The homoleptic nickel–thiosemicarbazonate complex shows structural features including an unusual cis-coordination and trans-anagostic Ni—H intramolecular interactions. In the crystal, complex and DMF solvate molecules build up a one-dimensional hydrogen-bonded polymer along [010].
Keywords: crystal structure, Ni—H anagostic interaction, nickel-thiosemicarbazone cis complex
Abstract
The reaction of NiII acetate tetrahydrate with 4-methyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide in a 2:1 molar ratio and recrystallization from dimethylformamide yielded the title compound, [Ni(C12H14N3S)2]·C3H7NO. The ligands act as monoanionic κ2 N 1,S-donors, forming five-membered metallarings. The NiII ion is fourfold coordinated in a distorted square-planar cis-configuration, which is rather uncommon for monothiosemicarbazone complexes. Intramolecular H⋯Ni trans-interactions are observed [H⋯Ni distances are 2.50 and 2.57 Å] and thus anagostic interactions can be suggested. The Hirshfeld surface analysis indicates that the major contributions for the crystal packing are H⋯H (66.6%), H⋯S (12.3%) and H⋯C (10.9%) interactions. In the crystal, the complex molecules are linked by dimethylformamide solvent molecules through N—H⋯O interactions into one-dimensional hydrogen-bonded polymers along [010].
Chemical context
One of the first reports on thiosemicarbazone chemistry can be traced back to the beginning of the 20th century in Germany (Freund & Schander, 1902 ▸). Initially, thiosemicarbazone derivatives were the products of the identification and characterization reactions of aldehydes and ketones, with thiosemicarbazide as reagent. In the 1940s it was reported that, in in vitro assays, thiosemicarbazones turned out to be very effective for the Mycobacterium tuberculosis growth inhibition (Domagk et al., 1946 ▸) while the synthesis of thiosemicarbazone metal complexes had already been investigated by the early 1950s (Kuhn & Zilliken, 1952 ▸). As a result of the main fragment, R=N—N(H)—C(=S)—NR
2, thiosemicarbazone derivatives have a wide range of coordination modes and applications in inorganic chemistry. The hydrazinic H atom can be easily removed and the negative charge is then delocalized over the C—N—N—C—S backbone, which enables chemical bonding with many different metal ions (Lobana et al., 2009 ▸). However, a cis configuration of the ligated molecules is a rather uncommon coordination mode for mono-thiosemicarbazones and, as far as we know, there is only one NiII mono-thiosemicarbazone complex reported in the literature, with N-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothiamide as ligand (for the ligand crystal structure, see: de Oliveira et al., 2014a
▸; for the crystal structure of the complex, see: de Oliveira et al., 2014b
▸). It can be suggested that the molecular symmetry decreases from a trans to a cis configuration, possibly by loss of inversion symmetry at the central metal cation, which is compensated for by H⋯Ni intramolecular interactions and hydrogen-bond formation with solvent molecules. In general, H⋯metal ion interactions can show covalent or electrostatic character and are observed in some complexes with catalytic applications (Brookhart et al., 2007 ▸). As part of our research on the synthesis and structural studies of thiosemicarbazone derivatives, we report herein a new solvated nickel homoleptic complex with the 4-methyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide ligand and dimethylformamide (DMF) as solvent.
Structural commentary
One molecule of the title complex and one dimethylformamide solvate comprise the asymmetric unit. The NiII ion is fourfold coordinated in a distorted square-planar environment by two chelating thiosemicarbazonate ligands (Fig. 1 ▸). The maximum deviation from the Ni1/S1/S2/N1/N4 mean plane amounts to 0.1705 (16) Å for N1. The S1—Ni1—N4 and S2—Ni1—N1 bond angles are 169.42 (5) and 168.38 (5)°, respectively. The distortion along the trans-donor atoms confirms the deviation of the coordination sphere from ideal values. Both non-aromatic rings of the tetralone entities have an envelope conformation with maximum deviations from the mean plane of the non–H atoms of 0.3539 (15) Å for C3 and of 0.3685 (15) Å for C15. The two ligands are deprotonated with the negative charge delocalized over the C—N—N—C—S entity, as suggested by their intermediate bond lengths and supported by the sp 2-hybridization for C1, C13, N1, C11, C23 and N4. The imine and thioamide C—N distances indicate considerable double-bond character, while the C—S distance is consistent with mainly single-bond character. The change of the bond lengths is a key feature to distinguish free, i.e. non-coordinating, and coordinating thiosemicarbazones. For the title compound these distances (values given in Å) are C1—N1 = 1.306 (2), N1—N2 = 1.408 (2), N2—C11 = 1.307 (2) and C11—S1 = 1.752 (2) for one ligand and C13—N4 = 1.303 (2), N4—N5 = 1.409 (2), N5—C23 = 1.303 (2) and C23—S2 = 1.7573 (19) for the other one.
Figure 1.
The molecular structure of the title compound and the dimethylformamide solvate, with labelling and displacement ellipsoids drawn at the 40% probability level.
The title complex shows two remarkable structural features, namely a cis coordination mode, which is rather uncommon for mono-thiosemicarbazone ligands, as well as two positioned trans H⋯Ni anagostic interactions (Fig. 2 ▸, Table 1 ▸). The H7⋯Ni1 and H19⋯Ni1 distances are 2.50 and 2.57 Å, being shorter than the sum of the van der Waals radii for H and Ni (2.73 Å; Bondi, 1964 ▸; Rowland & Taylor, 1996 ▸), in order that electrostactic interactions can be assigned. For an agostic interaction, that involves a covalent or a three-center, two-electron bond, an H⋯metal distance of at least 2.3 Å is required. The C7—H7⋯Ni1 and C19—H19⋯Ni1 angles are 120.1 and 119.7°, being in agreement with literature data for another nickel complex with anagostic interactions (de Oliveira et al., 2014b ▸).
Figure 2.
Graphical representation of the metal ion coordination environment, showing the H7⋯Ni1 and H19⋯Ni1 anagostic interactions as dashed lines. The figure is simplified for clarity.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H3⋯O1i | 0.88 | 2.18 | 2.979 (2) | 151 |
| N6—H6⋯O1 | 0.88 | 2.14 | 2.875 (2) | 140 |
| C7—H7⋯Ni1 | 0.95 | 2.50 | 3.0831 (19) | 120 |
| C19—H19⋯Ni1 | 0.95 | 2.57 | 3.1480 (19) | 120 |
Symmetry code: (i)
.
Supramolecular features and Hirshfeld surface analysis
In the crystal, the coordination entities are linked by DMF solvate molecules through N—H⋯O interactions. The DMF-oxygen atoms are hydrogen-bond acceptors, forming a bridging structure between two N—H⋯O arrangements: N6—H6⋯O1 and N3—H3⋯O1i [symmetry code: (i) −x + 1, y −
, −z +
]. The molecules are linked into one-dimensional hydrogen-bonded polymers along [010] (Fig. 3 ▸, Table 1 ▸). Additional C—H⋯O interactions are also present (Table 1 ▸).
Figure 3.
Section of the crystal structure of the title compound viewed along [001], with hydrogen bonds shown as dashed lines (for details, see: Table 1 ▸). The figure is simplified for clarity.
Hirshfeld (1977 ▸) analysis of the crystal structure suggests that the intermolecular H⋯H interactions contribute 66.6% to the crystal packing, the H⋯S interactions 12.3% and the H⋯C interactions 10.9%. Other important intermolecular contacts for the cohesion of the molecules are H⋯N = 4.5% and H⋯O = 4.0%. The weak H⋯Ni interactions contribute by 0.20% to the crystal structure. All contributions to the crystal cohesion are shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Wolff et al., 2012 ▸). The d e (y axis) and d i (x axis) values are the closest external and internal distances (values in Å) from given points on the Hirshfeld surface contacts (Fig. 4 ▸).
Figure 4.
Graphical representation of the two-dimensional Hirshfeld surface fingerprint plots for the interactions in the crystal structure of the title compound. The contacts are drawn in detail (cyan dots) and the contributions to the crystal packing amount to: (a) H⋯H = 66.6%, (b) H⋯S = 12.3%, (c) H⋯C = 10.9%, (d) H⋯N = 4.5%, (e) H⋯O = 4.0% and (f) H⋯Ni = 0.2%. The d e (y axis) and d i (x axis) values are the closest external and internal distances (values in Å) from given points on the Hirshfeld surface contacts.
Comparison with a related structure
For comparison with the title compound, a literature search revealed only one crystal structure of an NiII–monothiosemicarbazone complex with cis configuration, viz. bis{cis-(2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)-4-phenyl-hydrazinecarbothioamidate-κ2 N 1,S)}nickel(II) monohydrate bis(tetrahydrofurane) solvate (de Oliveira et al. 2014b ▸). The graphical representation of the Hirshfeld surface was performed for the two complexes and suggests, represented in magenta colour, the locations of the strongest intermolecular contacts (Fig. 5 ▸). Both structures have the same main fragment for the ligand, the α-tetralone-thiosemicarbazone, anagostic H⋯Ni intramolecular interactions and hydrogen bonding with the solvate molecules, suggesting the stabilization of the crystal packing, since the cis configuration implies a symmetry decrease with loss of the inversion center and appears to be energetically unfavourable.
Figure 5.
The Hirshfeld surface graphical representation (d
norm) for: (a) the asymmetric unit of the title compound and (b) the asymmetric unit of the comparison compound, bis{cis-(2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)-4-phenyl-hydrazinecarbothioamidate-κ2
N
1,S)}nickel(II) monohydrate bis(tetrahydrofurane) solvate (de Oliveira et al. 2014b
▸). The surface regions with the strongest intermolecular interactions are drawn in magenta. The figure is simplified for clarity. [Symmetry code: (i) −x + 1, y −
, −z +
.]
Synthesis and crystallization
Starting materials were commercially available and were used without further purification. The synthesis of the ligand was adapted from a procedure reported previously (Freund & Schander, 1902 ▸) with 1-tetralone and 4-methylthiosemicarbazide. 2-(1,2,3,4-Tetrahydronaphthalen-1-ylidene)-4-methyl-hydrazinecarbothioamide was dissolved in tetrahydrofuran (THF; 2 mmol / 40 ml) with stirring maintained for 30 min until the solution turned yellow. At the same time, a green solution of nickel acetate tetrahydrate in THF (1 mmol/40 ml) was prepared under continuous stirring. A dark coloured mixture of both solutions was maintained with stirring at room temperature for 6 h. A crude dark red material was obtained by evaporation of the solvent. Dark red crystals of the complex, suitable for X-ray analysis, were obtained by recrystallization of the solid from a dimethylformamide solution.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were located in difference maps but were positioned with idealized geometry and were refined using a riding model with U iso(H) = 1.2U eq(C and N) for the sp 2–hybridized DMF C atom, the aromatic and the secondary C atoms, and for all N atoms, and with U iso(H) = 1.5U eq(C) for the methyl C atoms. The bond lengths (values given in Å) are: C—H = 0.99 for –CH2– fragments, C—H = 0.98 for CH3– fragments, C—H = 0.95 for aromatic groups and the sp 2-hybridized DMF C atom; N—H = 0.88 for all N atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Ni(C12H14N3S)2]·C3H7NO |
| M r | 596.45 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 123 |
| a, b, c (Å) | 12.5864 (3), 11.6273 (3), 19.1271 (5) |
| β (°) | 90.529 (1) |
| V (Å3) | 2799.05 (12) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.88 |
| Crystal size (mm) | 0.33 × 0.14 × 0.02 |
| Data collection | |
| Diffractometer | Nonius Kappa CCD area detector |
| Absorption correction | Multi-scan (Blessing, 1995 ▸) |
| T min, T max | 0.761, 0.981 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 46078, 6368, 4870 |
| R int | 0.057 |
| (sin θ/λ)max (Å−1) | 0.649 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.034, 0.081, 1.03 |
| No. of reflections | 6368 |
| No. of parameters | 347 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.28, −0.35 |
Computer programs: COLLECT (Nonius, 1998 ▸), DENZO and SCALEPACK (Otwinowski & Minor, 1997 ▸), SHELXS97 (Sheldrick, 2008 ▸), SHELXL2016 (Sheldrick, 2015 ▸), WinGX (Farrugia, 2012 ▸), DIAMOND (Brandenburg, 2006 ▸), Crystal Explorer (Wolff et al., 2012 ▸), publCIF (Westrip, 2010 ▸) and enCIFer (Allen et al., 2004 ▸).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389Isup2.hkl
CCDC reference: 1550129
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We gratefully acknowledge the financial support by the State of North Rhine–Westphalia, Germany and by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers. ABO is an associate researcher in the project ‘Dinitrosyl complexes containing thiol and/or thiosemicarbazone: synthesis, characterization and treatment against cancer’, founded by FAPESP, Proc. 2015/12098–0. He also acknowledges Professor José C. M. Pereira (UNESP, Brazil) for his support, and thanks Professor Vanessa C. Gervini for the invitation to be a visiting professor at the Federal University of Rio Grande, Brazil. SEBSM thanks the Federal University of Sergipe for the PIBITIVOL undergraduate programme.
supplementary crystallographic information
Crystal data
| [Ni(C12H14N3S)2]·C3H7NO | F(000) = 1256 |
| Mr = 596.45 | Dx = 1.415 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 12.5864 (3) Å | Cell parameters from 105836 reflections |
| b = 11.6273 (3) Å | θ = 2.9–27.5° |
| c = 19.1271 (5) Å | µ = 0.88 mm−1 |
| β = 90.529 (1)° | T = 123 K |
| V = 2799.05 (12) Å3 | Plate, dark red |
| Z = 4 | 0.33 × 0.14 × 0.02 mm |
Data collection
| Nonius Kappa CCD area detector diffractometer | 6368 independent reflections |
| Radiation source: fine-focus sealed X-ray tube, Enraf–Nonius FR590 | 4870 reflections with I > 2σ(I) |
| Detector resolution: 9 pixels mm-1 | Rint = 0.057 |
| CCD area detector scans | θmax = 27.5°, θmin = 3.2° |
| Absorption correction: multi-scan (Blessing, 1995) | h = −16→16 |
| Tmin = 0.761, Tmax = 0.981 | k = −15→15 |
| 46078 measured reflections | l = −24→24 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.081 | H-atom parameters constrained |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0352P)2 + 1.1854P] where P = (Fo2 + 2Fc2)/3 |
| 6368 reflections | (Δ/σ)max = 0.001 |
| 347 parameters | Δρmax = 0.28 e Å−3 |
| 0 restraints | Δρmin = −0.35 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.08922 (15) | 0.22945 (15) | 0.16633 (10) | 0.0211 (4) | |
| C2 | 0.00261 (15) | 0.22610 (17) | 0.11111 (11) | 0.0263 (4) | |
| H2A | −0.012932 | 0.144831 | 0.099439 | 0.032* | |
| H2B | 0.028999 | 0.263837 | 0.068247 | 0.032* | |
| C3 | −0.10022 (16) | 0.28467 (17) | 0.13303 (11) | 0.0276 (5) | |
| H3A | −0.145309 | 0.299214 | 0.091278 | 0.033* | |
| H3B | −0.139887 | 0.233640 | 0.164970 | 0.033* | |
| C4 | −0.07562 (16) | 0.39797 (17) | 0.16967 (11) | 0.0286 (5) | |
| H4A | −0.034965 | 0.448847 | 0.138186 | 0.034* | |
| H4B | −0.142564 | 0.437423 | 0.182052 | 0.034* | |
| C5 | −0.01161 (15) | 0.37338 (16) | 0.23472 (11) | 0.0246 (4) | |
| C6 | 0.06834 (15) | 0.28808 (15) | 0.23276 (10) | 0.0214 (4) | |
| C7 | 0.11941 (15) | 0.25627 (16) | 0.29524 (10) | 0.0238 (4) | |
| H7 | 0.169921 | 0.195566 | 0.294964 | 0.029* | |
| C8 | 0.09729 (16) | 0.31204 (17) | 0.35734 (11) | 0.0280 (4) | |
| H8 | 0.133779 | 0.290933 | 0.399106 | 0.034* | |
| C9 | 0.02163 (16) | 0.39893 (18) | 0.35845 (12) | 0.0308 (5) | |
| H9 | 0.007412 | 0.438515 | 0.400793 | 0.037* | |
| C10 | −0.03313 (16) | 0.42788 (17) | 0.29776 (12) | 0.0293 (5) | |
| H10 | −0.086231 | 0.485872 | 0.299236 | 0.035* | |
| C11 | 0.25278 (15) | 0.02857 (16) | 0.10116 (10) | 0.0233 (4) | |
| C12 | 0.18174 (17) | −0.0606 (2) | −0.00542 (12) | 0.0352 (5) | |
| H12A | 0.111995 | −0.080067 | 0.013631 | 0.053* | |
| H12B | 0.203560 | −0.120404 | −0.038434 | 0.053* | |
| H12C | 0.177475 | 0.013501 | −0.029660 | 0.053* | |
| C13 | 0.28111 (14) | 0.44637 (15) | 0.19613 (10) | 0.0196 (4) | |
| C14 | 0.27262 (16) | 0.56078 (16) | 0.23328 (10) | 0.0252 (4) | |
| H14A | 0.342572 | 0.580051 | 0.254263 | 0.030* | |
| H14B | 0.221089 | 0.553388 | 0.271814 | 0.030* | |
| C15 | 0.23767 (17) | 0.65918 (16) | 0.18558 (11) | 0.0284 (5) | |
| H15A | 0.216582 | 0.726228 | 0.214176 | 0.034* | |
| H15B | 0.297515 | 0.682696 | 0.155546 | 0.034* | |
| C16 | 0.14426 (17) | 0.62064 (17) | 0.14013 (12) | 0.0315 (5) | |
| H16A | 0.084832 | 0.595538 | 0.170053 | 0.038* | |
| H16B | 0.119187 | 0.685479 | 0.110766 | 0.038* | |
| C17 | 0.17939 (15) | 0.52246 (16) | 0.09428 (11) | 0.0244 (4) | |
| C18 | 0.25161 (14) | 0.44030 (15) | 0.12149 (10) | 0.0219 (4) | |
| C19 | 0.29536 (15) | 0.35877 (16) | 0.07606 (10) | 0.0233 (4) | |
| H19 | 0.347667 | 0.306746 | 0.093171 | 0.028* | |
| C20 | 0.26353 (16) | 0.35283 (17) | 0.00660 (11) | 0.0281 (5) | |
| H20 | 0.293256 | 0.296584 | −0.023476 | 0.034* | |
| C21 | 0.18816 (17) | 0.42932 (18) | −0.01872 (11) | 0.0313 (5) | |
| H21 | 0.164134 | 0.423931 | −0.065837 | 0.038* | |
| C22 | 0.14775 (16) | 0.51388 (17) | 0.02480 (11) | 0.0288 (5) | |
| H22 | 0.097302 | 0.567064 | 0.006610 | 0.035* | |
| C23 | 0.40915 (15) | 0.30161 (16) | 0.32372 (10) | 0.0223 (4) | |
| C24 | 0.42580 (18) | 0.41030 (18) | 0.43256 (11) | 0.0325 (5) | |
| H24A | 0.461284 | 0.477466 | 0.412455 | 0.049* | |
| H24B | 0.453003 | 0.396954 | 0.480046 | 0.049* | |
| H24C | 0.349070 | 0.424227 | 0.434154 | 0.049* | |
| N1 | 0.18025 (12) | 0.17918 (12) | 0.15512 (8) | 0.0203 (3) | |
| N2 | 0.18018 (12) | 0.10848 (13) | 0.09533 (8) | 0.0225 (3) | |
| N3 | 0.25886 (13) | −0.05314 (14) | 0.05102 (9) | 0.0283 (4) | |
| H3 | 0.311231 | −0.103222 | 0.052768 | 0.034* | |
| N4 | 0.31278 (12) | 0.35542 (13) | 0.23026 (8) | 0.0208 (3) | |
| N5 | 0.34549 (12) | 0.38054 (13) | 0.29923 (8) | 0.0224 (3) | |
| N6 | 0.44659 (13) | 0.31004 (14) | 0.38969 (9) | 0.0258 (4) | |
| H6 | 0.484635 | 0.253290 | 0.407241 | 0.031* | |
| Ni1 | 0.31331 (2) | 0.19296 (2) | 0.20574 (2) | 0.01982 (8) | |
| S1 | 0.34284 (4) | 0.01916 (4) | 0.17128 (3) | 0.02631 (12) | |
| S2 | 0.44889 (4) | 0.18089 (4) | 0.27525 (3) | 0.02496 (12) | |
| C25 | 0.61277 (16) | 0.14667 (18) | 0.51104 (11) | 0.0279 (5) | |
| H25 | 0.611205 | 0.070634 | 0.492874 | 0.034* | |
| C26 | 0.5851 (2) | 0.0599 (2) | 0.62485 (14) | 0.0474 (6) | |
| H26A | 0.586504 | −0.010812 | 0.597040 | 0.071* | |
| H26B | 0.516179 | 0.066792 | 0.647931 | 0.071* | |
| H26C | 0.641814 | 0.057435 | 0.660262 | 0.071* | |
| C27 | 0.60202 (19) | 0.2724 (2) | 0.61103 (13) | 0.0431 (6) | |
| H27A | 0.615740 | 0.330474 | 0.575109 | 0.065* | |
| H27B | 0.657953 | 0.275813 | 0.646952 | 0.065* | |
| H27C | 0.532977 | 0.287397 | 0.632476 | 0.065* | |
| N7 | 0.60110 (14) | 0.15880 (15) | 0.57921 (9) | 0.0304 (4) | |
| O1 | 0.62554 (12) | 0.22590 (12) | 0.46895 (8) | 0.0328 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0211 (10) | 0.0162 (8) | 0.0260 (11) | −0.0018 (7) | 0.0004 (8) | 0.0019 (8) |
| C2 | 0.0247 (10) | 0.0255 (10) | 0.0285 (12) | 0.0013 (8) | −0.0029 (9) | −0.0011 (8) |
| C3 | 0.0223 (10) | 0.0293 (11) | 0.0312 (12) | 0.0011 (8) | −0.0033 (9) | 0.0016 (9) |
| C4 | 0.0235 (10) | 0.0248 (10) | 0.0374 (13) | 0.0051 (8) | −0.0025 (9) | 0.0029 (9) |
| C5 | 0.0209 (10) | 0.0195 (9) | 0.0333 (12) | −0.0013 (8) | 0.0021 (8) | −0.0005 (8) |
| C6 | 0.0194 (9) | 0.0178 (9) | 0.0271 (11) | −0.0031 (7) | 0.0016 (8) | −0.0004 (8) |
| C7 | 0.0201 (10) | 0.0228 (9) | 0.0287 (11) | −0.0009 (8) | 0.0024 (8) | 0.0009 (8) |
| C8 | 0.0306 (11) | 0.0283 (10) | 0.0250 (11) | −0.0052 (9) | 0.0010 (9) | −0.0006 (9) |
| C9 | 0.0315 (11) | 0.0296 (11) | 0.0314 (12) | −0.0041 (9) | 0.0080 (9) | −0.0088 (9) |
| C10 | 0.0242 (10) | 0.0236 (10) | 0.0403 (13) | 0.0004 (8) | 0.0065 (9) | −0.0034 (9) |
| C11 | 0.0236 (10) | 0.0209 (9) | 0.0256 (11) | −0.0023 (8) | 0.0027 (8) | 0.0001 (8) |
| C12 | 0.0311 (11) | 0.0421 (12) | 0.0322 (13) | −0.0016 (10) | −0.0005 (9) | −0.0130 (10) |
| C13 | 0.0177 (9) | 0.0191 (9) | 0.0219 (10) | −0.0024 (7) | 0.0034 (7) | −0.0003 (7) |
| C14 | 0.0288 (10) | 0.0208 (9) | 0.0259 (11) | 0.0011 (8) | 0.0033 (8) | −0.0017 (8) |
| C15 | 0.0349 (12) | 0.0202 (9) | 0.0300 (12) | 0.0023 (8) | 0.0048 (9) | −0.0010 (8) |
| C16 | 0.0313 (11) | 0.0266 (10) | 0.0365 (13) | 0.0077 (9) | 0.0020 (9) | 0.0040 (9) |
| C17 | 0.0206 (10) | 0.0221 (9) | 0.0305 (12) | −0.0016 (8) | 0.0008 (8) | 0.0030 (8) |
| C18 | 0.0202 (9) | 0.0191 (9) | 0.0265 (11) | −0.0029 (7) | 0.0002 (8) | 0.0034 (8) |
| C19 | 0.0249 (10) | 0.0195 (9) | 0.0254 (11) | −0.0013 (8) | −0.0008 (8) | 0.0023 (8) |
| C20 | 0.0341 (11) | 0.0226 (10) | 0.0278 (12) | −0.0018 (9) | −0.0004 (9) | −0.0004 (8) |
| C21 | 0.0374 (12) | 0.0297 (11) | 0.0266 (12) | −0.0047 (9) | −0.0077 (9) | 0.0037 (9) |
| C22 | 0.0280 (11) | 0.0264 (10) | 0.0319 (12) | 0.0003 (8) | −0.0066 (9) | 0.0072 (9) |
| C23 | 0.0216 (9) | 0.0228 (9) | 0.0225 (10) | −0.0040 (8) | 0.0030 (8) | −0.0009 (8) |
| C24 | 0.0387 (12) | 0.0327 (11) | 0.0261 (12) | 0.0000 (10) | −0.0045 (9) | −0.0062 (9) |
| N1 | 0.0207 (8) | 0.0175 (7) | 0.0226 (9) | −0.0006 (6) | 0.0012 (7) | −0.0013 (6) |
| N2 | 0.0243 (8) | 0.0207 (8) | 0.0225 (9) | −0.0013 (7) | 0.0000 (7) | −0.0036 (7) |
| N3 | 0.0294 (9) | 0.0260 (9) | 0.0296 (10) | 0.0039 (7) | −0.0008 (8) | −0.0077 (7) |
| N4 | 0.0195 (8) | 0.0218 (8) | 0.0210 (9) | −0.0020 (6) | 0.0001 (6) | −0.0007 (7) |
| N5 | 0.0238 (8) | 0.0221 (8) | 0.0211 (9) | 0.0000 (7) | −0.0022 (7) | −0.0006 (6) |
| N6 | 0.0308 (9) | 0.0244 (8) | 0.0220 (9) | 0.0015 (7) | −0.0042 (7) | 0.0007 (7) |
| Ni1 | 0.01978 (13) | 0.01747 (12) | 0.02217 (14) | 0.00112 (9) | −0.00106 (10) | −0.00098 (10) |
| S1 | 0.0284 (3) | 0.0210 (2) | 0.0294 (3) | 0.0053 (2) | −0.0037 (2) | −0.0036 (2) |
| S2 | 0.0247 (3) | 0.0250 (2) | 0.0250 (3) | 0.0051 (2) | −0.0034 (2) | −0.0018 (2) |
| C25 | 0.0265 (11) | 0.0236 (10) | 0.0336 (12) | 0.0020 (8) | −0.0022 (9) | 0.0000 (9) |
| C26 | 0.0446 (14) | 0.0546 (15) | 0.0431 (15) | 0.0054 (12) | 0.0074 (12) | 0.0223 (12) |
| C27 | 0.0392 (13) | 0.0516 (14) | 0.0385 (14) | −0.0030 (11) | 0.0065 (11) | −0.0151 (11) |
| N7 | 0.0290 (9) | 0.0337 (9) | 0.0285 (10) | 0.0015 (8) | 0.0031 (8) | 0.0028 (8) |
| O1 | 0.0356 (8) | 0.0314 (8) | 0.0314 (9) | 0.0029 (6) | −0.0007 (7) | 0.0081 (7) |
Geometric parameters (Å, º)
| C1—N1 | 1.306 (2) | C16—H16A | 0.9900 |
| C1—C6 | 1.468 (3) | C16—H16B | 0.9900 |
| C1—C2 | 1.511 (3) | C17—C22 | 1.387 (3) |
| C2—C3 | 1.525 (3) | C17—C18 | 1.415 (3) |
| C2—H2A | 0.9900 | C18—C19 | 1.402 (3) |
| C2—H2B | 0.9900 | C19—C20 | 1.386 (3) |
| C3—C4 | 1.523 (3) | C19—H19 | 0.9500 |
| C3—H3A | 0.9900 | C20—C21 | 1.385 (3) |
| C3—H3B | 0.9900 | C20—H20 | 0.9500 |
| C4—C5 | 1.503 (3) | C21—C22 | 1.388 (3) |
| C4—H4A | 0.9900 | C21—H21 | 0.9500 |
| C4—H4B | 0.9900 | C22—H22 | 0.9500 |
| C5—C10 | 1.391 (3) | C23—N5 | 1.303 (2) |
| C5—C6 | 1.414 (3) | C23—N6 | 1.347 (3) |
| C6—C7 | 1.401 (3) | C23—S2 | 1.7573 (19) |
| C7—C8 | 1.384 (3) | C24—N6 | 1.450 (3) |
| C7—H7 | 0.9500 | C24—H24A | 0.9800 |
| C8—C9 | 1.389 (3) | C24—H24B | 0.9800 |
| C8—H8 | 0.9500 | C24—H24C | 0.9800 |
| C9—C10 | 1.386 (3) | N1—N2 | 1.408 (2) |
| C9—H9 | 0.9500 | N1—Ni1 | 1.9334 (16) |
| C10—H10 | 0.9500 | N3—H3 | 0.8800 |
| C11—N2 | 1.307 (2) | N4—N5 | 1.409 (2) |
| C11—N3 | 1.352 (2) | N4—Ni1 | 1.9463 (16) |
| C11—S1 | 1.752 (2) | N6—H6 | 0.8800 |
| C12—N3 | 1.448 (3) | Ni1—S2 | 2.1581 (5) |
| C12—H12A | 0.9800 | Ni1—S1 | 2.1589 (5) |
| C12—H12B | 0.9800 | C25—O1 | 1.235 (2) |
| C12—H12C | 0.9800 | C25—N7 | 1.321 (3) |
| C13—N4 | 1.303 (2) | C25—H25 | 0.9500 |
| C13—C18 | 1.474 (3) | C26—N7 | 1.458 (3) |
| C13—C14 | 1.512 (3) | C26—H26A | 0.9800 |
| C14—C15 | 1.526 (3) | C26—H26B | 0.9800 |
| C14—H14A | 0.9900 | C26—H26C | 0.9800 |
| C14—H14B | 0.9900 | C27—N7 | 1.454 (3) |
| C15—C16 | 1.523 (3) | C27—H27A | 0.9800 |
| C15—H15A | 0.9900 | C27—H27B | 0.9800 |
| C15—H15B | 0.9900 | C27—H27C | 0.9800 |
| C16—C17 | 1.508 (3) | ||
| N1—C1—C6 | 120.96 (17) | H16A—C16—H16B | 108.3 |
| N1—C1—C2 | 120.13 (17) | C22—C17—C18 | 118.80 (18) |
| C6—C1—C2 | 118.90 (16) | C22—C17—C16 | 121.89 (18) |
| C1—C2—C3 | 113.89 (17) | C18—C17—C16 | 119.21 (18) |
| C1—C2—H2A | 108.8 | C19—C18—C17 | 118.90 (18) |
| C3—C2—H2A | 108.8 | C19—C18—C13 | 122.41 (17) |
| C1—C2—H2B | 108.8 | C17—C18—C13 | 118.65 (17) |
| C3—C2—H2B | 108.8 | C20—C19—C18 | 121.08 (18) |
| H2A—C2—H2B | 107.7 | C20—C19—H19 | 119.5 |
| C4—C3—C2 | 110.09 (16) | C18—C19—H19 | 119.5 |
| C4—C3—H3A | 109.6 | C21—C20—C19 | 119.63 (19) |
| C2—C3—H3A | 109.6 | C21—C20—H20 | 120.2 |
| C4—C3—H3B | 109.6 | C19—C20—H20 | 120.2 |
| C2—C3—H3B | 109.6 | C20—C21—C22 | 119.9 (2) |
| H3A—C3—H3B | 108.2 | C20—C21—H21 | 120.0 |
| C5—C4—C3 | 108.75 (16) | C22—C21—H21 | 120.0 |
| C5—C4—H4A | 109.9 | C17—C22—C21 | 121.46 (19) |
| C3—C4—H4A | 109.9 | C17—C22—H22 | 119.3 |
| C5—C4—H4B | 109.9 | C21—C22—H22 | 119.3 |
| C3—C4—H4B | 109.9 | N5—C23—N6 | 119.63 (17) |
| H4A—C4—H4B | 108.3 | N5—C23—S2 | 123.38 (15) |
| C10—C5—C6 | 119.14 (19) | N6—C23—S2 | 116.98 (14) |
| C10—C5—C4 | 121.57 (18) | N6—C24—H24A | 109.5 |
| C6—C5—C4 | 119.19 (18) | N6—C24—H24B | 109.5 |
| C7—C6—C5 | 118.92 (18) | H24A—C24—H24B | 109.5 |
| C7—C6—C1 | 122.10 (17) | N6—C24—H24C | 109.5 |
| C5—C6—C1 | 118.81 (18) | H24A—C24—H24C | 109.5 |
| C8—C7—C6 | 120.93 (18) | H24B—C24—H24C | 109.5 |
| C8—C7—H7 | 119.5 | C1—N1—N2 | 113.62 (16) |
| C6—C7—H7 | 119.5 | C1—N1—Ni1 | 129.64 (13) |
| C7—C8—C9 | 119.8 (2) | N2—N1—Ni1 | 116.69 (11) |
| C7—C8—H8 | 120.1 | C11—N2—N1 | 110.51 (16) |
| C9—C8—H8 | 120.1 | C11—N3—C12 | 121.94 (17) |
| C10—C9—C8 | 119.98 (19) | C11—N3—H3 | 119.0 |
| C10—C9—H9 | 120.0 | C12—N3—H3 | 119.0 |
| C8—C9—H9 | 120.0 | C13—N4—N5 | 112.71 (15) |
| C9—C10—C5 | 121.07 (19) | C13—N4—Ni1 | 131.95 (13) |
| C9—C10—H10 | 119.5 | N5—N4—Ni1 | 115.17 (11) |
| C5—C10—H10 | 119.5 | C23—N5—N4 | 111.34 (15) |
| N2—C11—N3 | 118.87 (18) | C23—N6—C24 | 121.66 (17) |
| N2—C11—S1 | 123.82 (15) | C23—N6—H6 | 119.2 |
| N3—C11—S1 | 117.30 (14) | C24—N6—H6 | 119.2 |
| N3—C12—H12A | 109.5 | N1—Ni1—N4 | 101.32 (6) |
| N3—C12—H12B | 109.5 | N1—Ni1—S2 | 168.38 (5) |
| H12A—C12—H12B | 109.5 | N4—Ni1—S2 | 85.36 (5) |
| N3—C12—H12C | 109.5 | N1—Ni1—S1 | 85.43 (5) |
| H12A—C12—H12C | 109.5 | N4—Ni1—S1 | 169.42 (5) |
| H12B—C12—H12C | 109.5 | S2—Ni1—S1 | 89.42 (2) |
| N4—C13—C18 | 121.30 (16) | C11—S1—Ni1 | 93.63 (6) |
| N4—C13—C14 | 120.07 (17) | C23—S2—Ni1 | 92.62 (7) |
| C18—C13—C14 | 118.62 (16) | O1—C25—N7 | 125.5 (2) |
| C13—C14—C15 | 113.58 (17) | O1—C25—H25 | 117.3 |
| C13—C14—H14A | 108.9 | N7—C25—H25 | 117.3 |
| C15—C14—H14A | 108.9 | N7—C26—H26A | 109.5 |
| C13—C14—H14B | 108.9 | N7—C26—H26B | 109.5 |
| C15—C14—H14B | 108.9 | H26A—C26—H26B | 109.5 |
| H14A—C14—H14B | 107.7 | N7—C26—H26C | 109.5 |
| C16—C15—C14 | 109.72 (16) | H26A—C26—H26C | 109.5 |
| C16—C15—H15A | 109.7 | H26B—C26—H26C | 109.5 |
| C14—C15—H15A | 109.7 | N7—C27—H27A | 109.5 |
| C16—C15—H15B | 109.7 | N7—C27—H27B | 109.5 |
| C14—C15—H15B | 109.7 | H27A—C27—H27B | 109.5 |
| H15A—C15—H15B | 108.2 | N7—C27—H27C | 109.5 |
| C17—C16—C15 | 109.00 (16) | H27A—C27—H27C | 109.5 |
| C17—C16—H16A | 109.9 | H27B—C27—H27C | 109.5 |
| C15—C16—H16A | 109.9 | C25—N7—C27 | 120.63 (19) |
| C17—C16—H16B | 109.9 | C25—N7—C26 | 121.6 (2) |
| C15—C16—H16B | 109.9 | C27—N7—C26 | 117.8 (2) |
| N1—C1—C2—C3 | 177.81 (17) | C14—C13—C18—C17 | −24.9 (2) |
| C6—C1—C2—C3 | −1.1 (2) | C17—C18—C19—C20 | −4.4 (3) |
| C1—C2—C3—C4 | 43.3 (2) | C13—C18—C19—C20 | 177.93 (17) |
| C2—C3—C4—C5 | −62.0 (2) | C18—C19—C20—C21 | 0.7 (3) |
| C3—C4—C5—C10 | −136.41 (19) | C19—C20—C21—C22 | 2.3 (3) |
| C3—C4—C5—C6 | 39.9 (2) | C18—C17—C22—C21 | −2.3 (3) |
| C10—C5—C6—C7 | 3.6 (3) | C16—C17—C22—C21 | 173.96 (19) |
| C4—C5—C6—C7 | −172.80 (17) | C20—C21—C22—C17 | −1.5 (3) |
| C10—C5—C6—C1 | 178.87 (17) | C6—C1—N1—N2 | 168.21 (15) |
| C4—C5—C6—C1 | 2.5 (3) | C2—C1—N1—N2 | −10.7 (2) |
| N1—C1—C6—C7 | −26.9 (3) | C6—C1—N1—Ni1 | −14.6 (3) |
| C2—C1—C6—C7 | 151.95 (17) | C2—C1—N1—Ni1 | 166.55 (13) |
| N1—C1—C6—C5 | 157.95 (17) | N3—C11—N2—N1 | 174.85 (16) |
| C2—C1—C6—C5 | −23.2 (2) | S1—C11—N2—N1 | −4.2 (2) |
| C5—C6—C7—C8 | −4.1 (3) | C1—N1—N2—C11 | −154.97 (16) |
| C1—C6—C7—C8 | −179.19 (17) | Ni1—N1—N2—C11 | 27.43 (18) |
| C6—C7—C8—C9 | 1.6 (3) | N2—C11—N3—C12 | −5.6 (3) |
| C7—C8—C9—C10 | 1.4 (3) | S1—C11—N3—C12 | 173.59 (15) |
| C8—C9—C10—C5 | −1.8 (3) | C18—C13—N4—N5 | 175.14 (15) |
| C6—C5—C10—C9 | −0.7 (3) | C14—C13—N4—N5 | −5.7 (2) |
| C4—C5—C10—C9 | 175.61 (18) | C18—C13—N4—Ni1 | −9.9 (3) |
| N4—C13—C14—C15 | 178.27 (17) | C14—C13—N4—Ni1 | 169.25 (13) |
| C18—C13—C14—C15 | −2.5 (2) | N6—C23—N5—N4 | −178.50 (16) |
| C13—C14—C15—C16 | 45.5 (2) | S2—C23—N5—N4 | 0.6 (2) |
| C14—C15—C16—C17 | −62.3 (2) | C13—N4—N5—C23 | −157.81 (16) |
| C15—C16—C17—C22 | −139.35 (19) | Ni1—N4—N5—C23 | 26.35 (18) |
| C15—C16—C17—C18 | 36.9 (2) | N5—C23—N6—C24 | −5.7 (3) |
| C22—C17—C18—C19 | 5.1 (3) | S2—C23—N6—C24 | 175.10 (15) |
| C16—C17—C18—C19 | −171.21 (17) | N2—C11—S1—Ni1 | −16.07 (16) |
| C22—C17—C18—C13 | −177.13 (17) | N3—C11—S1—Ni1 | 164.83 (14) |
| C16—C17—C18—C13 | 6.5 (3) | N5—C23—S2—Ni1 | −22.12 (16) |
| N4—C13—C18—C19 | −28.0 (3) | N6—C23—S2—Ni1 | 157.04 (14) |
| C14—C13—C18—C19 | 152.78 (18) | O1—C25—N7—C27 | 0.3 (3) |
| N4—C13—C18—C17 | 154.31 (17) | O1—C25—N7—C26 | 179.2 (2) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H3···O1i | 0.88 | 2.18 | 2.979 (2) | 151 |
| N6—H6···O1 | 0.88 | 2.14 | 2.875 (2) | 140 |
| C7—H7···Ni1 | 0.95 | 2.50 | 3.0831 (19) | 120 |
| C19—H19···Ni1 | 0.95 | 2.57 | 3.1480 (19) | 120 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2.
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
- Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914. [DOI] [PMC free article] [PubMed]
- Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Kuhn, R. & Zilliken, F. (1952). Deutsches Patentamt, Patentschrift No. 845938.
- Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014a). Acta Cryst. E70, o301–o302. [DOI] [PMC free article] [PubMed]
- Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, 101–103. [DOI] [PMC free article] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007198/wm5389Isup2.hkl
CCDC reference: 1550129
Additional supporting information: crystallographic information; 3D view; checkCIF report





