Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 16;73(Pt 6):856–858. doi: 10.1107/S2056989017007058

Crystal structure of 3-amino­pyridinium 1′-carb­oxy­ferrocene-1-carboxyl­ate

Aleksei V Medved’ko a, Andrei V Churakov b, Haojie Yu c, Wang Li c, Sergey Z Vatsadze a,*
PMCID: PMC5458309  PMID: 28638644

The title structure consists of 3-amino­pyridinium cations and 1′-carb­oxy­ferrocene-1-carboxyl­ate monoanions held together by N—H⋯O and O—H⋯O hydrogen bonds.

Keywords: crystal structure; ferrocene-1,1′-di­carb­oxy­lic acid; ferrocene conformation

Abstract

The structure of the title salt, (C5H7N2)[Fe(C6H4O2)(C6H5O2)], consists of 3-amino­pyridinium cations and 1′-carb­oxy­ferrocene-1-carboxyl­ate monoanions. The ferrocenyl moiety of the anion adopts a typical sandwich structure, with Fe—C distances in the range 2.0270 (15)–2.0568 (17) Å. The anion possesses an eclipsed conformation, with the torsion angle φ (Csubst—Cpcent—Cpcent— Csubst) equal to 66.0°. The conformations of other 1′-carb­oxy­ferrocene-1-carboxyl­ate monoanions are compared and analyzed on the basis of literature data.

Chemical context  

The idea behind this research was to use ferrocenedi­carb­oxy­lic acid as a dianionic building block in supra­molecular polymer and conventional polymer design (Amer et al., 2013; Sun et al., 2016; Zheng et al., 2016).graphic file with name e-73-00856-scheme1.jpg

We tried to apply the trio of available amino­pyridines, namely 2-, 3- and 4-amino­pyridine, as basic counterparts to ferrocenedi­carb­oxy­lic diacid. One of the ideas was to check the possibility of obtaining gels with a supra­molecular arrangement of the constituents in alcoholic media. All those reactions were carried out in a 1:2 ratio of acid–amine in order to exploit both carb­oxy­lic acid groups of the diacid. The experiments revealed, however, that while in cases of 2- and 4-amino­pyridine, only amorphous powders could be obtained, the reaction of 3-amino­pyridine led to a crystalline salt, 3-amino­pyridinium 1′-carb­oxy­ferrocene-1-carboxyl­ate, (1), but with a 1:1 composition.

Structural commentary  

The crystal structure of (1) consists of one 3-amino­pyridinium cation and one 1′-carb­oxy­ferrocene-1-carboxyl­ate monoanion (Fig. 1). In the cation, the pyridine N atom is protonated. The ferrocenyl moieties adopt the characteristic sandwich structure, with typical Fe—C distances in the range 2.0270 (15)–2.0568 (17) Å (Table 1). The FeII atom is slightly (∼0.01 Å) shifted towards the substituted C11 and C21 atoms. The C16—O bond lengths within the carboxyl­ate anion are almost equal [1.2604 (19) and 1.2636 (19) Å], whereas, in contrast, they differ greatly within the carb­oxy­lic acid group, with C26=O22 = 1.2128 (19) Å and C26—O21 = 1.326 (2) Å, the latter involving the OH group. The planes of the cyclo­penta­dienyl (Cp) rings are almost parallel to the planes of the corresponding carb­oxy/carboxyl­ate groups, with O—C—C—C torsion angles less than 13°. The conformation of 1,1′-disubstituted ferrocenes is described by the torsion angle Csubst—Cpcent—Cpcent—Csubst, where Csubst stands for a ferrocene C atom with an additional bonding partner and Cpcent for the centre of gravity of the C atoms of the ring; this angle is hereafter referred to as φ. In (1), the anion possesses an eclipsed conformation with φ = 66.0° (ideal value 72°) (Fig. 2).

Figure 1.

Figure 1

The structures of the mol­ecular components in (1). Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonding is shown as dashed lines.

Table 1. Selected geometric parameters (Å, °).

Fe1—C21 2.0270 (15) Fe1—C24 2.0515 (16)
Fe1—C15 2.0341 (16) Fe1—C13 2.0517 (18)
Fe1—C11 2.0359 (16) Fe1—C23 2.0568 (17)
Fe1—C22 2.0414 (17) O11—C16 1.2604 (19)
Fe1—C25 2.0451 (16) O12—C16 1.2636 (19)
Fe1—C12 2.0459 (17) O21—C26 1.326 (2)
Fe1—C14 2.0496 (17) O22—C26 1.2128 (19)
       
C12—C11—C16—O11 14.1 (2) C25—C21—C26—O21 10.2 (2)

Figure 2.

Figure 2

The four known conformations of the (HO2C-η5-C5H4)Fe(η5-C5H4—CO2 ) anion.

Supra­molecular features  

In the title crystal, adjacent cationic and anionic units are combined into a layered arrangement parallel to (100) by charge-supported NH⋯O2C hydrogen bonds of medium–strong-to-weak nature and of CO2H⋯O2C hydrogen bonds of strong nature (Table 2 and Fig. 3).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O12 0.87 (3) 2.08 (3) 2.918 (2) 161 (2)
N1—H10⋯O11i 0.84 (3) 2.07 (3) 2.906 (2) 171 (3)
N2—H2⋯O11ii 0.89 (2) 1.79 (2) 2.675 (2) 177 (2)
O21—H21⋯O12iii 0.81 (2) 1.77 (2) 2.5621 (16) 164 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

The formation of hydrogen-bonded layers parallel to (100) in the crystal. Hydrogen bonds are drawn as dashed lines.

Database survey  

The Cambridge Structural Database (CSD, Version 5.38 of February 2017; Groom et al., 2016) contains data for 11 structures comprising (HO2C-η5-C5H4)Fe(η5-C5H4-CO2 ) units from 14 crystallographically independent monoanions. Among these 14 fragments, three adopt a trans-staggered conformation, with m = 5 (as defined in Zakaria et al., 2002). Others adopt three eclipsed conformations with m = 0, 2 and 4 (3, 4 and 4 cases, respectively; Fig. 2). Surprisingly, two staggered conformations with m = 1 and 3 (Fig. 4) were not observed.

Figure 4.

Figure 4

Unobserved staggered conformations in the structures containing a 1′-carb­oxy­ferrocene-1-carboxyl­ate acid monoanion.

Synthesis and crystallization  

Preparation of ferrocene-1,1′-di­carb­oxy­lic acid (Gao et al., 2009)  

An 8% NaOCl aqueous solution (100 ml) was added dropwise to 1,1′-di­acetyl­ferrocene (5.37 g, 20 mmol) under stirring at a temperature of 317–320 K. The solution was stirred at this temperature for 2 h. Three more 25 ml portions of NaOCl solution were added every 2 h. The reaction mixture was filtered and acidified to a pH of 1.1 with 10% hydro­chloric acid and cooled to 277 K overnight. The yellow precipitate which formed was filtered off and recrystallized from ethanol to give an orange microcrystalline powder (yield 2.18 g, 40%).

Preparation of 3-amino­pyridinium 1′-carb­oxy­ferrocene-1-carboxyl­ate, (1)  

Ferrocene-1,1′-di­carb­oxy­lic acid (50 mg, 0.18 mmol) was dissolved in methanol and mixed with a methano­lic solution of 3-amino­pyridine (33.8 mg, 0.36 mmol). The reaction mixture was filtered and subjected to slow evaporation at room temperature to give orange crystals of the title salt.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located from a difference Fourier synthesis and refined isotropically without constraints or restraints.

Table 3. Experimental details.

Crystal data
Chemical formula (C5H7N2)[Fe(C6H4O2)(C6H5O2)]
M r 368.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 13.2246 (10), 10.3040 (8), 11.7402 (9)
β (°) 101.703 (1)
V3) 1566.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.22 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.812, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 14616, 3409, 2812
R int 0.026
(sin θ/λ)max−1) 0.638
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.073, 1.03
No. of reflections 3409
No. of parameters 281
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.23

Computer programs: APEX2 and SAINT (Bruker, 2008) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007058/wm5388sup1.cif

e-73-00856-sup1.cif (35.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007058/wm5388Isup2.hkl

e-73-00856-Isup2.hkl (167.2KB, hkl)

CCDC reference: 1444115

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

supplementary crystallographic information

Crystal data

(C5H7N2)[Fe(C6H4O2)(C6H5O2)] F(000) = 760
Mr = 368.17 Dx = 1.561 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5525 reflections
a = 13.2246 (10) Å θ = 2.5–30.1°
b = 10.3040 (8) Å µ = 0.99 mm1
c = 11.7402 (9) Å T = 150 K
β = 101.703 (1)° Plate, orange
V = 1566.5 (2) Å3 0.22 × 0.20 × 0.02 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 3409 independent reflections
Radiation source: fine-focus sealed tube 2812 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω scans θmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −16→16
Tmin = 0.812, Tmax = 0.981 k = −13→13
14616 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: difference Fourier map
wR(F2) = 0.073 All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.5357P] where P = (Fo2 + 2Fc2)/3
3409 reflections (Δ/σ)max = 0.001
281 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.374096 (17) 0.50216 (2) 0.671077 (19) 0.01937 (8)
O11 0.09010 (9) 0.36772 (12) 0.61033 (10) 0.0311 (3)
O12 0.16389 (8) 0.34091 (11) 0.45865 (10) 0.0257 (3)
O21 0.30237 (9) 0.21837 (12) 0.84337 (11) 0.0277 (3)
O22 0.35822 (10) 0.38212 (12) 0.96535 (10) 0.0291 (3)
C11 0.22302 (12) 0.51243 (15) 0.58942 (14) 0.0228 (3)
C12 0.23757 (13) 0.57474 (17) 0.70015 (15) 0.0272 (4)
C13 0.30979 (14) 0.67653 (17) 0.70209 (17) 0.0321 (4)
C14 0.34025 (14) 0.67928 (17) 0.59322 (17) 0.0311 (4)
C15 0.28745 (13) 0.57799 (16) 0.52300 (15) 0.0254 (4)
C16 0.15563 (12) 0.39937 (16) 0.55094 (13) 0.0219 (3)
C21 0.42157 (12) 0.36219 (15) 0.79136 (13) 0.0210 (3)
C22 0.49364 (13) 0.46741 (16) 0.80757 (15) 0.0234 (3)
C23 0.53193 (13) 0.48018 (16) 0.70361 (16) 0.0255 (4)
C24 0.48348 (13) 0.38427 (16) 0.62345 (15) 0.0248 (3)
C25 0.41579 (12) 0.31077 (15) 0.67722 (14) 0.0214 (3)
C26 0.35821 (12) 0.32398 (15) 0.87553 (13) 0.0212 (3)
H12 0.2043 (15) 0.5490 (19) 0.7600 (17) 0.029 (5)*
H13 0.3336 (15) 0.727 (2) 0.7642 (18) 0.037 (5)*
H14 0.3905 (16) 0.737 (2) 0.5730 (17) 0.037 (5)*
H15 0.2915 (15) 0.555 (2) 0.4446 (18) 0.035 (5)*
H21 0.2655 (18) 0.207 (2) 0.8897 (19) 0.048 (7)*
H22 0.5128 (15) 0.5176 (18) 0.8710 (18) 0.030 (5)*
H23 0.5770 (15) 0.543 (2) 0.6893 (16) 0.030 (5)*
H24 0.4920 (14) 0.3759 (18) 0.5428 (18) 0.030 (5)*
H25 0.3712 (14) 0.2455 (18) 0.6409 (15) 0.023 (5)*
N1 0.04432 (16) 0.4901 (2) 0.26631 (16) 0.0457 (5)
N2 0.03611 (12) 0.69407 (15) 0.01507 (13) 0.0281 (3)
C1 0.01186 (13) 0.64261 (17) 0.11058 (15) 0.0288 (4)
C2 0.07267 (14) 0.54610 (19) 0.17299 (15) 0.0303 (4)
C3 0.16037 (14) 0.50701 (18) 0.13113 (17) 0.0324 (4)
C4 0.18291 (14) 0.56395 (19) 0.03310 (17) 0.0340 (4)
C5 0.11970 (14) 0.65834 (19) −0.02507 (17) 0.0321 (4)
H1 −0.0489 (15) 0.6761 (19) 0.1314 (16) 0.030 (5)*
H2 −0.0059 (17) 0.753 (2) −0.0242 (19) 0.044 (6)*
H3 0.2027 (15) 0.446 (2) 0.1703 (17) 0.033 (5)*
H4 0.2411 (17) 0.538 (2) 0.0051 (19) 0.041 (6)*
H5 0.1301 (16) 0.700 (2) −0.0915 (18) 0.039 (6)*
H10 0.000 (2) 0.529 (3) 0.296 (2) 0.058 (8)*
H11 0.0872 (19) 0.439 (2) 0.311 (2) 0.049 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.01955 (13) 0.01805 (13) 0.02010 (13) −0.00017 (9) 0.00306 (9) 0.00002 (9)
O11 0.0287 (6) 0.0375 (7) 0.0308 (6) −0.0076 (5) 0.0146 (5) −0.0072 (5)
O12 0.0222 (6) 0.0317 (6) 0.0240 (6) −0.0020 (5) 0.0063 (5) −0.0074 (5)
O21 0.0306 (6) 0.0273 (6) 0.0291 (6) −0.0060 (5) 0.0153 (5) −0.0031 (5)
O22 0.0395 (7) 0.0296 (6) 0.0189 (6) −0.0017 (5) 0.0073 (5) −0.0024 (5)
C11 0.0204 (7) 0.0244 (8) 0.0233 (8) 0.0044 (6) 0.0035 (6) −0.0004 (6)
C12 0.0243 (8) 0.0291 (9) 0.0281 (9) 0.0045 (7) 0.0051 (7) −0.0057 (7)
C13 0.0309 (9) 0.0233 (9) 0.0389 (10) 0.0050 (7) −0.0008 (8) −0.0088 (8)
C14 0.0290 (9) 0.0203 (8) 0.0417 (10) 0.0020 (7) 0.0015 (8) 0.0071 (8)
C15 0.0242 (8) 0.0253 (8) 0.0255 (9) 0.0020 (7) 0.0020 (7) 0.0059 (7)
C16 0.0182 (7) 0.0256 (8) 0.0211 (8) 0.0037 (6) 0.0026 (6) 0.0003 (6)
C21 0.0218 (7) 0.0202 (8) 0.0202 (8) 0.0020 (6) 0.0026 (6) 0.0015 (6)
C22 0.0214 (8) 0.0225 (8) 0.0242 (8) −0.0007 (6) −0.0004 (6) 0.0003 (7)
C23 0.0204 (8) 0.0245 (9) 0.0316 (9) −0.0005 (6) 0.0053 (7) 0.0045 (7)
C24 0.0243 (8) 0.0259 (8) 0.0256 (9) 0.0040 (7) 0.0083 (7) 0.0019 (7)
C25 0.0233 (8) 0.0186 (8) 0.0226 (8) 0.0028 (6) 0.0050 (6) −0.0008 (6)
C26 0.0221 (8) 0.0207 (7) 0.0199 (8) 0.0043 (6) 0.0021 (6) 0.0034 (6)
N1 0.0483 (11) 0.0575 (12) 0.0334 (9) 0.0270 (9) 0.0135 (8) 0.0118 (9)
N2 0.0255 (7) 0.0261 (8) 0.0313 (8) 0.0006 (6) 0.0024 (6) −0.0017 (6)
C1 0.0254 (9) 0.0313 (9) 0.0292 (9) 0.0046 (7) 0.0047 (7) −0.0042 (7)
C2 0.0296 (9) 0.0342 (9) 0.0260 (9) 0.0049 (8) 0.0028 (7) −0.0042 (7)
C3 0.0280 (9) 0.0323 (10) 0.0343 (10) 0.0078 (8) 0.0001 (8) −0.0053 (8)
C4 0.0243 (9) 0.0366 (10) 0.0422 (11) 0.0010 (8) 0.0096 (8) −0.0093 (9)
C5 0.0295 (9) 0.0324 (10) 0.0356 (10) −0.0045 (8) 0.0092 (8) −0.0060 (8)

Geometric parameters (Å, º)

Fe1—C21 2.0270 (15) C21—C25 1.429 (2)
Fe1—C15 2.0341 (16) C21—C22 1.431 (2)
Fe1—C11 2.0359 (16) C21—C26 1.473 (2)
Fe1—C22 2.0414 (17) C22—C23 1.419 (2)
Fe1—C25 2.0451 (16) C22—H22 0.90 (2)
Fe1—C12 2.0459 (17) C23—C24 1.424 (2)
Fe1—C14 2.0496 (17) C23—H23 0.92 (2)
Fe1—C24 2.0515 (16) C24—C25 1.415 (2)
Fe1—C13 2.0517 (18) C24—H24 0.98 (2)
Fe1—C23 2.0568 (17) C25—H25 0.938 (19)
O11—C16 1.2604 (19) N1—C2 1.357 (3)
O12—C16 1.2636 (19) N1—H10 0.84 (3)
O21—C26 1.326 (2) N1—H11 0.87 (3)
O21—H21 0.81 (2) N2—C1 1.337 (2)
O22—C26 1.2128 (19) N2—C5 1.338 (2)
C11—C12 1.427 (2) N2—H2 0.89 (2)
C11—C15 1.435 (2) C1—C2 1.391 (3)
C11—C16 1.481 (2) C1—H1 0.95 (2)
C12—C13 1.416 (3) C2—C3 1.407 (3)
C12—H12 0.94 (2) C3—C4 1.377 (3)
C13—C14 1.416 (3) C3—H3 0.91 (2)
C13—H13 0.90 (2) C4—C5 1.371 (3)
C14—C15 1.422 (3) C4—H4 0.94 (2)
C14—H14 0.96 (2) C5—H5 0.92 (2)
C15—H15 0.96 (2)
C21—Fe1—C15 155.49 (7) C13—C14—H14 125.0 (12)
C21—Fe1—C11 120.05 (6) C15—C14—H14 126.7 (12)
C15—Fe1—C11 41.30 (7) Fe1—C14—H14 124.5 (12)
C21—Fe1—C22 41.17 (6) C14—C15—C11 107.83 (15)
C15—Fe1—C22 161.90 (7) C14—C15—Fe1 70.20 (10)
C11—Fe1—C22 155.29 (7) C11—C15—Fe1 69.42 (9)
C21—Fe1—C25 41.07 (6) C14—C15—H15 128.3 (12)
C15—Fe1—C25 120.11 (7) C11—C15—H15 123.9 (12)
C11—Fe1—C25 107.37 (6) Fe1—C15—H15 126.2 (12)
C22—Fe1—C25 69.07 (7) O11—C16—O12 122.66 (15)
C21—Fe1—C12 107.64 (7) O11—C16—C11 118.27 (14)
C15—Fe1—C12 68.83 (7) O12—C16—C11 119.03 (14)
C11—Fe1—C12 40.94 (6) C25—C21—C22 108.26 (14)
C22—Fe1—C12 120.15 (7) C25—C21—C26 126.92 (15)
C25—Fe1—C12 125.97 (7) C22—C21—C26 124.58 (14)
C21—Fe1—C14 162.37 (7) C25—C21—Fe1 70.14 (9)
C15—Fe1—C14 40.76 (7) C22—C21—Fe1 69.95 (9)
C11—Fe1—C14 68.84 (7) C26—C21—Fe1 121.30 (11)
C22—Fe1—C14 124.79 (7) C23—C22—C21 107.47 (15)
C25—Fe1—C14 155.14 (7) C23—C22—Fe1 70.32 (10)
C12—Fe1—C14 68.20 (8) C21—C22—Fe1 68.87 (9)
C21—Fe1—C24 68.45 (6) C23—C22—H22 124.7 (13)
C15—Fe1—C24 107.50 (7) C21—C22—H22 127.9 (13)
C11—Fe1—C24 125.54 (7) Fe1—C22—H22 126.3 (13)
C22—Fe1—C24 68.50 (7) C22—C23—C24 108.23 (15)
C25—Fe1—C24 40.42 (6) C22—C23—Fe1 69.16 (9)
C12—Fe1—C24 163.10 (7) C24—C23—Fe1 69.52 (9)
C14—Fe1—C24 120.53 (7) C22—C23—H23 125.5 (12)
C21—Fe1—C13 125.48 (7) C24—C23—H23 126.2 (12)
C15—Fe1—C13 68.49 (7) Fe1—C23—H23 124.0 (12)
C11—Fe1—C13 68.63 (7) C25—C24—C23 108.49 (15)
C22—Fe1—C13 107.28 (7) C25—C24—Fe1 69.55 (9)
C25—Fe1—C13 163.08 (7) C23—C24—Fe1 69.92 (10)
C12—Fe1—C13 40.42 (7) C25—C24—H24 126.2 (11)
C14—Fe1—C13 40.40 (8) C23—C24—H24 125.1 (11)
C24—Fe1—C13 155.15 (7) Fe1—C24—H24 122.7 (11)
C21—Fe1—C23 68.47 (6) C24—C25—C21 107.56 (14)
C15—Fe1—C23 125.14 (7) C24—C25—Fe1 70.04 (9)
C11—Fe1—C23 162.78 (7) C21—C25—Fe1 68.79 (9)
C22—Fe1—C23 40.52 (7) C24—C25—H25 125.2 (11)
C25—Fe1—C23 68.35 (7) C21—C25—H25 127.0 (11)
C12—Fe1—C23 154.95 (7) Fe1—C25—H25 122.4 (11)
C14—Fe1—C23 107.61 (7) O22—C26—O21 123.69 (15)
C24—Fe1—C23 40.57 (7) O22—C26—C21 123.47 (15)
C13—Fe1—C23 120.33 (7) O21—C26—C21 112.83 (14)
C26—O21—H21 107.7 (17) C2—N1—H10 117.7 (18)
C12—C11—C15 107.33 (15) C2—N1—H11 119.6 (15)
C12—C11—C16 126.40 (15) H10—N1—H11 117 (2)
C15—C11—C16 126.26 (15) C1—N2—C5 122.83 (17)
C12—C11—Fe1 69.91 (9) C1—N2—H2 118.5 (14)
C15—C11—Fe1 69.29 (9) C5—N2—H2 118.7 (14)
C16—C11—Fe1 125.12 (11) N2—C1—C2 120.94 (16)
C13—C12—C11 108.29 (16) N2—C1—H1 115.5 (11)
C13—C12—Fe1 70.01 (10) C2—C1—H1 123.6 (11)
C11—C12—Fe1 69.15 (9) N1—C2—C1 120.30 (17)
C13—C12—H12 127.9 (12) N1—C2—C3 122.88 (18)
C11—C12—H12 123.8 (12) C1—C2—C3 116.76 (17)
Fe1—C12—H12 125.8 (12) C4—C3—C2 120.22 (18)
C12—C13—C14 108.35 (16) C4—C3—H3 120.3 (13)
C12—C13—Fe1 69.57 (10) C2—C3—H3 119.4 (13)
C14—C13—Fe1 69.72 (10) C5—C4—C3 120.33 (17)
C12—C13—H13 124.4 (13) C5—C4—H4 119.4 (14)
C14—C13—H13 127.2 (13) C3—C4—H4 120.3 (14)
Fe1—C13—H13 124.1 (13) N2—C5—C4 118.91 (18)
C13—C14—C15 108.20 (16) N2—C5—H5 116.4 (13)
C13—C14—Fe1 69.88 (10) C4—C5—H5 124.7 (13)
C15—C14—Fe1 69.04 (10)
C21—Fe1—C11—C12 82.37 (11) C14—Fe1—C21—C25 −161.7 (2)
C15—Fe1—C11—C12 −118.52 (14) C24—Fe1—C21—C25 −37.55 (10)
C22—Fe1—C11—C12 47.8 (2) C13—Fe1—C21—C25 166.01 (10)
C25—Fe1—C11—C12 125.35 (10) C23—Fe1—C21—C25 −81.32 (10)
C14—Fe1—C11—C12 −80.70 (11) C15—Fe1—C21—C22 166.56 (15)
C24—Fe1—C11—C12 166.16 (10) C11—Fe1—C21—C22 −158.87 (10)
C13—Fe1—C11—C12 −37.20 (11) C25—Fe1—C21—C22 119.10 (14)
C23—Fe1—C11—C12 −161.9 (2) C12—Fe1—C21—C22 −115.91 (10)
C21—Fe1—C11—C15 −159.11 (10) C14—Fe1—C21—C22 −42.6 (3)
C22—Fe1—C11—C15 166.30 (15) C24—Fe1—C21—C22 81.55 (10)
C25—Fe1—C11—C15 −116.13 (10) C13—Fe1—C21—C22 −74.89 (12)
C12—Fe1—C11—C15 118.52 (14) C23—Fe1—C21—C22 37.79 (10)
C14—Fe1—C11—C15 37.82 (10) C15—Fe1—C21—C26 −74.4 (2)
C24—Fe1—C11—C15 −75.32 (12) C11—Fe1—C21—C26 −39.84 (15)
C13—Fe1—C11—C15 81.31 (11) C22—Fe1—C21—C26 119.03 (17)
C23—Fe1—C11—C15 −43.4 (3) C25—Fe1—C21—C26 −121.87 (17)
C21—Fe1—C11—C16 −38.63 (16) C12—Fe1—C21—C26 3.12 (14)
C15—Fe1—C11—C16 120.48 (18) C14—Fe1—C21—C26 76.5 (3)
C22—Fe1—C11—C16 −73.2 (2) C24—Fe1—C21—C26 −159.42 (15)
C25—Fe1—C11—C16 4.35 (15) C13—Fe1—C21—C26 44.14 (16)
C12—Fe1—C11—C16 −121.01 (18) C23—Fe1—C21—C26 156.82 (15)
C14—Fe1—C11—C16 158.29 (16) C25—C21—C22—C23 −0.07 (18)
C24—Fe1—C11—C16 45.16 (17) C26—C21—C22—C23 −174.85 (14)
C13—Fe1—C11—C16 −158.21 (16) Fe1—C21—C22—C23 −60.00 (11)
C23—Fe1—C11—C16 77.1 (3) C25—C21—C22—Fe1 59.92 (11)
C15—C11—C12—C13 −0.16 (19) C26—C21—C22—Fe1 −114.85 (15)
C16—C11—C12—C13 178.69 (15) C21—Fe1—C22—C23 118.68 (14)
Fe1—C11—C12—C13 59.27 (12) C15—Fe1—C22—C23 −43.2 (3)
C15—C11—C12—Fe1 −59.42 (11) C11—Fe1—C22—C23 166.96 (14)
C16—C11—C12—Fe1 119.42 (16) C25—Fe1—C22—C23 80.76 (10)
C21—Fe1—C12—C13 124.47 (11) C12—Fe1—C22—C23 −158.90 (10)
C15—Fe1—C12—C13 −81.27 (12) C14—Fe1—C22—C23 −75.76 (12)
C11—Fe1—C12—C13 −119.72 (15) C24—Fe1—C22—C23 37.27 (10)
C22—Fe1—C12—C13 81.25 (13) C13—Fe1—C22—C23 −116.74 (11)
C25—Fe1—C12—C13 166.16 (11) C15—Fe1—C22—C21 −161.9 (2)
C14—Fe1—C12—C13 −37.32 (11) C11—Fe1—C22—C21 48.28 (19)
C24—Fe1—C12—C13 −161.8 (2) C25—Fe1—C22—C21 −37.92 (9)
C23—Fe1—C12—C13 47.7 (2) C12—Fe1—C22—C21 82.42 (11)
C21—Fe1—C12—C11 −115.81 (10) C14—Fe1—C22—C21 165.56 (10)
C15—Fe1—C12—C11 38.45 (10) C24—Fe1—C22—C21 −81.42 (10)
C22—Fe1—C12—C11 −159.02 (10) C13—Fe1—C22—C21 124.58 (10)
C25—Fe1—C12—C11 −74.12 (12) C23—Fe1—C22—C21 −118.68 (14)
C14—Fe1—C12—C11 82.40 (11) C21—C22—C23—C24 0.38 (18)
C24—Fe1—C12—C11 −42.0 (3) Fe1—C22—C23—C24 −58.70 (12)
C13—Fe1—C12—C11 119.72 (15) C21—C22—C23—Fe1 59.08 (11)
C23—Fe1—C12—C11 167.44 (14) C21—Fe1—C23—C22 −38.38 (10)
C11—C12—C13—C14 0.4 (2) C15—Fe1—C23—C22 164.92 (10)
Fe1—C12—C13—C14 59.12 (12) C11—Fe1—C23—C22 −161.4 (2)
C11—C12—C13—Fe1 −58.73 (12) C25—Fe1—C23—C22 −82.70 (10)
C21—Fe1—C13—C12 −74.75 (13) C12—Fe1—C23—C22 47.3 (2)
C15—Fe1—C13—C12 82.19 (11) C14—Fe1—C23—C22 123.37 (10)
C11—Fe1—C13—C12 37.67 (10) C24—Fe1—C23—C22 −119.96 (14)
C22—Fe1—C13—C12 −116.48 (11) C13—Fe1—C23—C22 81.10 (12)
C25—Fe1—C13—C12 −41.7 (3) C21—Fe1—C23—C24 81.58 (10)
C14—Fe1—C13—C12 119.72 (15) C15—Fe1—C23—C24 −75.12 (12)
C24—Fe1—C13—C12 167.49 (15) C11—Fe1—C23—C24 −41.5 (3)
C23—Fe1—C13—C12 −158.72 (10) C22—Fe1—C23—C24 119.96 (14)
C21—Fe1—C13—C14 165.53 (10) C25—Fe1—C23—C24 37.26 (9)
C15—Fe1—C13—C14 −37.53 (10) C12—Fe1—C23—C24 167.30 (15)
C11—Fe1—C13—C14 −82.05 (11) C14—Fe1—C23—C24 −116.67 (11)
C22—Fe1—C13—C14 123.80 (11) C13—Fe1—C23—C24 −158.94 (10)
C25—Fe1—C13—C14 −161.4 (2) C22—C23—C24—C25 −0.55 (19)
C12—Fe1—C13—C14 −119.72 (15) Fe1—C23—C24—C25 −59.03 (11)
C24—Fe1—C13—C14 47.8 (2) C22—C23—C24—Fe1 58.48 (11)
C23—Fe1—C13—C14 81.56 (12) C21—Fe1—C24—C25 38.14 (10)
C12—C13—C14—C15 −0.5 (2) C15—Fe1—C24—C25 −116.18 (10)
Fe1—C13—C14—C15 58.56 (12) C11—Fe1—C24—C25 −74.16 (12)
C12—C13—C14—Fe1 −59.03 (12) C22—Fe1—C24—C25 82.56 (10)
C21—Fe1—C14—C13 −42.2 (3) C12—Fe1—C24—C25 −41.5 (3)
C15—Fe1—C14—C13 119.78 (15) C14—Fe1—C24—C25 −158.78 (10)
C11—Fe1—C14—C13 81.48 (11) C13—Fe1—C24—C25 167.36 (15)
C22—Fe1—C14—C13 −75.05 (13) C23—Fe1—C24—C25 119.78 (14)
C25—Fe1—C14—C13 167.24 (15) C21—Fe1—C24—C23 −81.64 (10)
C12—Fe1—C14—C13 37.33 (11) C15—Fe1—C24—C23 124.04 (10)
C24—Fe1—C14—C13 −158.82 (10) C11—Fe1—C24—C23 166.06 (10)
C23—Fe1—C14—C13 −116.40 (11) C22—Fe1—C24—C23 −37.23 (10)
C21—Fe1—C14—C15 −162.0 (2) C25—Fe1—C24—C23 −119.78 (14)
C11—Fe1—C14—C15 −38.30 (10) C12—Fe1—C24—C23 −161.3 (2)
C22—Fe1—C14—C15 165.18 (10) C14—Fe1—C24—C23 81.43 (12)
C25—Fe1—C14—C15 47.5 (2) C13—Fe1—C24—C23 47.6 (2)
C12—Fe1—C14—C15 −82.44 (11) C23—C24—C25—C21 0.50 (18)
C24—Fe1—C14—C15 81.40 (12) Fe1—C24—C25—C21 −58.76 (11)
C13—Fe1—C14—C15 −119.78 (15) C23—C24—C25—Fe1 59.26 (11)
C23—Fe1—C14—C15 123.83 (11) C22—C21—C25—C24 −0.27 (18)
C13—C14—C15—C11 0.36 (19) C26—C21—C25—C24 174.35 (15)
Fe1—C14—C15—C11 59.45 (11) Fe1—C21—C25—C24 59.54 (11)
C13—C14—C15—Fe1 −59.09 (12) C22—C21—C25—Fe1 −59.81 (11)
C12—C11—C15—C14 −0.13 (18) C26—C21—C25—Fe1 114.81 (16)
C16—C11—C15—C14 −178.98 (15) C21—Fe1—C25—C24 −119.03 (14)
Fe1—C11—C15—C14 −59.94 (11) C15—Fe1—C25—C24 81.66 (11)
C12—C11—C15—Fe1 59.82 (11) C11—Fe1—C25—C24 124.90 (10)
C16—C11—C15—Fe1 −119.03 (16) C22—Fe1—C25—C24 −81.02 (11)
C21—Fe1—C15—C14 166.96 (14) C12—Fe1—C25—C24 166.22 (10)
C11—Fe1—C15—C14 118.87 (15) C14—Fe1—C25—C24 47.9 (2)
C22—Fe1—C15—C14 −42.6 (3) C13—Fe1—C25—C24 −161.6 (2)
C25—Fe1—C15—C14 −159.02 (10) C23—Fe1—C25—C24 −37.39 (10)
C12—Fe1—C15—C14 80.74 (11) C15—Fe1—C25—C21 −159.31 (9)
C24—Fe1—C15—C14 −116.75 (11) C11—Fe1—C25—C21 −116.08 (10)
C13—Fe1—C15—C14 37.21 (11) C22—Fe1—C25—C21 38.01 (10)
C23—Fe1—C15—C14 −75.53 (13) C12—Fe1—C25—C21 −74.75 (11)
C21—Fe1—C15—C11 48.1 (2) C14—Fe1—C25—C21 166.90 (15)
C22—Fe1—C15—C11 −161.4 (2) C24—Fe1—C25—C21 119.03 (14)
C25—Fe1—C15—C11 82.11 (11) C13—Fe1—C25—C21 −42.6 (3)
C12—Fe1—C15—C11 −38.13 (10) C23—Fe1—C25—C21 81.64 (10)
C14—Fe1—C15—C11 −118.87 (15) C25—C21—C26—O22 −170.69 (15)
C24—Fe1—C15—C11 124.38 (10) C22—C21—C26—O22 3.1 (2)
C13—Fe1—C15—C11 −81.66 (11) Fe1—C21—C26—O22 −83.00 (18)
C23—Fe1—C15—C11 165.60 (9) C25—C21—C26—O21 10.2 (2)
C12—C11—C16—O11 14.1 (2) C22—C21—C26—O21 −176.01 (15)
C15—C11—C16—O11 −167.29 (15) Fe1—C21—C26—O21 97.89 (14)
Fe1—C11—C16—O11 103.88 (16) C5—N2—C1—C2 −1.0 (3)
C12—C11—C16—O12 −167.90 (15) N2—C1—C2—N1 −176.66 (18)
C15—C11—C16—O12 10.7 (2) N2—C1—C2—C3 0.5 (3)
Fe1—C11—C16—O12 −78.10 (18) N1—C2—C3—C4 177.35 (19)
C15—Fe1—C21—C25 47.46 (19) C1—C2—C3—C4 0.3 (3)
C11—Fe1—C21—C25 82.02 (11) C2—C3—C4—C5 −0.6 (3)
C22—Fe1—C21—C25 −119.10 (14) C1—N2—C5—C4 0.7 (3)
C12—Fe1—C21—C25 124.98 (10) C3—C4—C5—N2 0.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H11···O12 0.87 (3) 2.08 (3) 2.918 (2) 161 (2)
N1—H10···O11i 0.84 (3) 2.07 (3) 2.906 (2) 171 (3)
N2—H2···O11ii 0.89 (2) 1.79 (2) 2.675 (2) 177 (2)
O21—H21···O12iii 0.81 (2) 1.77 (2) 2.5621 (16) 164 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+1/2, z+1/2.

References

  1. Amer, W. A., Yu, H., Wang, L., Vatsadze, S. & Tong, R. (2013). J. Inorg. Organomet. Polym. 23, 1431–1444.
  2. Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gao, B., Yang, B., Li, T. & Zhang, B. (2009). Synth. Commun. 39, 2973–2981.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, R., Wang, L., Yu, H., Zain-ul-Abdin Chen, Y., Khalid, H., Abbasi, N., Akram, M., Vatsadze, S. Z. & Lemenovskii, D. A. (2016). J. Inorg. Organomet. Polym. 26, 545–554.
  7. Zakaria, C. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002). Acta Cryst. B58, 786–802. [DOI] [PubMed]
  8. Zheng, D., Haojie, Y., Li, W., Xiaoting, Z., Yongsheng, C. & Vatsadze, S. Z. (2016). J. Organomet. Chem. 821, 48–53.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007058/wm5388sup1.cif

e-73-00856-sup1.cif (35.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007058/wm5388Isup2.hkl

e-73-00856-Isup2.hkl (167.2KB, hkl)

CCDC reference: 1444115

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES