Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 19;73(Pt 6):859–863. doi: 10.1107/S2056989017007198

A new example of intra­molecular C—H⋯Ni anagostic inter­actions: synthesis, crystal structure and Hirshfeld analysis of cis-bis­[4-methyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amidato-κ2 N 1,S]nickel(II) di­methyl­formamide monosolvate

Adriano Bof de Oliveira a,*, Johannes Beck b, Sônia Elizabeth Brown S Mellone a, Jörg Daniels b
PMCID: PMC5458310  PMID: 28638645

The homoleptic nickel–thio­semicarbazonate complex shows structural features including an unusual cis-coordination and trans-anagostic Ni—H intra­molecular inter­actions. In the crystal, complex and DMF solvate mol­ecules build up a one-dimensional hydrogen-bonded polymer along [010].

Keywords: crystal structure, Ni—H anagostic inter­action, nickel-thio­semicarbazone cis complex

Abstract

The reaction of NiII acetate tetra­hydrate with 4-methyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide in a 2:1 molar ratio and recrystallization from di­methyl­formamide yielded the title compound, [Ni(C12H14N3S)2]·C3H7NO. The ligands act as monoanionic κ2 N 1,S-donors, forming five-membered metallarings. The NiII ion is fourfold coordinated in a distorted square-planar cis-configuration, which is rather uncommon for mono­thio­semicarbazone complexes. Intra­molecular H⋯Ni trans-inter­actions are observed [H⋯Ni distances are 2.50 and 2.57 Å] and thus anagostic inter­actions can be suggested. The Hirshfeld surface analysis indicates that the major contributions for the crystal packing are H⋯H (66.6%), H⋯S (12.3%) and H⋯C (10.9%) inter­actions. In the crystal, the complex mol­ecules are linked by di­methyl­formamide solvent mol­ecules through N—H⋯O inter­actions into one-dimensional hydrogen-bonded polymers along [010].

Chemical context  

One of the first reports on thio­semicarbazone chemistry can be traced back to the beginning of the 20th century in Germany (Freund & Schander, 1902). Initially, thio­semicarbazone derivatives were the products of the identification and characterization reactions of aldehydes and ketones, with thio­semicarbazide as reagent. In the 1940s it was reported that, in in vitro assays, thio­semicarbazones turned out to be very effective for the Mycobacterium tuberculosis growth inhibition (Domagk et al., 1946) while the synthesis of thio­semicarbazone metal complexes had already been investigated by the early 1950s (Kuhn & Zilliken, 1952). As a result of the main fragment, R=N—N(H)—C(=S)—NR 2, thio­semicarbazone derivatives have a wide range of coordination modes and applications in inorganic chemistry. The hydrazinic H atom can be easily removed and the negative charge is then delocalized over the C—N—N—C—S backbone, which enables chemical bonding with many different metal ions (Lobana et al., 2009). However, a cis configuration of the ligated mol­ecules is a rather uncommon coordination mode for mono-thio­semicarbazones and, as far as we know, there is only one NiII mono-thio­semicarbazone complex reported in the literature, with N-phenyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbothi­amide as ligand (for the ligand crystal structure, see: de Oliveira et al., 2014a ; for the crystal structure of the complex, see: de Oliveira et al., 2014b ). It can be suggested that the mol­ecular symmetry decreases from a trans to a cis configuration, possibly by loss of inversion symmetry at the central metal cation, which is compensated for by H⋯Ni intra­molecular inter­actions and hydrogen-bond formation with solvent mol­ecules. In general, H⋯metal ion inter­actions can show covalent or electrostatic character and are observed in some complexes with catalytic applications (Brookhart et al., 2007). As part of our research on the synthesis and structural studies of thio­semicarbazone derivatives, we report herein a new solvated nickel homoleptic complex with the 4-methyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide ligand and di­methyl­formamide (DMF) as solvent.graphic file with name e-73-00859-scheme1.jpg

Structural commentary  

One mol­ecule of the title complex and one di­methyl­formamide solvate comprise the asymmetric unit. The NiII ion is fourfold coordinated in a distorted square-planar environment by two chelating thio­semicarbazonate ligands (Fig. 1). The maximum deviation from the Ni1/S1/S2/N1/N4 mean plane amounts to 0.1705 (16) Å for N1. The S1—Ni1—N4 and S2—Ni1—N1 bond angles are 169.42 (5) and 168.38 (5)°, respectively. The distortion along the trans-donor atoms confirms the deviation of the coordination sphere from ideal values. Both non-aromatic rings of the tetra­lone entities have an envelope conformation with maximum deviations from the mean plane of the non–H atoms of 0.3539 (15) Å for C3 and of 0.3685 (15) Å for C15. The two ligands are deprotonated with the negative charge delocalized over the C—N—N—C—S entity, as suggested by their inter­mediate bond lengths and supported by the sp 2-hybridization for C1, C13, N1, C11, C23 and N4. The imine and thio­amide C—N distances indicate considerable double-bond character, while the C—S distance is consistent with mainly single-bond character. The change of the bond lengths is a key feature to distinguish free, i.e. non-coordinating, and coordinating thio­semicarbazones. For the title compound these distances (values given in Å) are C1—N1 = 1.306 (2), N1—N2 = 1.408 (2), N2—C11 = 1.307 (2) and C11—S1 = 1.752 (2) for one ligand and C13—N4 = 1.303 (2), N4—N5 = 1.409 (2), N5—C23 = 1.303 (2) and C23—S2 = 1.7573 (19) for the other one.

Figure 1.

Figure 1

The mol­ecular structure of the title compound and the di­methyl­formamide solvate, with labelling and displacement ellipsoids drawn at the 40% probability level.

The title complex shows two remarkable structural features, namely a cis coordination mode, which is rather uncommon for mono-thio­semicarbazone ligands, as well as two positioned trans H⋯Ni anagostic inter­actions (Fig. 2, Table 1). The H7⋯Ni1 and H19⋯Ni1 distances are 2.50 and 2.57 Å, being shorter than the sum of the van der Waals radii for H and Ni (2.73 Å; Bondi, 1964; Rowland & Taylor, 1996), in order that electrostactic inter­actions can be assigned. For an agostic inter­action, that involves a covalent or a three-center, two-electron bond, an H⋯metal distance of at least 2.3 Å is required. The C7—H7⋯Ni1 and C19—H19⋯Ni1 angles are 120.1 and 119.7°, being in agreement with literature data for another nickel complex with anagostic inter­actions (de Oliveira et al., 2014b ).

Figure 2.

Figure 2

Graphical representation of the metal ion coordination environment, showing the H7⋯Ni1 and H19⋯Ni1 anagostic inter­actions as dashed lines. The figure is simplified for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 2.18 2.979 (2) 151
N6—H6⋯O1 0.88 2.14 2.875 (2) 140
C7—H7⋯Ni1 0.95 2.50 3.0831 (19) 120
C19—H19⋯Ni1 0.95 2.57 3.1480 (19) 120

Symmetry code: (i) Inline graphic.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, the coordination entities are linked by DMF solvate mol­ecules through N—H⋯O inter­actions. The DMF-oxygen atoms are hydrogen-bond acceptors, forming a bridg­ing structure between two N—H⋯O arrangements: N6—H6⋯O1 and N3—H3⋯O1i [symmetry code: (i) −x + 1, y − Inline graphic, −z + Inline graphic]. The mol­ecules are linked into one-dimensional hydrogen-bonded polymers along [010] (Fig. 3, Table 1). Additional C—H⋯O inter­actions are also present (Table 1).

Figure 3.

Figure 3

Section of the crystal structure of the title compound viewed along [001], with hydrogen bonds shown as dashed lines (for details, see: Table 1). The figure is simplified for clarity.

Hirshfeld (1977) analysis of the crystal structure suggests that the inter­molecular H⋯H inter­actions contribute 66.6% to the crystal packing, the H⋯S inter­actions 12.3% and the H⋯C inter­actions 10.9%. Other important inter­molecular contacts for the cohesion of the mol­ecules are H⋯N = 4.5% and H⋯O = 4.0%. The weak H⋯Ni inter­actions contribute by 0.20% to the crystal structure. All contributions to the crystal cohesion are shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Wolff et al., 2012). The d e (y axis) and d i (x axis) values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface contacts (Fig. 4).

Figure 4.

Figure 4

Graphical representation of the two-dimensional Hirshfeld surface fingerprint plots for the inter­actions in the crystal structure of the title compound. The contacts are drawn in detail (cyan dots) and the contributions to the crystal packing amount to: (a) H⋯H = 66.6%, (b) H⋯S = 12.3%, (c) H⋯C = 10.9%, (d) H⋯N = 4.5%, (e) H⋯O = 4.0% and (f) H⋯Ni = 0.2%. The d e (y axis) and d i (x axis) values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface contacts.

Comparison with a related structure  

For comparison with the title compound, a literature search revealed only one crystal structure of an NiII–mono­thio­semicarbazone complex with cis configuration, viz. bis­{cis-(2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazine­carbo­thio­amidate-κ2 N 1,S)}nickel(II) monohydrate bis­(tetra­hydro­furane) solvate (de Oliveira et al. 2014b ). The graphical representation of the Hirshfeld surface was performed for the two complexes and suggests, represented in magenta colour, the locations of the strongest inter­molecular contacts (Fig. 5). Both structures have the same main fragment for the ligand, the α-tetra­lone-thio­semicarbazone, anagostic H⋯Ni intra­molecular inter­actions and hydrogen bonding with the solvate mol­ecules, suggesting the stabilization of the crystal packing, since the cis configuration implies a symmetry decrease with loss of the inversion center and appears to be energetically unfavourable.

Figure 5.

Figure 5

The Hirshfeld surface graphical representation (d norm) for: (a) the asymmetric unit of the title compound and (b) the asymmetric unit of the comparison compound, bis­{cis-(2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amidate-κ2 N 1,S)}nickel(II) monohydrate bis­(tetra­hydro­furane) solvate (de Oliveira et al. 2014b ). The surface regions with the strongest inter­molecular inter­actions are drawn in magenta. The figure is simplified for clarity. [Symmetry code: (i) −x + 1, y − Inline graphic, −z + Inline graphic.]

Synthesis and crystallization  

Starting materials were commercially available and were used without further purification. The synthesis of the ligand was adapted from a procedure reported previously (Freund & Schander, 1902) with 1-tetra­lone and 4-methyl­thio­semicarbazide. 2-(1,2,3,4-Tetra­hydro­naphthalen-1-yl­idene)-4-methyl-hydrazinecarbo­thio­amide was dissolved in tetra­hydro­furan (THF; 2 mmol / 40 ml) with stirring maintained for 30 min until the solution turned yellow. At the same time, a green solution of nickel acetate tetra­hydrate in THF (1 mmol/40 ml) was prepared under continuous stirring. A dark coloured mixture of both solutions was maintained with stirring at room temperature for 6 h. A crude dark red material was obtained by evaporation of the solvent. Dark red crystals of the complex, suitable for X-ray analysis, were obtained by recrystallization of the solid from a di­methyl­formamide solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in difference maps but were positioned with idealized geometry and were refined using a riding model with U iso(H) = 1.2U eq(C and N) for the sp 2–hybridized DMF C atom, the aromatic and the secondary C atoms, and for all N atoms, and with U iso(H) = 1.5U eq(C) for the methyl C atoms. The bond lengths (values given in Å) are: C—H = 0.99 for –CH2– fragments, C—H = 0.98 for CH3– fragments, C—H = 0.95 for aromatic groups and the sp 2-hybridized DMF C atom; N—H = 0.88 for all N atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Ni(C12H14N3S)2]·C3H7NO
M r 596.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 12.5864 (3), 11.6273 (3), 19.1271 (5)
β (°) 90.529 (1)
V3) 2799.05 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.33 × 0.14 × 0.02
 
Data collection
Diffractometer Nonius Kappa CCD area detector
Absorption correction Multi-scan (Blessing, 1995)
T min, T max 0.761, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 46078, 6368, 4870
R int 0.057
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.081, 1.03
No. of reflections 6368
No. of parameters 347
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.35

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006), Crystal Explorer (Wolff et al., 2012), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389sup1.cif

e-73-00859-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389Isup2.hkl

e-73-00859-Isup2.hkl (506.2KB, hkl)

CCDC reference: 1550129

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the financial support by the State of North Rhine–Westphalia, Germany and by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers. ABO is an associate researcher in the project ‘Di­nitrosyl complexes containing thiol and/or thio­semicarbazone: synthesis, characterization and treatment against cancer’, founded by FAPESP, Proc. 2015/12098–0. He also acknowledges Professor José C. M. Pereira (UNESP, Brazil) for his support, and thanks Professor Vanessa C. Gervini for the invitation to be a visiting professor at the Federal University of Rio Grande, Brazil. SEBSM thanks the Federal University of Sergipe for the PIBITIVOL undergraduate programme.

supplementary crystallographic information

Crystal data

[Ni(C12H14N3S)2]·C3H7NO F(000) = 1256
Mr = 596.45 Dx = 1.415 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.5864 (3) Å Cell parameters from 105836 reflections
b = 11.6273 (3) Å θ = 2.9–27.5°
c = 19.1271 (5) Å µ = 0.88 mm1
β = 90.529 (1)° T = 123 K
V = 2799.05 (12) Å3 Plate, dark red
Z = 4 0.33 × 0.14 × 0.02 mm

Data collection

Nonius Kappa CCD area detector diffractometer 6368 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enraf–Nonius FR590 4870 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1 Rint = 0.057
CCD area detector scans θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (Blessing, 1995) h = −16→16
Tmin = 0.761, Tmax = 0.981 k = −15→15
46078 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.1854P] where P = (Fo2 + 2Fc2)/3
6368 reflections (Δ/σ)max = 0.001
347 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.08922 (15) 0.22945 (15) 0.16633 (10) 0.0211 (4)
C2 0.00261 (15) 0.22610 (17) 0.11111 (11) 0.0263 (4)
H2A −0.012932 0.144831 0.099439 0.032*
H2B 0.028999 0.263837 0.068247 0.032*
C3 −0.10022 (16) 0.28467 (17) 0.13303 (11) 0.0276 (5)
H3A −0.145309 0.299214 0.091278 0.033*
H3B −0.139887 0.233640 0.164970 0.033*
C4 −0.07562 (16) 0.39797 (17) 0.16967 (11) 0.0286 (5)
H4A −0.034965 0.448847 0.138186 0.034*
H4B −0.142564 0.437423 0.182052 0.034*
C5 −0.01161 (15) 0.37338 (16) 0.23472 (11) 0.0246 (4)
C6 0.06834 (15) 0.28808 (15) 0.23276 (10) 0.0214 (4)
C7 0.11941 (15) 0.25627 (16) 0.29524 (10) 0.0238 (4)
H7 0.169921 0.195566 0.294964 0.029*
C8 0.09729 (16) 0.31204 (17) 0.35734 (11) 0.0280 (4)
H8 0.133779 0.290933 0.399106 0.034*
C9 0.02163 (16) 0.39893 (18) 0.35845 (12) 0.0308 (5)
H9 0.007412 0.438515 0.400793 0.037*
C10 −0.03313 (16) 0.42788 (17) 0.29776 (12) 0.0293 (5)
H10 −0.086231 0.485872 0.299236 0.035*
C11 0.25278 (15) 0.02857 (16) 0.10116 (10) 0.0233 (4)
C12 0.18174 (17) −0.0606 (2) −0.00542 (12) 0.0352 (5)
H12A 0.111995 −0.080067 0.013631 0.053*
H12B 0.203560 −0.120404 −0.038434 0.053*
H12C 0.177475 0.013501 −0.029660 0.053*
C13 0.28111 (14) 0.44637 (15) 0.19613 (10) 0.0196 (4)
C14 0.27262 (16) 0.56078 (16) 0.23328 (10) 0.0252 (4)
H14A 0.342572 0.580051 0.254263 0.030*
H14B 0.221089 0.553388 0.271814 0.030*
C15 0.23767 (17) 0.65918 (16) 0.18558 (11) 0.0284 (5)
H15A 0.216582 0.726228 0.214176 0.034*
H15B 0.297515 0.682696 0.155546 0.034*
C16 0.14426 (17) 0.62064 (17) 0.14013 (12) 0.0315 (5)
H16A 0.084832 0.595538 0.170053 0.038*
H16B 0.119187 0.685479 0.110766 0.038*
C17 0.17939 (15) 0.52246 (16) 0.09428 (11) 0.0244 (4)
C18 0.25161 (14) 0.44030 (15) 0.12149 (10) 0.0219 (4)
C19 0.29536 (15) 0.35877 (16) 0.07606 (10) 0.0233 (4)
H19 0.347667 0.306746 0.093171 0.028*
C20 0.26353 (16) 0.35283 (17) 0.00660 (11) 0.0281 (5)
H20 0.293256 0.296584 −0.023476 0.034*
C21 0.18816 (17) 0.42932 (18) −0.01872 (11) 0.0313 (5)
H21 0.164134 0.423931 −0.065837 0.038*
C22 0.14775 (16) 0.51388 (17) 0.02480 (11) 0.0288 (5)
H22 0.097302 0.567064 0.006610 0.035*
C23 0.40915 (15) 0.30161 (16) 0.32372 (10) 0.0223 (4)
C24 0.42580 (18) 0.41030 (18) 0.43256 (11) 0.0325 (5)
H24A 0.461284 0.477466 0.412455 0.049*
H24B 0.453003 0.396954 0.480046 0.049*
H24C 0.349070 0.424227 0.434154 0.049*
N1 0.18025 (12) 0.17918 (12) 0.15512 (8) 0.0203 (3)
N2 0.18018 (12) 0.10848 (13) 0.09533 (8) 0.0225 (3)
N3 0.25886 (13) −0.05314 (14) 0.05102 (9) 0.0283 (4)
H3 0.311231 −0.103222 0.052768 0.034*
N4 0.31278 (12) 0.35542 (13) 0.23026 (8) 0.0208 (3)
N5 0.34549 (12) 0.38054 (13) 0.29923 (8) 0.0224 (3)
N6 0.44659 (13) 0.31004 (14) 0.38969 (9) 0.0258 (4)
H6 0.484635 0.253290 0.407241 0.031*
Ni1 0.31331 (2) 0.19296 (2) 0.20574 (2) 0.01982 (8)
S1 0.34284 (4) 0.01916 (4) 0.17128 (3) 0.02631 (12)
S2 0.44889 (4) 0.18089 (4) 0.27525 (3) 0.02496 (12)
C25 0.61277 (16) 0.14667 (18) 0.51104 (11) 0.0279 (5)
H25 0.611205 0.070634 0.492874 0.034*
C26 0.5851 (2) 0.0599 (2) 0.62485 (14) 0.0474 (6)
H26A 0.586504 −0.010812 0.597040 0.071*
H26B 0.516179 0.066792 0.647931 0.071*
H26C 0.641814 0.057435 0.660262 0.071*
C27 0.60202 (19) 0.2724 (2) 0.61103 (13) 0.0431 (6)
H27A 0.615740 0.330474 0.575109 0.065*
H27B 0.657953 0.275813 0.646952 0.065*
H27C 0.532977 0.287397 0.632476 0.065*
N7 0.60110 (14) 0.15880 (15) 0.57921 (9) 0.0304 (4)
O1 0.62554 (12) 0.22590 (12) 0.46895 (8) 0.0328 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0211 (10) 0.0162 (8) 0.0260 (11) −0.0018 (7) 0.0004 (8) 0.0019 (8)
C2 0.0247 (10) 0.0255 (10) 0.0285 (12) 0.0013 (8) −0.0029 (9) −0.0011 (8)
C3 0.0223 (10) 0.0293 (11) 0.0312 (12) 0.0011 (8) −0.0033 (9) 0.0016 (9)
C4 0.0235 (10) 0.0248 (10) 0.0374 (13) 0.0051 (8) −0.0025 (9) 0.0029 (9)
C5 0.0209 (10) 0.0195 (9) 0.0333 (12) −0.0013 (8) 0.0021 (8) −0.0005 (8)
C6 0.0194 (9) 0.0178 (9) 0.0271 (11) −0.0031 (7) 0.0016 (8) −0.0004 (8)
C7 0.0201 (10) 0.0228 (9) 0.0287 (11) −0.0009 (8) 0.0024 (8) 0.0009 (8)
C8 0.0306 (11) 0.0283 (10) 0.0250 (11) −0.0052 (9) 0.0010 (9) −0.0006 (9)
C9 0.0315 (11) 0.0296 (11) 0.0314 (12) −0.0041 (9) 0.0080 (9) −0.0088 (9)
C10 0.0242 (10) 0.0236 (10) 0.0403 (13) 0.0004 (8) 0.0065 (9) −0.0034 (9)
C11 0.0236 (10) 0.0209 (9) 0.0256 (11) −0.0023 (8) 0.0027 (8) 0.0001 (8)
C12 0.0311 (11) 0.0421 (12) 0.0322 (13) −0.0016 (10) −0.0005 (9) −0.0130 (10)
C13 0.0177 (9) 0.0191 (9) 0.0219 (10) −0.0024 (7) 0.0034 (7) −0.0003 (7)
C14 0.0288 (10) 0.0208 (9) 0.0259 (11) 0.0011 (8) 0.0033 (8) −0.0017 (8)
C15 0.0349 (12) 0.0202 (9) 0.0300 (12) 0.0023 (8) 0.0048 (9) −0.0010 (8)
C16 0.0313 (11) 0.0266 (10) 0.0365 (13) 0.0077 (9) 0.0020 (9) 0.0040 (9)
C17 0.0206 (10) 0.0221 (9) 0.0305 (12) −0.0016 (8) 0.0008 (8) 0.0030 (8)
C18 0.0202 (9) 0.0191 (9) 0.0265 (11) −0.0029 (7) 0.0002 (8) 0.0034 (8)
C19 0.0249 (10) 0.0195 (9) 0.0254 (11) −0.0013 (8) −0.0008 (8) 0.0023 (8)
C20 0.0341 (11) 0.0226 (10) 0.0278 (12) −0.0018 (9) −0.0004 (9) −0.0004 (8)
C21 0.0374 (12) 0.0297 (11) 0.0266 (12) −0.0047 (9) −0.0077 (9) 0.0037 (9)
C22 0.0280 (11) 0.0264 (10) 0.0319 (12) 0.0003 (8) −0.0066 (9) 0.0072 (9)
C23 0.0216 (9) 0.0228 (9) 0.0225 (10) −0.0040 (8) 0.0030 (8) −0.0009 (8)
C24 0.0387 (12) 0.0327 (11) 0.0261 (12) 0.0000 (10) −0.0045 (9) −0.0062 (9)
N1 0.0207 (8) 0.0175 (7) 0.0226 (9) −0.0006 (6) 0.0012 (7) −0.0013 (6)
N2 0.0243 (8) 0.0207 (8) 0.0225 (9) −0.0013 (7) 0.0000 (7) −0.0036 (7)
N3 0.0294 (9) 0.0260 (9) 0.0296 (10) 0.0039 (7) −0.0008 (8) −0.0077 (7)
N4 0.0195 (8) 0.0218 (8) 0.0210 (9) −0.0020 (6) 0.0001 (6) −0.0007 (7)
N5 0.0238 (8) 0.0221 (8) 0.0211 (9) 0.0000 (7) −0.0022 (7) −0.0006 (6)
N6 0.0308 (9) 0.0244 (8) 0.0220 (9) 0.0015 (7) −0.0042 (7) 0.0007 (7)
Ni1 0.01978 (13) 0.01747 (12) 0.02217 (14) 0.00112 (9) −0.00106 (10) −0.00098 (10)
S1 0.0284 (3) 0.0210 (2) 0.0294 (3) 0.0053 (2) −0.0037 (2) −0.0036 (2)
S2 0.0247 (3) 0.0250 (2) 0.0250 (3) 0.0051 (2) −0.0034 (2) −0.0018 (2)
C25 0.0265 (11) 0.0236 (10) 0.0336 (12) 0.0020 (8) −0.0022 (9) 0.0000 (9)
C26 0.0446 (14) 0.0546 (15) 0.0431 (15) 0.0054 (12) 0.0074 (12) 0.0223 (12)
C27 0.0392 (13) 0.0516 (14) 0.0385 (14) −0.0030 (11) 0.0065 (11) −0.0151 (11)
N7 0.0290 (9) 0.0337 (9) 0.0285 (10) 0.0015 (8) 0.0031 (8) 0.0028 (8)
O1 0.0356 (8) 0.0314 (8) 0.0314 (9) 0.0029 (6) −0.0007 (7) 0.0081 (7)

Geometric parameters (Å, º)

C1—N1 1.306 (2) C16—H16A 0.9900
C1—C6 1.468 (3) C16—H16B 0.9900
C1—C2 1.511 (3) C17—C22 1.387 (3)
C2—C3 1.525 (3) C17—C18 1.415 (3)
C2—H2A 0.9900 C18—C19 1.402 (3)
C2—H2B 0.9900 C19—C20 1.386 (3)
C3—C4 1.523 (3) C19—H19 0.9500
C3—H3A 0.9900 C20—C21 1.385 (3)
C3—H3B 0.9900 C20—H20 0.9500
C4—C5 1.503 (3) C21—C22 1.388 (3)
C4—H4A 0.9900 C21—H21 0.9500
C4—H4B 0.9900 C22—H22 0.9500
C5—C10 1.391 (3) C23—N5 1.303 (2)
C5—C6 1.414 (3) C23—N6 1.347 (3)
C6—C7 1.401 (3) C23—S2 1.7573 (19)
C7—C8 1.384 (3) C24—N6 1.450 (3)
C7—H7 0.9500 C24—H24A 0.9800
C8—C9 1.389 (3) C24—H24B 0.9800
C8—H8 0.9500 C24—H24C 0.9800
C9—C10 1.386 (3) N1—N2 1.408 (2)
C9—H9 0.9500 N1—Ni1 1.9334 (16)
C10—H10 0.9500 N3—H3 0.8800
C11—N2 1.307 (2) N4—N5 1.409 (2)
C11—N3 1.352 (2) N4—Ni1 1.9463 (16)
C11—S1 1.752 (2) N6—H6 0.8800
C12—N3 1.448 (3) Ni1—S2 2.1581 (5)
C12—H12A 0.9800 Ni1—S1 2.1589 (5)
C12—H12B 0.9800 C25—O1 1.235 (2)
C12—H12C 0.9800 C25—N7 1.321 (3)
C13—N4 1.303 (2) C25—H25 0.9500
C13—C18 1.474 (3) C26—N7 1.458 (3)
C13—C14 1.512 (3) C26—H26A 0.9800
C14—C15 1.526 (3) C26—H26B 0.9800
C14—H14A 0.9900 C26—H26C 0.9800
C14—H14B 0.9900 C27—N7 1.454 (3)
C15—C16 1.523 (3) C27—H27A 0.9800
C15—H15A 0.9900 C27—H27B 0.9800
C15—H15B 0.9900 C27—H27C 0.9800
C16—C17 1.508 (3)
N1—C1—C6 120.96 (17) H16A—C16—H16B 108.3
N1—C1—C2 120.13 (17) C22—C17—C18 118.80 (18)
C6—C1—C2 118.90 (16) C22—C17—C16 121.89 (18)
C1—C2—C3 113.89 (17) C18—C17—C16 119.21 (18)
C1—C2—H2A 108.8 C19—C18—C17 118.90 (18)
C3—C2—H2A 108.8 C19—C18—C13 122.41 (17)
C1—C2—H2B 108.8 C17—C18—C13 118.65 (17)
C3—C2—H2B 108.8 C20—C19—C18 121.08 (18)
H2A—C2—H2B 107.7 C20—C19—H19 119.5
C4—C3—C2 110.09 (16) C18—C19—H19 119.5
C4—C3—H3A 109.6 C21—C20—C19 119.63 (19)
C2—C3—H3A 109.6 C21—C20—H20 120.2
C4—C3—H3B 109.6 C19—C20—H20 120.2
C2—C3—H3B 109.6 C20—C21—C22 119.9 (2)
H3A—C3—H3B 108.2 C20—C21—H21 120.0
C5—C4—C3 108.75 (16) C22—C21—H21 120.0
C5—C4—H4A 109.9 C17—C22—C21 121.46 (19)
C3—C4—H4A 109.9 C17—C22—H22 119.3
C5—C4—H4B 109.9 C21—C22—H22 119.3
C3—C4—H4B 109.9 N5—C23—N6 119.63 (17)
H4A—C4—H4B 108.3 N5—C23—S2 123.38 (15)
C10—C5—C6 119.14 (19) N6—C23—S2 116.98 (14)
C10—C5—C4 121.57 (18) N6—C24—H24A 109.5
C6—C5—C4 119.19 (18) N6—C24—H24B 109.5
C7—C6—C5 118.92 (18) H24A—C24—H24B 109.5
C7—C6—C1 122.10 (17) N6—C24—H24C 109.5
C5—C6—C1 118.81 (18) H24A—C24—H24C 109.5
C8—C7—C6 120.93 (18) H24B—C24—H24C 109.5
C8—C7—H7 119.5 C1—N1—N2 113.62 (16)
C6—C7—H7 119.5 C1—N1—Ni1 129.64 (13)
C7—C8—C9 119.8 (2) N2—N1—Ni1 116.69 (11)
C7—C8—H8 120.1 C11—N2—N1 110.51 (16)
C9—C8—H8 120.1 C11—N3—C12 121.94 (17)
C10—C9—C8 119.98 (19) C11—N3—H3 119.0
C10—C9—H9 120.0 C12—N3—H3 119.0
C8—C9—H9 120.0 C13—N4—N5 112.71 (15)
C9—C10—C5 121.07 (19) C13—N4—Ni1 131.95 (13)
C9—C10—H10 119.5 N5—N4—Ni1 115.17 (11)
C5—C10—H10 119.5 C23—N5—N4 111.34 (15)
N2—C11—N3 118.87 (18) C23—N6—C24 121.66 (17)
N2—C11—S1 123.82 (15) C23—N6—H6 119.2
N3—C11—S1 117.30 (14) C24—N6—H6 119.2
N3—C12—H12A 109.5 N1—Ni1—N4 101.32 (6)
N3—C12—H12B 109.5 N1—Ni1—S2 168.38 (5)
H12A—C12—H12B 109.5 N4—Ni1—S2 85.36 (5)
N3—C12—H12C 109.5 N1—Ni1—S1 85.43 (5)
H12A—C12—H12C 109.5 N4—Ni1—S1 169.42 (5)
H12B—C12—H12C 109.5 S2—Ni1—S1 89.42 (2)
N4—C13—C18 121.30 (16) C11—S1—Ni1 93.63 (6)
N4—C13—C14 120.07 (17) C23—S2—Ni1 92.62 (7)
C18—C13—C14 118.62 (16) O1—C25—N7 125.5 (2)
C13—C14—C15 113.58 (17) O1—C25—H25 117.3
C13—C14—H14A 108.9 N7—C25—H25 117.3
C15—C14—H14A 108.9 N7—C26—H26A 109.5
C13—C14—H14B 108.9 N7—C26—H26B 109.5
C15—C14—H14B 108.9 H26A—C26—H26B 109.5
H14A—C14—H14B 107.7 N7—C26—H26C 109.5
C16—C15—C14 109.72 (16) H26A—C26—H26C 109.5
C16—C15—H15A 109.7 H26B—C26—H26C 109.5
C14—C15—H15A 109.7 N7—C27—H27A 109.5
C16—C15—H15B 109.7 N7—C27—H27B 109.5
C14—C15—H15B 109.7 H27A—C27—H27B 109.5
H15A—C15—H15B 108.2 N7—C27—H27C 109.5
C17—C16—C15 109.00 (16) H27A—C27—H27C 109.5
C17—C16—H16A 109.9 H27B—C27—H27C 109.5
C15—C16—H16A 109.9 C25—N7—C27 120.63 (19)
C17—C16—H16B 109.9 C25—N7—C26 121.6 (2)
C15—C16—H16B 109.9 C27—N7—C26 117.8 (2)
N1—C1—C2—C3 177.81 (17) C14—C13—C18—C17 −24.9 (2)
C6—C1—C2—C3 −1.1 (2) C17—C18—C19—C20 −4.4 (3)
C1—C2—C3—C4 43.3 (2) C13—C18—C19—C20 177.93 (17)
C2—C3—C4—C5 −62.0 (2) C18—C19—C20—C21 0.7 (3)
C3—C4—C5—C10 −136.41 (19) C19—C20—C21—C22 2.3 (3)
C3—C4—C5—C6 39.9 (2) C18—C17—C22—C21 −2.3 (3)
C10—C5—C6—C7 3.6 (3) C16—C17—C22—C21 173.96 (19)
C4—C5—C6—C7 −172.80 (17) C20—C21—C22—C17 −1.5 (3)
C10—C5—C6—C1 178.87 (17) C6—C1—N1—N2 168.21 (15)
C4—C5—C6—C1 2.5 (3) C2—C1—N1—N2 −10.7 (2)
N1—C1—C6—C7 −26.9 (3) C6—C1—N1—Ni1 −14.6 (3)
C2—C1—C6—C7 151.95 (17) C2—C1—N1—Ni1 166.55 (13)
N1—C1—C6—C5 157.95 (17) N3—C11—N2—N1 174.85 (16)
C2—C1—C6—C5 −23.2 (2) S1—C11—N2—N1 −4.2 (2)
C5—C6—C7—C8 −4.1 (3) C1—N1—N2—C11 −154.97 (16)
C1—C6—C7—C8 −179.19 (17) Ni1—N1—N2—C11 27.43 (18)
C6—C7—C8—C9 1.6 (3) N2—C11—N3—C12 −5.6 (3)
C7—C8—C9—C10 1.4 (3) S1—C11—N3—C12 173.59 (15)
C8—C9—C10—C5 −1.8 (3) C18—C13—N4—N5 175.14 (15)
C6—C5—C10—C9 −0.7 (3) C14—C13—N4—N5 −5.7 (2)
C4—C5—C10—C9 175.61 (18) C18—C13—N4—Ni1 −9.9 (3)
N4—C13—C14—C15 178.27 (17) C14—C13—N4—Ni1 169.25 (13)
C18—C13—C14—C15 −2.5 (2) N6—C23—N5—N4 −178.50 (16)
C13—C14—C15—C16 45.5 (2) S2—C23—N5—N4 0.6 (2)
C14—C15—C16—C17 −62.3 (2) C13—N4—N5—C23 −157.81 (16)
C15—C16—C17—C22 −139.35 (19) Ni1—N4—N5—C23 26.35 (18)
C15—C16—C17—C18 36.9 (2) N5—C23—N6—C24 −5.7 (3)
C22—C17—C18—C19 5.1 (3) S2—C23—N6—C24 175.10 (15)
C16—C17—C18—C19 −171.21 (17) N2—C11—S1—Ni1 −16.07 (16)
C22—C17—C18—C13 −177.13 (17) N3—C11—S1—Ni1 164.83 (14)
C16—C17—C18—C13 6.5 (3) N5—C23—S2—Ni1 −22.12 (16)
N4—C13—C18—C19 −28.0 (3) N6—C23—S2—Ni1 157.04 (14)
C14—C13—C18—C19 152.78 (18) O1—C25—N7—C27 0.3 (3)
N4—C13—C18—C17 154.31 (17) O1—C25—N7—C26 179.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.88 2.18 2.979 (2) 151
N6—H6···O1 0.88 2.14 2.875 (2) 140
C7—H7···Ni1 0.95 2.50 3.0831 (19) 120
C19—H19···Ni1 0.95 2.57 3.1480 (19) 120

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  4. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914. [DOI] [PMC free article] [PubMed]
  6. Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.
  9. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  10. Kuhn, R. & Zilliken, F. (1952). Deutsches Patentamt, Patentschrift No. 845938.
  11. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  12. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  13. Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014a). Acta Cryst. E70, o301–o302. [DOI] [PMC free article] [PubMed]
  14. Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, 101–103. [DOI] [PMC free article] [PubMed]
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States.
  16. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389sup1.cif

e-73-00859-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389Isup2.hkl

e-73-00859-Isup2.hkl (506.2KB, hkl)

CCDC reference: 1550129

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES