The crystal structure of Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3). Comparison between the structures is made with the COMPSTRU program.
Keywords: crystal structure, lead, oxochromate(VI), oxotellurate(IV), isotypism
Abstract
Reaction of chromium(III) precursors with TeO2 in PbF2/PbO melts in air led to oxidation of chromium(III) to chromium(VI), whereas tellurium remained its oxidation state of IV. In the resulting title compound, Pb2(CrO4)(TeO3), the two types of anions are isolated from each other, hence a double salt is formed. The two independent Pb2+ cations exhibit coordination number nine under formation of very distorted coordination polyhedra [bond-length range = 2.363 (6)–3.276 (7) Å]. The oxochromate(VI) and oxotellurate(IV) anions have tetrahedral and trigonal–pyramidal configurations, respectively. In the crystal structure, (001) layers of metal cations alternate with layers of TeO3 2− and CrO4 2− anions along [001], forming a three-dimensional framework structure. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) and is comparatively discussed.
Chemical context
Pb3Fe2Te2O12 is an oxotellurate(VI) with interesting structural features. It crystallizes in the non-centrosymmetric space group Cc and has TeVI and FeIII atoms occupationally disordered at the same sites (Müller-Buschbaum & Wedel, 1997 ▸). This compound has been prepared by solid-state reactions from a PbO, Fe2O3 and TeO2 mixture in air, which led to oxidation of TeIV to TeVI. During an attempt to replace iron(III) by chromium(III) to prepare a possible phase with composition ‘Pb3Cr2Te2O12’, the title compound, Pb2(CrO4)(TeO3), was obtained instead while working under similar conditions. Interestingly, chromium was then oxidized (CrIII → CrVI) while tellurium remained its oxidation state of IV. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017 ▸).
Structural commentary
All atoms in the asymmetric unit, viz. two Pb, one Cr, one Te and seven O sites, are located on general positions.
The coordination environments of the two Pb2+ cations are markedly different. If only Pb—O bond lengths < 2.8 Å are considered, atom Pb1 is surrounded by six O atoms in the range 2.4–2.8 Å whereas atom Pb2 has four oxygen atoms as coordination partners, three at ∼2.38 Å and one at 2.75 Å. Taking into account the more remote oxygen atoms as well, the coordination numbers are increased to nine for both Pb2+ cations (Fig. 1 ▸, Table 1 ▸).
Figure 1.
Coordination environments around the two Pb2+ cations in Pb2(CrO4)(TeO3). Pb—O bonds < 2.8 Å are given in full and longer Pb–O bonds are open. Symmetry operators refer to Table 1 ▸.
Table 1. Comparison of bond lengths between isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3).
| Bond | Pb2(CrO4)(TeO3) | Pb2(SO4)(TeO3) |
|---|---|---|
| Pb1—O2i | 2.429 (6) | 2.397 (3) |
| Pb1—O3ii | 2.573 (6) | 2.594 (3) |
| Pb1—O2iii | 2.594 (6) | 2.536 (3) |
| Pb1—O7iv | 2.617 (7) | 2.632 (3) |
| Pb1—O5v | 2.750 (7) | 2.789 (3) |
| Pb1—O4i | 2.777 (7) | 2.677 (3) |
| Pb1—O6iii | 2.850 (7) | 3.107 (4) |
| Pb1—O1ii | 2.968 (6) | 2.993 (3) |
| Pb1—O3iii | 3.170 (6) | 3.206 (3) |
| Pb2—O3iii | 2.363 (6) | 2.335 (3) |
| Pb2—O1ii | 2.390 (6) | 2.375 (3) |
| Pb2—O1 | 2.410 (6) | 2.384 (3) |
| Pb2—O2 | 2.746 (6) | 2.753 (3) |
| Pb2—O5vi | 2.956 (7) | 2.981 (4) |
| Pb2—O4vii | 3.128 (7) | 3.029 (3) |
| Pb2—O6iii | 3.176 (7) | 3.164 (3) |
| Pb2—O5vii | 3.225 (7) | 3.200 (4) |
| Pb2—O4vi | 3.276 (7) | 3.455 (3) |
| Te1—O2 | 1.891 (6) | 1.890 (2) |
| Te1—O3 | 1.901 (6) | 1.878 (2) |
| Te1—O1 | 1.902 (6) | 1.895 (3) |
| Cr1—O7 | 1.634 (7) | 1.462 (3) |
| Cr1—O5 | 1.640 (7) | 1.476 (3) |
| Cr1—O4 | 1.653 (7) | 1.488 (3) |
| Cr1—O6 | 1.667 (7) | 1.484 (3) |
Symmetry codes: (i) x −
, −y +
, z −
; (ii) −x + 2, −y + 1, −z + 1; (iii) −x +
, y −
, −z +
; (iv) −x +
, y −
, −z +
; (v) −x + 2, −y + 1, −z + 2; (vi) x, y, z − 1; (vii) −x + 3, −y + 1, −z + 2.
The chromium atom shows a tetrahedral and the tellurium a trigonal–pyramidal coordination by oxygen atoms. These two coordination polyhedra and the corresponding bond lengths ranges are typical for oxochromates(VI) (Pressprich et al., 1988 ▸) and oxotellurates(IV) (Christy et al., 2016 ▸), respectively.
In the crystal structure, the Pb2+ cations are arranged in layers parallel to (001) at z ∼ 0, ½ and in turn are stacked into columns extending along [010]. The two types of anion polyhedra are isolated and are likewise arranged into columnar arrangements along [010], forming anion layers situated at z ∼ ¼ and ¾. The metal cation and anion layers alternate along [001] and build up the three-dimensional framework of the crystal structure. The 5s 2 and 6s 2 electron lone pairs of the TeIV atoms of the oxotellurate anions and of the Pb2+ cations, respectively, are stereochemically active and point into channels running parallel to the two types of columns along [010] (Fig. 2 ▸).
Figure 2.
The crystal structure of Pb2(CrO4)(TeO3) in a projection along [010]. Te atoms and TeO3 2– trigonal pyramids are given in red, CrO4 2− tetrahedra in green, Pb2+ cations in blue, O atoms are colourless. For clarity, only Pb—O bonds < 2.8 Å are displayed. Displacement ellipsoids are given at the 50% probability level.
Relevant bond lengths of isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3) are compared in Table 1 ▸. Whereas the TeO3 2− anions in the two structures show only marginal differences, the expected differences in the X—O bond lengths (X = Cr, S) of the chromate and sulfate tetrahedra (average values 1.65 and 1.48 Å, respectively) also have consequences for those Pb—O bonds where the corresponding atoms O4–O7 are involved. These Pb—O bonds differ by up to 0.20 Å. A more quantitative comparison of the two isotypic structures was made with the program COMPSTRU (de la Flor et al., 2016 ▸). The degree of lattice distortion, S, is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3) and amounts to 0.007. The maximum distance shows the maximal displacement between atomic positions of paired atoms and is 0.31 Å for atom pair O4. The next largest distances are 0.23 Å for pair O6, 0.17 Å for O5 and 0.13 Å for O7. The pairs of heavy atoms and the Cr/S pair show comparatively small distances of 0.095 Å (Pb1), 0.061 Å (Pb2), 0.087 Å (Te1) and 0.095 Å (Cr1/S1). The arithmetic mean of the distances is 0.12 Å. The measure of similarity (Δ) (Bergerhoff et al., 1999 ▸) is 0.034, revealing a close relation between the two structures. Δ takes into consideration the differences in atomic positions and the ratios of the corresponding lattice parameters of the structures.
Synthesis and crystallization
Cr(NO3)3·9H2O, PbF2, PbO and TeO2 were mixed thoroughly in a stoichiometric ratio of 1:1:2:1 and heated in an open alumina crucible to 1033 K within six h, held at this temperature for 30 h and cooled within eight h to room temperature. Most of the material had evaporated, and only a few orange plates of the title compound were left.
Alternatively, replacement of Cr(NO3)3·9H2O with Cr2O3 under the same reaction conditions likewise led to the formation of Pb2(CrO4)(TeO3).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. Starting coordinates were taken from isotypic Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017 ▸). The maximum and minimum electron densities are located 1.26 and 0.81 Å, respectively, from atom Pb2.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | Pb2(CrO4)(TeO3) |
| M r | 705.98 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 296 |
| a, b, c (Å) | 7.4736 (12), 10.8091 (16), 9.4065 (14) |
| β (°) | 111.098 (12) |
| V (Å3) | 708.95 (19) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 52.91 |
| Crystal size (mm) | 0.09 × 0.06 × 0.01 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2015 ▸) |
| T min, T max | 0.264, 0.494 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 23485, 2183, 1760 |
| R int | 0.094 |
| (sin θ/λ)max (Å−1) | 0.717 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.031, 0.070, 1.06 |
| No. of reflections | 2183 |
| No. of parameters | 100 |
| Δρmax, Δρmin (e Å−3) | 2.47, −2.33 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017006995/hb7677sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006995/hb7677Isup2.hkl
CCDC reference: 1548953
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The X-ray centre of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal diffractometer.
supplementary crystallographic information
Crystal data
| Pb2(CrO4)(TeO3) | F(000) = 1184 |
| Mr = 705.98 | Dx = 6.614 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.4736 (12) Å | Cell parameters from 3031 reflections |
| b = 10.8091 (16) Å | θ = 3.1–28.3° |
| c = 9.4065 (14) Å | µ = 52.91 mm−1 |
| β = 111.098 (12)° | T = 296 K |
| V = 708.95 (19) Å3 | Plate, orange |
| Z = 4 | 0.09 × 0.06 × 0.01 mm |
Data collection
| Bruker APEXII CCD diffractometer | 1760 reflections with I > 2σ(I) |
| ω– and φ–scans | Rint = 0.094 |
| Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 30.7°, θmin = 3.0° |
| Tmin = 0.264, Tmax = 0.494 | h = −10→10 |
| 23485 measured reflections | k = −15→15 |
| 2183 independent reflections | l = −13→13 |
Refinement
| Refinement on F2 | 100 parameters |
| Least-squares matrix: full | 0 restraints |
| R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0264P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.070 | (Δ/σ)max = 0.001 |
| S = 1.06 | Δρmax = 2.47 e Å−3 |
| 2183 reflections | Δρmin = −2.33 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Pb1 | 0.86662 (5) | 0.16252 (3) | 0.49204 (4) | 0.01746 (9) | |
| Pb2 | 1.27667 (5) | 0.45615 (3) | 0.56450 (4) | 0.01735 (9) | |
| Te1 | 1.11378 (8) | 0.63302 (5) | 0.81301 (6) | 0.01180 (12) | |
| Cr1 | 1.2298 (2) | 0.61161 (13) | 1.21196 (16) | 0.0152 (3) | |
| O1 | 1.0417 (9) | 0.5911 (6) | 0.6035 (7) | 0.0187 (13) | |
| O2 | 1.3339 (8) | 0.5323 (5) | 0.8562 (7) | 0.0159 (12) | |
| O3 | 1.2413 (9) | 0.7803 (5) | 0.7920 (6) | 0.0153 (12) | |
| O4 | 1.3081 (10) | 0.4675 (6) | 1.2262 (8) | 0.0295 (17) | |
| O5 | 1.3146 (11) | 0.6714 (6) | 1.3836 (8) | 0.0292 (16) | |
| O6 | 1.3082 (11) | 0.6927 (7) | 1.0953 (8) | 0.0331 (18) | |
| O7 | 0.9957 (10) | 0.6054 (7) | 1.1419 (9) | 0.0337 (18) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Pb1 | 0.01755 (19) | 0.01525 (15) | 0.01860 (18) | 0.00102 (12) | 0.00530 (14) | −0.00226 (12) |
| Pb2 | 0.01405 (18) | 0.01770 (16) | 0.01959 (18) | 0.00177 (12) | 0.00520 (14) | 0.00440 (12) |
| Te1 | 0.0107 (3) | 0.0117 (2) | 0.0124 (3) | 0.00001 (19) | 0.0036 (2) | −0.00064 (19) |
| Cr1 | 0.0131 (7) | 0.0191 (7) | 0.0138 (7) | −0.0005 (5) | 0.0053 (6) | −0.0002 (5) |
| O1 | 0.013 (3) | 0.025 (3) | 0.015 (3) | 0.003 (3) | 0.002 (3) | −0.004 (3) |
| O2 | 0.014 (3) | 0.009 (3) | 0.024 (3) | 0.003 (2) | 0.005 (3) | 0.002 (2) |
| O3 | 0.018 (3) | 0.013 (3) | 0.014 (3) | −0.003 (2) | 0.005 (3) | 0.000 (2) |
| O4 | 0.032 (4) | 0.024 (3) | 0.031 (4) | 0.003 (3) | 0.010 (3) | −0.006 (3) |
| O5 | 0.041 (4) | 0.028 (4) | 0.018 (3) | 0.007 (3) | 0.010 (3) | −0.008 (3) |
| O6 | 0.040 (5) | 0.036 (4) | 0.029 (4) | −0.018 (3) | 0.019 (4) | 0.004 (3) |
| O7 | 0.017 (4) | 0.039 (4) | 0.043 (5) | 0.005 (3) | 0.010 (3) | 0.015 (4) |
Geometric parameters (Å, º)
| Pb1—O2i | 2.429 (6) | Cr1—Te1x | 3.8465 (15) |
| Pb1—O3ii | 2.573 (6) | Cr1—Pb1xi | 3.9532 (15) |
| Pb1—O2iii | 2.594 (6) | Cr1—Pb1v | 3.9593 (14) |
| Pb1—O7iv | 2.617 (7) | Cr1—Pb1xii | 4.1534 (15) |
| Pb1—O5v | 2.750 (7) | O1—Pb2ii | 2.390 (6) |
| Pb1—O4i | 2.777 (7) | O1—Pb1ii | 2.968 (6) |
| Pb1—O6iii | 2.850 (7) | O1—Pb1xi | 4.515 (6) |
| Pb1—O1ii | 2.968 (6) | O2—Pb1xi | 2.429 (6) |
| Pb1—O3iii | 3.170 (6) | O2—Pb1xii | 2.594 (6) |
| Pb1—Te1iii | 3.6630 (9) | O2—Pb1ii | 4.508 (6) |
| Pb2—O3iii | 2.363 (6) | O3—Pb2xii | 2.363 (6) |
| Pb2—O1ii | 2.390 (6) | O3—Pb1ii | 2.573 (6) |
| Pb2—O1 | 2.410 (6) | O3—Pb1xii | 3.170 (6) |
| Pb2—O2 | 2.746 (6) | O4—Pb1xi | 2.777 (7) |
| Pb2—O5vi | 2.956 (7) | O4—Pb2vii | 3.128 (7) |
| Pb2—O4vii | 3.128 (7) | O4—Te1v | 3.228 (7) |
| Pb2—O6iii | 3.176 (7) | O4—Pb2ix | 3.276 (7) |
| Pb2—O5vii | 3.225 (7) | O4—Pb1xii | 4.262 (7) |
| Pb2—O4vi | 3.276 (7) | O5—Pb1v | 2.750 (7) |
| Pb2—Te1 | 3.5567 (7) | O5—Pb2ix | 2.956 (7) |
| Te1—O2 | 1.891 (6) | O5—Pb2vii | 3.225 (7) |
| Te1—O3 | 1.901 (6) | O5—Te1x | 3.314 (8) |
| Te1—O1 | 1.902 (6) | O6—Pb1xii | 2.850 (7) |
| Te1—O6 | 2.608 (7) | O6—Te1x | 3.097 (7) |
| Te1—O7v | 2.782 (7) | O6—Pb2xii | 3.176 (7) |
| Te1—O6viii | 3.097 (7) | O6—Pb2vii | 3.912 (8) |
| Cr1—O7 | 1.634 (7) | O6—Pb1xi | 4.023 (8) |
| Cr1—O5 | 1.640 (7) | O7—Pb1xiii | 2.617 (7) |
| Cr1—O4 | 1.653 (7) | O7—Te1v | 2.782 (7) |
| Cr1—O6 | 1.667 (7) | O7—Pb2v | 4.032 (8) |
| Cr1—Pb2vii | 3.6027 (16) | O7—Pb1v | 4.081 (8) |
| Cr1—Pb2ix | 3.6204 (15) | O7—Pb2ix | 4.099 (7) |
| Cr1—Te1v | 3.6339 (16) | O7—Pb1xi | 4.568 (8) |
| O2i—Pb1—O3ii | 74.19 (19) | O7—Cr1—Pb1xi | 101.5 (3) |
| O2i—Pb1—O2iii | 73.9 (2) | O5—Cr1—Pb1xi | 136.8 (3) |
| O3ii—Pb1—O2iii | 126.0 (2) | O4—Cr1—Pb1xi | 35.4 (3) |
| O2i—Pb1—O7iv | 69.6 (2) | O6—Cr1—Pb1xi | 80.3 (3) |
| O3ii—Pb1—O7iv | 70.9 (2) | Te1—Cr1—Pb1xi | 60.35 (2) |
| O2iii—Pb1—O7iv | 132.5 (2) | Pb2vii—Cr1—Pb1xi | 75.50 (3) |
| O2i—Pb1—O5v | 144.9 (2) | Pb2ix—Cr1—Pb1xi | 99.99 (3) |
| O3ii—Pb1—O5v | 105.45 (19) | Te1v—Cr1—Pb1xi | 74.38 (3) |
| O2iii—Pb1—O5v | 125.4 (2) | Te1x—Cr1—Pb1xi | 110.89 (4) |
| O7iv—Pb1—O5v | 77.1 (2) | O7—Cr1—Pb1v | 82.5 (3) |
| O2i—Pb1—O4i | 87.9 (2) | O5—Cr1—Pb1v | 33.7 (3) |
| O3ii—Pb1—O4i | 149.93 (19) | O4—Cr1—Pb1v | 132.3 (3) |
| O2iii—Pb1—O4i | 68.9 (2) | O6—Cr1—Pb1v | 109.6 (3) |
| O7iv—Pb1—O4i | 80.3 (2) | Te1—Cr1—Pb1v | 131.89 (4) |
| O5v—Pb1—O4i | 75.6 (2) | Pb2vii—Cr1—Pb1v | 97.02 (3) |
| O2i—Pb1—O6iii | 83.2 (2) | Pb2ix—Cr1—Pb1v | 67.93 (3) |
| O3ii—Pb1—O6iii | 69.8 (2) | Te1v—Cr1—Pb1v | 101.01 (4) |
| O2iii—Pb1—O6iii | 64.2 (2) | Te1x—Cr1—Pb1v | 72.07 (3) |
| O7iv—Pb1—O6iii | 136.9 (2) | Pb1xi—Cr1—Pb1v | 167.69 (4) |
| O5v—Pb1—O6iii | 130.5 (2) | O7—Cr1—Pb1xii | 132.0 (3) |
| O4i—Pb1—O6iii | 132.9 (2) | O5—Cr1—Pb1xii | 108.4 (3) |
| O2i—Pb1—O1ii | 127.50 (19) | O4—Cr1—Pb1xii | 82.4 (3) |
| O3ii—Pb1—O1ii | 59.35 (17) | O6—Cr1—Pb1xii | 30.7 (3) |
| O2iii—Pb1—O1ii | 113.96 (17) | Te1—Cr1—Pb1xii | 56.17 (2) |
| O7iv—Pb1—O1ii | 112.2 (2) | Pb2vii—Cr1—Pb1xii | 62.31 (3) |
| O5v—Pb1—O1ii | 75.3 (2) | Pb2ix—Cr1—Pb1xii | 129.63 (4) |
| O4i—Pb1—O1ii | 144.43 (19) | Te1v—Cr1—Pb1xii | 132.87 (4) |
| O6iii—Pb1—O1ii | 59.76 (19) | Te1x—Cr1—Pb1xii | 54.39 (2) |
| O2i—Pb1—O3iii | 125.43 (18) | Pb1xi—Cr1—Pb1xii | 59.33 (2) |
| O3ii—Pb1—O3iii | 116.15 (16) | Pb1v—Cr1—Pb1xii | 126.12 (4) |
| O2iii—Pb1—O3iii | 56.62 (16) | Te1—O1—Pb2ii | 125.4 (3) |
| O7iv—Pb1—O3iii | 164.00 (19) | Te1—O1—Pb2 | 110.6 (3) |
| O5v—Pb1—O3iii | 87.05 (19) | Pb2ii—O1—Pb2 | 112.1 (2) |
| O4i—Pb1—O3iii | 93.90 (18) | Te1—O1—Pb1ii | 95.2 (2) |
| O6iii—Pb1—O3iii | 56.72 (18) | Pb2ii—O1—Pb1ii | 106.0 (2) |
| O1ii—Pb1—O3iii | 64.71 (16) | Pb2—O1—Pb1ii | 103.7 (2) |
| O2i—Pb1—Te1iii | 94.34 (14) | Te1—O1—Pb1xi | 55.69 (15) |
| O3ii—Pb1—Te1iii | 114.85 (13) | Pb2ii—O1—Pb1xi | 121.5 (2) |
| O2iii—Pb1—Te1iii | 29.32 (12) | Pb2—O1—Pb1xi | 63.04 (13) |
| O7iv—Pb1—Te1iii | 161.34 (16) | Pb1ii—O1—Pb1xi | 132.40 (18) |
| O5v—Pb1—Te1iii | 116.07 (15) | Te1—O2—Pb1xi | 121.8 (3) |
| O4i—Pb1—Te1iii | 90.00 (15) | Te1—O2—Pb1xii | 108.5 (2) |
| O6iii—Pb1—Te1iii | 45.10 (15) | Pb1xi—O2—Pb1xii | 106.1 (2) |
| O1ii—Pb1—Te1iii | 84.89 (12) | Te1—O2—Pb2 | 98.5 (2) |
| O3iii—Pb1—Te1iii | 31.26 (10) | Pb1xi—O2—Pb2 | 102.47 (19) |
| O3iii—Pb2—O1ii | 87.6 (2) | Pb1xii—O2—Pb2 | 120.4 (2) |
| O3iii—Pb2—O1 | 101.9 (2) | Te1—O2—Pb1ii | 52.16 (15) |
| O1ii—Pb2—O1 | 67.9 (2) | Pb1xi—O2—Pb1ii | 163.9 (2) |
| O3iii—Pb2—O2 | 72.00 (18) | Pb1xii—O2—Pb1ii | 89.88 (14) |
| O1ii—Pb2—O2 | 119.0 (2) | Pb2—O2—Pb1ii | 66.54 (12) |
| O1—Pb2—O2 | 61.76 (19) | Te1—O3—Pb2xii | 118.7 (3) |
| O3iii—Pb2—O5vi | 177.4 (2) | Te1—O3—Pb1ii | 109.1 (2) |
| O1ii—Pb2—O5vi | 93.8 (2) | Pb2xii—O3—Pb1ii | 109.8 (2) |
| O1—Pb2—O5vi | 80.6 (2) | Te1—O3—Pb1xii | 88.8 (2) |
| O2—Pb2—O5vi | 109.06 (17) | Pb2xii—O3—Pb1xii | 100.75 (19) |
| O3iii—Pb2—O4vii | 95.8 (2) | Pb1ii—O3—Pb1xii | 129.3 (2) |
| O1ii—Pb2—O4vii | 176.63 (19) | Te1—O3—Pb2 | 58.39 (14) |
| O1—Pb2—O4vii | 110.89 (19) | Pb2xii—O3—Pb2 | 176.2 (2) |
| O2—Pb2—O4vii | 61.95 (18) | Pb1ii—O3—Pb2 | 73.89 (13) |
| O5vi—Pb2—O4vii | 82.9 (2) | Pb1xii—O3—Pb2 | 77.08 (11) |
| O3iii—Pb2—O6iii | 60.41 (19) | Cr1—O4—Pb1xi | 124.4 (4) |
| O1ii—Pb2—O6iii | 60.90 (19) | Cr1—O4—Pb2vii | 92.6 (3) |
| O1—Pb2—O6iii | 125.6 (2) | Pb1xi—O4—Pb2vii | 103.2 (2) |
| O2—Pb2—O6iii | 132.40 (18) | Cr1—O4—Te1v | 90.3 (3) |
| O5vi—Pb2—O6iii | 118.53 (18) | Pb1xi—O4—Te1v | 99.5 (2) |
| O4vii—Pb2—O6iii | 121.22 (17) | Pb2vii—O4—Te1v | 150.2 (3) |
| O3iii—Pb2—O5vii | 79.3 (2) | Cr1—O4—Pb2ix | 88.1 (3) |
| O1ii—Pb2—O5vii | 132.23 (19) | Pb1xi—O4—Pb2ix | 147.0 (2) |
| O1—Pb2—O5vii | 159.74 (19) | Pb2vii—O4—Pb2ix | 78.49 (16) |
| O2—Pb2—O5vii | 100.28 (16) | Te1v—O4—Pb2ix | 71.93 (15) |
| O5vi—Pb2—O5vii | 98.15 (17) | Cr1—O4—Te1 | 60.7 (2) |
| O4vii—Pb2—O5vii | 49.20 (17) | Pb1xi—O4—Te1 | 64.28 (14) |
| O6iii—Pb2—O5vii | 72.86 (18) | Pb2vii—O4—Te1 | 114.8 (2) |
| O3iii—Pb2—O4vi | 128.57 (18) | Te1v—O4—Te1 | 92.34 (16) |
| O1ii—Pb2—O4vi | 76.61 (19) | Pb2ix—O4—Te1 | 145.4 (2) |
| O1—Pb2—O4vi | 115.84 (19) | Cr1—O4—Pb1xii | 75.0 (3) |
| O2—Pb2—O4vi | 156.81 (17) | Pb1xi—O4—Pb1xii | 65.68 (15) |
| O5vi—Pb2—O4vi | 49.92 (17) | Pb2vii—O4—Pb1xii | 64.16 (13) |
| O4vii—Pb2—O4vi | 101.51 (16) | Te1v—O4—Pb1xii | 144.5 (2) |
| O6iii—Pb2—O4vi | 69.25 (17) | Pb2ix—O4—Pb1xii | 137.7 (2) |
| O5vii—Pb2—O4vi | 76.56 (18) | Te1—O4—Pb1xii | 52.26 (9) |
| O3iii—Pb2—Te1 | 87.36 (14) | Cr1—O5—Pb1v | 126.9 (4) |
| O1ii—Pb2—Te1 | 93.13 (15) | Cr1—O5—Pb2ix | 100.0 (3) |
| O1—Pb2—Te1 | 30.03 (14) | Pb1v—O5—Pb2ix | 96.0 (2) |
| O2—Pb2—Te1 | 31.73 (12) | Cr1—O5—Pb2vii | 89.4 (3) |
| O5vi—Pb2—Te1 | 94.68 (13) | Pb1v—O5—Pb2vii | 143.1 (2) |
| O4vii—Pb2—Te1 | 86.63 (13) | Pb2ix—O5—Pb2vii | 81.85 (17) |
| O6iii—Pb2—Te1 | 137.38 (13) | Cr1—O5—Te1x | 95.9 (3) |
| O5vii—Pb2—Te1 | 131.31 (12) | Pb1v—O5—Te1x | 98.0 (2) |
| O4vi—Pb2—Te1 | 141.21 (12) | Pb2ix—O5—Te1x | 146.0 (3) |
| O2—Te1—O3 | 94.3 (3) | Pb2vii—O5—Te1x | 68.42 (15) |
| O2—Te1—O1 | 89.2 (3) | Cr1—O6—Te1 | 109.9 (3) |
| O3—Te1—O1 | 93.3 (3) | Cr1—O6—Pb1xii | 131.9 (4) |
| O2—Te1—O6 | 78.5 (3) | Te1—O6—Pb1xii | 84.2 (2) |
| O3—Te1—O6 | 77.4 (2) | Cr1—O6—Te1x | 103.6 (3) |
| O1—Te1—O6 | 163.8 (2) | Te1—O6—Te1x | 146.3 (3) |
| O2—Te1—O7v | 73.4 (2) | Pb1xii—O6—Te1x | 75.99 (17) |
| O3—Te1—O7v | 167.7 (2) | Cr1—O6—Pb2xii | 136.5 (4) |
| O1—Te1—O7v | 87.0 (2) | Te1—O6—Pb2xii | 78.27 (18) |
| O6—Te1—O7v | 99.2 (2) | Pb1xii—O6—Pb2xii | 90.68 (17) |
| O2—Te1—O6viii | 150.4 (2) | Te1x—O6—Pb2xii | 75.03 (16) |
| O3—Te1—O6viii | 72.5 (2) | Cr1—O6—Pb2vii | 67.0 (2) |
| O1—Te1—O6viii | 66.0 (2) | Te1—O6—Pb2vii | 135.9 (3) |
| O6—Te1—O6viii | 122.06 (13) | Pb1xii—O6—Pb2vii | 71.42 (16) |
| O7v—Te1—O6viii | 118.5 (2) | Te1x—O6—Pb2vii | 61.99 (13) |
| O7—Cr1—O5 | 113.0 (4) | Pb2xii—O6—Pb2vii | 136.1 (2) |
| O7—Cr1—O4 | 106.9 (4) | Cr1—O6—Pb1xi | 75.6 (3) |
| O5—Cr1—O4 | 106.9 (3) | Te1—O6—Pb1xi | 65.61 (16) |
| O7—Cr1—O6 | 109.6 (4) | Pb1xii—O6—Pb1xi | 69.10 (16) |
| O5—Cr1—O6 | 109.8 (4) | Te1x—O6—Pb1xi | 128.5 (2) |
| O4—Cr1—O6 | 110.5 (4) | Pb2xii—O6—Pb1xi | 139.7 (2) |
| O7—Cr1—Te1 | 76.0 (3) | Pb2vii—O6—Pb1xi | 71.46 (13) |
| O5—Cr1—Te1 | 151.4 (3) | Cr1—O7—Pb1xiii | 163.1 (4) |
| O4—Cr1—Te1 | 95.3 (3) | Cr1—O7—Te1v | 107.9 (3) |
| O6—Cr1—Te1 | 43.8 (3) | Pb1xiii—O7—Te1v | 89.0 (2) |
| O7—Cr1—Pb2vii | 161.7 (3) | Cr1—O7—Te1 | 77.3 (3) |
| O5—Cr1—Pb2vii | 63.5 (3) | Pb1xiii—O7—Te1 | 95.7 (2) |
| O4—Cr1—Pb2vii | 60.2 (3) | Te1v—O7—Te1 | 113.1 (2) |
| O6—Cr1—Pb2vii | 87.8 (3) | Cr1—O7—Pb2v | 117.5 (3) |
| Te1—Cr1—Pb2vii | 116.13 (4) | Pb1xiii—O7—Pb2v | 71.26 (16) |
| O7—Cr1—Pb2ix | 95.0 (3) | Te1v—O7—Pb2v | 59.62 (13) |
| O5—Cr1—Pb2ix | 53.5 (3) | Te1—O7—Pb2v | 164.5 (2) |
| O4—Cr1—Pb2ix | 64.8 (3) | Cr1—O7—Pb1v | 74.1 (3) |
| O6—Cr1—Pb2ix | 154.9 (3) | Pb1xiii—O7—Pb1v | 99.4 (2) |
| Te1—Cr1—Pb2ix | 155.08 (4) | Te1v—O7—Pb1v | 116.1 (2) |
| Pb2vii—Cr1—Pb2ix | 68.28 (3) | Te1—O7—Pb1v | 128.5 (2) |
| O7—Cr1—Te1v | 46.7 (3) | Pb2v—O7—Pb1v | 63.88 (12) |
| O5—Cr1—Te1v | 111.3 (3) | Cr1—O7—Pb2ix | 61.6 (2) |
| O4—Cr1—Te1v | 62.7 (3) | Pb1xiii—O7—Pb2ix | 129.8 (2) |
| O6—Cr1—Te1v | 138.4 (3) | Te1v—O7—Pb2ix | 64.15 (14) |
| Te1—Cr1—Te1v | 94.66 (4) | Te1—O7—Pb2ix | 133.03 (19) |
| Pb2vii—Cr1—Te1v | 116.17 (4) | Pb2v—O7—Pb2ix | 58.65 (10) |
| Pb2ix—Cr1—Te1v | 63.55 (3) | Pb1v—O7—Pb2ix | 62.50 (11) |
| O7—Cr1—Te1x | 136.4 (3) | Cr1—O7—Pb1xi | 58.0 (2) |
| O5—Cr1—Te1x | 59.0 (3) | Pb1xiii—O7—Pb1xi | 129.7 (2) |
| O4—Cr1—Te1x | 116.4 (3) | Te1v—O7—Pb1xi | 72.81 (16) |
| O6—Cr1—Te1x | 51.5 (3) | Te1—O7—Pb1xi | 53.91 (10) |
| Te1—Cr1—Te1x | 95.23 (3) | Pb2v—O7—Pb1xi | 128.24 (17) |
| Pb2vii—Cr1—Te1x | 59.04 (2) | Pb1v—O7—Pb1xi | 130.79 (17) |
| Pb2ix—Cr1—Te1x | 106.81 (4) | Pb2ix—O7—Pb1xi | 83.91 (12) |
| Te1v—Cr1—Te1x | 170.10 (4) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+1; (iii) −x+5/2, y−1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) −x+2, −y+1, −z+2; (vi) x, y, z−1; (vii) −x+3, −y+1, −z+2; (viii) x−1/2, −y+3/2, z−1/2; (ix) x, y, z+1; (x) x+1/2, −y+3/2, z+1/2; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+5/2, y+1/2, −z+3/2; (xiii) −x+3/2, y+1/2, −z+3/2.
References
- Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156. [DOI] [PubMed]
- Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415–545.
- Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.
- Müller-Buschbaum, H.-K. & Wedel, B. (1997). Z. Naturforsch. Teil B, 52, 35–39.
- Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. & Gard, H. B. (1988). Inorg. Chem. 27, 260–264.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Weil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. Accepted. doi:10.1002/zaac.201700016.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017006995/hb7677sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017006995/hb7677Isup2.hkl
CCDC reference: 1548953
Additional supporting information: crystallographic information; 3D view; checkCIF report


