured, independent and observed [I > 2σ(I)] reflections 23485, 2183, 1760
R int 0.094
(sin θ/λ)max−1) 0.717
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.070, 1.06
No. of reflections 2183
No. of parameters 100
Δρmax, Δρmin (e Å−3) 2.47, −2.33

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXL2014 (Sheldrick, 2015), ATOMS (Dowty, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017006995/hb7677sup1.cif

e-73-00853-sup1.cif (711.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006995/hb7677Isup2.hkl

e-73-00853-Isup2.hkl (175.2KB, hkl)

CCDC reference: 1548953

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray centre of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal diffractometer.

supplementary crystallographic information

Crystal data

Pb2(CrO4)(TeO3) F(000) = 1184
Mr = 705.98 Dx = 6.614 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.4736 (12) Å Cell parameters from 3031 reflections
b = 10.8091 (16) Å θ = 3.1–28.3°
c = 9.4065 (14) Å µ = 52.91 mm1
β = 111.098 (12)° T = 296 K
V = 708.95 (19) Å3 Plate, orange
Z = 4 0.09 × 0.06 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer 1760 reflections with I > 2σ(I)
ω– and φ–scans Rint = 0.094
Absorption correction: multi-scan (SADABS; Bruker, 2015) θmax = 30.7°, θmin = 3.0°
Tmin = 0.264, Tmax = 0.494 h = −10→10
23485 measured reflections k = −15→15
2183 independent reflections l = −13→13

Refinement

Refinement on F2 100 parameters
Least-squares matrix: full 0 restraints
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0264P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 2.47 e Å3
2183 reflections Δρmin = −2.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.86662 (5) 0.16252 (3) 0.49204 (4) 0.01746 (9)
Pb2 1.27667 (5) 0.45615 (3) 0.56450 (4) 0.01735 (9)
Te1 1.11378 (8) 0.63302 (5) 0.81301 (6) 0.01180 (12)
Cr1 1.2298 (2) 0.61161 (13) 1.21196 (16) 0.0152 (3)
O1 1.0417 (9) 0.5911 (6) 0.6035 (7) 0.0187 (13)
O2 1.3339 (8) 0.5323 (5) 0.8562 (7) 0.0159 (12)
O3 1.2413 (9) 0.7803 (5) 0.7920 (6) 0.0153 (12)
O4 1.3081 (10) 0.4675 (6) 1.2262 (8) 0.0295 (17)
O5 1.3146 (11) 0.6714 (6) 1.3836 (8) 0.0292 (16)
O6 1.3082 (11) 0.6927 (7) 1.0953 (8) 0.0331 (18)
O7 0.9957 (10) 0.6054 (7) 1.1419 (9) 0.0337 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.01755 (19) 0.01525 (15) 0.01860 (18) 0.00102 (12) 0.00530 (14) −0.00226 (12)
Pb2 0.01405 (18) 0.01770 (16) 0.01959 (18) 0.00177 (12) 0.00520 (14) 0.00440 (12)
Te1 0.0107 (3) 0.0117 (2) 0.0124 (3) 0.00001 (19) 0.0036 (2) −0.00064 (19)
Cr1 0.0131 (7) 0.0191 (7) 0.0138 (7) −0.0005 (5) 0.0053 (6) −0.0002 (5)
O1 0.013 (3) 0.025 (3) 0.015 (3) 0.003 (3) 0.002 (3) −0.004 (3)
O2 0.014 (3) 0.009 (3) 0.024 (3) 0.003 (2) 0.005 (3) 0.002 (2)
O3 0.018 (3) 0.013 (3) 0.014 (3) −0.003 (2) 0.005 (3) 0.000 (2)
O4 0.032 (4) 0.024 (3) 0.031 (4) 0.003 (3) 0.010 (3) −0.006 (3)
O5 0.041 (4) 0.028 (4) 0.018 (3) 0.007 (3) 0.010 (3) −0.008 (3)
O6 0.040 (5) 0.036 (4) 0.029 (4) −0.018 (3) 0.019 (4) 0.004 (3)
O7 0.017 (4) 0.039 (4) 0.043 (5) 0.005 (3) 0.010 (3) 0.015 (4)

Geometric parameters (Å, º)

Pb1—O2i 2.429 (6) Cr1—Te1x 3.8465 (15)
Pb1—O3ii 2.573 (6) Cr1—Pb1xi 3.9532 (15)
Pb1—O2iii 2.594 (6) Cr1—Pb1v 3.9593 (14)
Pb1—O7iv 2.617 (7) Cr1—Pb1xii 4.1534 (15)
Pb1—O5v 2.750 (7) O1—Pb2ii 2.390 (6)
Pb1—O4i 2.777 (7) O1—Pb1ii 2.968 (6)
Pb1—O6iii 2.850 (7) O1—Pb1xi 4.515 (6)
Pb1—O1ii 2.968 (6) O2—Pb1xi 2.429 (6)
Pb1—O3iii 3.170 (6) O2—Pb1xii 2.594 (6)
Pb1—Te1iii 3.6630 (9) O2—Pb1ii 4.508 (6)
Pb2—O3iii 2.363 (6) O3—Pb2xii 2.363 (6)
Pb2—O1ii 2.390 (6) O3—Pb1ii 2.573 (6)
Pb2—O1 2.410 (6) O3—Pb1xii 3.170 (6)
Pb2—O2 2.746 (6) O4—Pb1xi 2.777 (7)
Pb2—O5vi 2.956 (7) O4—Pb2vii 3.128 (7)
Pb2—O4vii 3.128 (7) O4—Te1v 3.228 (7)
Pb2—O6iii 3.176 (7) O4—Pb2ix 3.276 (7)
Pb2—O5vii 3.225 (7) O4—Pb1xii 4.262 (7)
Pb2—O4vi 3.276 (7) O5—Pb1v 2.750 (7)
Pb2—Te1 3.5567 (7) O5—Pb2ix 2.956 (7)
Te1—O2 1.891 (6) O5—Pb2vii 3.225 (7)
Te1—O3 1.901 (6) O5—Te1x 3.314 (8)
Te1—O1 1.902 (6) O6—Pb1xii 2.850 (7)
Te1—O6 2.608 (7) O6—Te1x 3.097 (7)
Te1—O7v 2.782 (7) O6—Pb2xii 3.176 (7)
Te1—O6viii 3.097 (7) O6—Pb2vii 3.912 (8)
Cr1—O7 1.634 (7) O6—Pb1xi 4.023 (8)
Cr1—O5 1.640 (7) O7—Pb1xiii 2.617 (7)
Cr1—O4 1.653 (7) O7—Te1v 2.782 (7)
Cr1—O6 1.667 (7) O7—Pb2v 4.032 (8)
Cr1—Pb2vii 3.6027 (16) O7—Pb1v 4.081 (8)
Cr1—Pb2ix 3.6204 (15) O7—Pb2ix 4.099 (7)
Cr1—Te1v 3.6339 (16) O7—Pb1xi 4.568 (8)
O2i—Pb1—O3ii 74.19 (19) O7—Cr1—Pb1xi 101.5 (3)
O2i—Pb1—O2iii 73.9 (2) O5—Cr1—Pb1xi 136.8 (3)
O3ii—Pb1—O2iii 126.0 (2) O4—Cr1—Pb1xi 35.4 (3)
O2i—Pb1—O7iv 69.6 (2) O6—Cr1—Pb1xi 80.3 (3)
O3ii—Pb1—O7iv 70.9 (2) Te1—Cr1—Pb1xi 60.35 (2)
O2iii—Pb1—O7iv 132.5 (2) Pb2vii—Cr1—Pb1xi 75.50 (3)
O2i—Pb1—O5v 144.9 (2) Pb2ix—Cr1—Pb1xi 99.99 (3)
O3ii—Pb1—O5v 105.45 (19) Te1v—Cr1—Pb1xi 74.38 (3)
O2iii—Pb1—O5v 125.4 (2) Te1x—Cr1—Pb1xi 110.89 (4)
O7iv—Pb1—O5v 77.1 (2) O7—Cr1—Pb1v 82.5 (3)
O2i—Pb1—O4i 87.9 (2) O5—Cr1—Pb1v 33.7 (3)
O3ii—Pb1—O4i 149.93 (19) O4—Cr1—Pb1v 132.3 (3)
O2iii—Pb1—O4i 68.9 (2) O6—Cr1—Pb1v 109.6 (3)
O7iv—Pb1—O4i 80.3 (2) Te1—Cr1—Pb1v 131.89 (4)
O5v—Pb1—O4i 75.6 (2) Pb2vii—Cr1—Pb1v 97.02 (3)
O2i—Pb1—O6iii 83.2 (2) Pb2ix—Cr1—Pb1v 67.93 (3)
O3ii—Pb1—O6iii 69.8 (2) Te1v—Cr1—Pb1v 101.01 (4)
O2iii—Pb1—O6iii 64.2 (2) Te1x—Cr1—Pb1v 72.07 (3)
O7iv—Pb1—O6iii 136.9 (2) Pb1xi—Cr1—Pb1v 167.69 (4)
O5v—Pb1—O6iii 130.5 (2) O7—Cr1—Pb1xii 132.0 (3)
O4i—Pb1—O6iii 132.9 (2) O5—Cr1—Pb1xii 108.4 (3)
O2i—Pb1—O1ii 127.50 (19) O4—Cr1—Pb1xii 82.4 (3)
O3ii—Pb1—O1ii 59.35 (17) O6—Cr1—Pb1xii 30.7 (3)
O2iii—Pb1—O1ii 113.96 (17) Te1—Cr1—Pb1xii 56.17 (2)
O7iv—Pb1—O1ii 112.2 (2) Pb2vii—Cr1—Pb1xii 62.31 (3)
O5v—Pb1—O1ii 75.3 (2) Pb2ix—Cr1—Pb1xii 129.63 (4)
O4i—Pb1—O1ii 144.43 (19) Te1v—Cr1—Pb1xii 132.87 (4)
O6iii—Pb1—O1ii 59.76 (19) Te1x—Cr1—Pb1xii 54.39 (2)
O2i—Pb1—O3iii 125.43 (18) Pb1xi—Cr1—Pb1xii 59.33 (2)
O3ii—Pb1—O3iii 116.15 (16) Pb1v—Cr1—Pb1xii 126.12 (4)
O2iii—Pb1—O3iii 56.62 (16) Te1—O1—Pb2ii 125.4 (3)
O7iv—Pb1—O3iii 164.00 (19) Te1—O1—Pb2 110.6 (3)
O5v—Pb1—O3iii 87.05 (19) Pb2ii—O1—Pb2 112.1 (2)
O4i—Pb1—O3iii 93.90 (18) Te1—O1—Pb1ii 95.2 (2)
O6iii—Pb1—O3iii 56.72 (18) Pb2ii—O1—Pb1ii 106.0 (2)
O1ii—Pb1—O3iii 64.71 (16) Pb2—O1—Pb1ii 103.7 (2)
O2i—Pb1—Te1iii 94.34 (14) Te1—O1—Pb1xi 55.69 (15)
O3ii—Pb1—Te1iii 114.85 (13) Pb2ii—O1—Pb1xi 121.5 (2)
O2iii—Pb1—Te1iii 29.32 (12) Pb2—O1—Pb1xi 63.04 (13)
O7iv—Pb1—Te1iii 161.34 (16) Pb1ii—O1—Pb1xi 132.40 (18)
O5v—Pb1—Te1iii 116.07 (15) Te1—O2—Pb1xi 121.8 (3)
O4i—Pb1—Te1iii 90.00 (15) Te1—O2—Pb1xii 108.5 (2)
O6iii—Pb1—Te1iii 45.10 (15) Pb1xi—O2—Pb1xii 106.1 (2)
O1ii—Pb1—Te1iii 84.89 (12) Te1—O2—Pb2 98.5 (2)
O3iii—Pb1—Te1iii 31.26 (10) Pb1xi—O2—Pb2 102.47 (19)
O3iii—Pb2—O1ii 87.6 (2) Pb1xii—O2—Pb2 120.4 (2)
O3iii—Pb2—O1 101.9 (2) Te1—O2—Pb1ii 52.16 (15)
O1ii—Pb2—O1 67.9 (2) Pb1xi—O2—Pb1ii 163.9 (2)
O3iii—Pb2—O2 72.00 (18) Pb1xii—O2—Pb1ii 89.88 (14)
O1ii—Pb2—O2 119.0 (2) Pb2—O2—Pb1ii 66.54 (12)
O1—Pb2—O2 61.76 (19) Te1—O3—Pb2xii 118.7 (3)
O3iii—Pb2—O5vi 177.4 (2) Te1—O3—Pb1ii 109.1 (2)
O1ii—Pb2—O5vi 93.8 (2) Pb2xii—O3—Pb1ii 109.8 (2)
O1—Pb2—O5vi 80.6 (2) Te1—O3—Pb1xii 88.8 (2)
O2—Pb2—O5vi 109.06 (17) Pb2xii—O3—Pb1xii 100.75 (19)
O3iii—Pb2—O4vii 95.8 (2) Pb1ii—O3—Pb1xii 129.3 (2)
O1ii—Pb2—O4vii 176.63 (19) Te1—O3—Pb2 58.39 (14)
O1—Pb2—O4vii 110.89 (19) Pb2xii—O3—Pb2 176.2 (2)
O2—Pb2—O4vii 61.95 (18) Pb1ii—O3—Pb2 73.89 (13)
O5vi—Pb2—O4vii 82.9 (2) Pb1xii—O3—Pb2 77.08 (11)
O3iii—Pb2—O6iii 60.41 (19) Cr1—O4—Pb1xi 124.4 (4)
O1ii—Pb2—O6iii 60.90 (19) Cr1—O4—Pb2vii 92.6 (3)
O1—Pb2—O6iii 125.6 (2) Pb1xi—O4—Pb2vii 103.2 (2)
O2—Pb2—O6iii 132.40 (18) Cr1—O4—Te1v 90.3 (3)
O5vi—Pb2—O6iii 118.53 (18) Pb1xi—O4—Te1v 99.5 (2)
O4vii—Pb2—O6iii 121.22 (17) Pb2vii—O4—Te1v 150.2 (3)
O3iii—Pb2—O5vii 79.3 (2) Cr1—O4—Pb2ix 88.1 (3)
O1ii—Pb2—O5vii 132.23 (19) Pb1xi—O4—Pb2ix 147.0 (2)
O1—Pb2—O5vii 159.74 (19) Pb2vii—O4—Pb2ix 78.49 (16)
O2—Pb2—O5vii 100.28 (16) Te1v—O4—Pb2ix 71.93 (15)
O5vi—Pb2—O5vii 98.15 (17) Cr1—O4—Te1 60.7 (2)
O4vii—Pb2—O5vii 49.20 (17) Pb1xi—O4—Te1 64.28 (14)
O6iii—Pb2—O5vii 72.86 (18) Pb2vii—O4—Te1 114.8 (2)
O3iii—Pb2—O4vi 128.57 (18) Te1v—O4—Te1 92.34 (16)
O1ii—Pb2—O4vi 76.61 (19) Pb2ix—O4—Te1 145.4 (2)
O1—Pb2—O4vi 115.84 (19) Cr1—O4—Pb1xii 75.0 (3)
O2—Pb2—O4vi 156.81 (17) Pb1xi—O4—Pb1xii 65.68 (15)
O5vi—Pb2—O4vi 49.92 (17) Pb2vii—O4—Pb1xii 64.16 (13)
O4vii—Pb2—O4vi 101.51 (16) Te1v—O4—Pb1xii 144.5 (2)
O6iii—Pb2—O4vi 69.25 (17) Pb2ix—O4—Pb1xii 137.7 (2)
O5vii—Pb2—O4vi 76.56 (18) Te1—O4—Pb1xii 52.26 (9)
O3iii—Pb2—Te1 87.36 (14) Cr1—O5—Pb1v 126.9 (4)
O1ii—Pb2—Te1 93.13 (15) Cr1—O5—Pb2ix 100.0 (3)
O1—Pb2—Te1 30.03 (14) Pb1v—O5—Pb2ix 96.0 (2)
O2—Pb2—Te1 31.73 (12) Cr1—O5—Pb2vii 89.4 (3)
O5vi—Pb2—Te1 94.68 (13) Pb1v—O5—Pb2vii 143.1 (2)
O4vii—Pb2—Te1 86.63 (13) Pb2ix—O5—Pb2vii 81.85 (17)
O6iii—Pb2—Te1 137.38 (13) Cr1—O5—Te1x 95.9 (3)
O5vii—Pb2—Te1 131.31 (12) Pb1v—O5—Te1x 98.0 (2)
O4vi—Pb2—Te1 141.21 (12) Pb2ix—O5—Te1x 146.0 (3)
O2—Te1—O3 94.3 (3) Pb2vii—O5—Te1x 68.42 (15)
O2—Te1—O1 89.2 (3) Cr1—O6—Te1 109.9 (3)
O3—Te1—O1 93.3 (3) Cr1—O6—Pb1xii 131.9 (4)
O2—Te1—O6 78.5 (3) Te1—O6—Pb1xii 84.2 (2)
O3—Te1—O6 77.4 (2) Cr1—O6—Te1x 103.6 (3)
O1—Te1—O6 163.8 (2) Te1—O6—Te1x 146.3 (3)
O2—Te1—O7v 73.4 (2) Pb1xii—O6—Te1x 75.99 (17)
O3—Te1—O7v 167.7 (2) Cr1—O6—Pb2xii 136.5 (4)
O1—Te1—O7v 87.0 (2) Te1—O6—Pb2xii 78.27 (18)
O6—Te1—O7v 99.2 (2) Pb1xii—O6—Pb2xii 90.68 (17)
O2—Te1—O6viii 150.4 (2) Te1x—O6—Pb2xii 75.03 (16)
O3—Te1—O6viii 72.5 (2) Cr1—O6—Pb2vii 67.0 (2)
O1—Te1—O6viii 66.0 (2) Te1—O6—Pb2vii 135.9 (3)
O6—Te1—O6viii 122.06 (13) Pb1xii—O6—Pb2vii 71.42 (16)
O7v—Te1—O6viii 118.5 (2) Te1x—O6—Pb2vii 61.99 (13)
O7—Cr1—O5 113.0 (4) Pb2xii—O6—Pb2vii 136.1 (2)
O7—Cr1—O4 106.9 (4) Cr1—O6—Pb1xi 75.6 (3)
O5—Cr1—O4 106.9 (3) Te1—O6—Pb1xi 65.61 (16)
O7—Cr1—O6 109.6 (4) Pb1xii—O6—Pb1xi 69.10 (16)
O5—Cr1—O6 109.8 (4) Te1x—O6—Pb1xi 128.5 (2)
O4—Cr1—O6 110.5 (4) Pb2xii—O6—Pb1xi 139.7 (2)
O7—Cr1—Te1 76.0 (3) Pb2vii—O6—Pb1xi 71.46 (13)
O5—Cr1—Te1 151.4 (3) Cr1—O7—Pb1xiii 163.1 (4)
O4—Cr1—Te1 95.3 (3) Cr1—O7—Te1v 107.9 (3)
O6—Cr1—Te1 43.8 (3) Pb1xiii—O7—Te1v 89.0 (2)
O7—Cr1—Pb2vii 161.7 (3) Cr1—O7—Te1 77.3 (3)
O5—Cr1—Pb2vii 63.5 (3) Pb1xiii—O7—Te1 95.7 (2)
O4—Cr1—Pb2vii 60.2 (3) Te1v—O7—Te1 113.1 (2)
O6—Cr1—Pb2vii 87.8 (3) Cr1—O7—Pb2v 117.5 (3)
Te1—Cr1—Pb2vii 116.13 (4) Pb1xiii—O7—Pb2v 71.26 (16)
O7—Cr1—Pb2ix 95.0 (3) Te1v—O7—Pb2v 59.62 (13)
O5—Cr1—Pb2ix 53.5 (3) Te1—O7—Pb2v 164.5 (2)
O4—Cr1—Pb2ix 64.8 (3) Cr1—O7—Pb1v 74.1 (3)
O6—Cr1—Pb2ix 154.9 (3) Pb1xiii—O7—Pb1v 99.4 (2)
Te1—Cr1—Pb2ix 155.08 (4) Te1v—O7—Pb1v 116.1 (2)
Pb2vii—Cr1—Pb2ix 68.28 (3) Te1—O7—Pb1v 128.5 (2)
O7—Cr1—Te1v 46.7 (3) Pb2v—O7—Pb1v 63.88 (12)
O5—Cr1—Te1v 111.3 (3) Cr1—O7—Pb2ix 61.6 (2)
O4—Cr1—Te1v 62.7 (3) Pb1xiii—O7—Pb2ix 129.8 (2)
O6—Cr1—Te1v 138.4 (3) Te1v—O7—Pb2ix 64.15 (14)
Te1—Cr1—Te1v 94.66 (4) Te1—O7—Pb2ix 133.03 (19)
Pb2vii—Cr1—Te1v 116.17 (4) Pb2v—O7—Pb2ix 58.65 (10)
Pb2ix—Cr1—Te1v 63.55 (3) Pb1v—O7—Pb2ix 62.50 (11)
O7—Cr1—Te1x 136.4 (3) Cr1—O7—Pb1xi 58.0 (2)
O5—Cr1—Te1x 59.0 (3) Pb1xiii—O7—Pb1xi 129.7 (2)
O4—Cr1—Te1x 116.4 (3) Te1v—O7—Pb1xi 72.81 (16)
O6—Cr1—Te1x 51.5 (3) Te1—O7—Pb1xi 53.91 (10)
Te1—Cr1—Te1x 95.23 (3) Pb2v—O7—Pb1xi 128.24 (17)
Pb2vii—Cr1—Te1x 59.04 (2) Pb1v—O7—Pb1xi 130.79 (17)
Pb2ix—Cr1—Te1x 106.81 (4) Pb2ix—O7—Pb1xi 83.91 (12)
Te1v—Cr1—Te1x 170.10 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+1; (iii) −x+5/2, y−1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) −x+2, −y+1, −z+2; (vi) x, y, z−1; (vii) −x+3, −y+1, −z+2; (viii) x−1/2, −y+3/2, z−1/2; (ix) x, y, z+1; (x) x+1/2, −y+3/2, z+1/2; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+5/2, y+1/2, −z+3/2; (xiii) −x+3/2, y+1/2, −z+3/2.

References

  1. Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156. [DOI] [PubMed]
  2. Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415–545.
  4. Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.
  5. Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.
  6. Müller-Buschbaum, H.-K. & Wedel, B. (1997). Z. Naturforsch. Teil B, 52, 35–39.
  7. Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. & Gard, H. B. (1988). Inorg. Chem. 27, 260–264.
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Weil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. Accepted. doi:10.1002/zaac.201700016.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017006995/hb7677sup1.cif

e-73-00853-sup1.cif (711.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006995/hb7677Isup2.hkl

e-73-00853-Isup2.hkl (175.2KB, hkl)

CCDC reference: 1548953

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES