Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 19;73(Pt 6):864–866. doi: 10.1107/S2056989017007277

Crystal structure of 4,4′-bis­[3-(piperidin-1-yl)prop-1-yn-1-yl]-1,1′-biphen­yl

Anqi Walbaum a, E Kim Fifer a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC5458311  PMID: 28638646

The synthesis and structure of the title piperidine derivative is reported. It is one of a second generation of compounds designed and synthesized based on a very potent and selective α9α10 nicotinic acetyl­choline receptor antagonist ZZ161C, which has shown analgesic effects in a chemotherapy-induced neuropathy animal model.

Keywords: crystal structure, biphenyl system, piperidine ring, bis-tertiary ammonium salt

Abstract

The title compound, C28H32N2, (I), is one of a second generation of compounds designed and synthesized based on a very potent and selective α9α10 nicotinic acetyl­choline receptor antagonist ZZ161C {1,1′-[[1,1′-biphen­yl]-4,4′-diylbis(prop-2-yne-3,1-di­yl)]bis­(3,4-di­methyl­pyridin-1-ium) bromide}, which has shown analgesic effects in a chemotherapy-induced neuropathy animal model. Compound (I) was synthesized by the reaction of 4,4′-bis­(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl with piperidine at room temperature in aceto­nitrile. The single-crystal used for X-ray analysis was obtained by dissolving (I) in a mixture of di­chloro­methane and methanol, followed by slow evaporation of the solvent. In the crystal of (I), the biphenyl moiety has a twisted conformation, with a dihedral angle of 25.93 (4)° between the benzene rings. Both piperidine head groups in (I) are in the chair conformation and are oriented so that the N-atom lone pairs of each piperidine group point away from the central biphenyl moiety.

Chemical context  

The α9α10 nicotinic acetyl­choline receptor is a novel therapeutic target with potential significance for pain management. Previous studies have shown that antagonism of the α9α10 nAChR by the non-peptide small mol­ecule, ZZ161C {10-[(1,1′-biphen­yl)-4,4′-diyl bis(prop-2-yne-3,1-di­yl)]bis(3,4-di­methyl­pyridin-1-ium) bromide} produced analgesia in the vincristine-induced neuropathic pain model in rats (Zheng et al., 2011; Wala et al., 2012). In order to improve the drug-like and pharmacokinetic properties of ZZ161C, the title compound (I) was designed and synthesized. Compound (I) is a biphenyl system with ethynyl appendages at the 4 and 4′ positions, as in ZZ161C, but the terminal aza-aromatic rings have been replaced by piperidine moieties. Single-crystal X-ray analysis of compound (I) was used to determine the structural conformation of the compound.graphic file with name e-73-00864-scheme1.jpg

Structural commentary  

The title compound (I) is shown in Fig. 1. X-ray crystallographic study was conducted in order to determine the geometry of the biphenyl system as well as to obtain detailed information about the conformation of the terminal piperidine groups. In compound (I), the biphenyl rings (C9-C14) and (C15-C20) are non-coplanar, with a dihedral angle of 25.93 (4)° between them. The torsion angles of the ethynyl groups between the planes of the phenyl rings and the piperidine ring N atoms are 167.49 (9) and 34.01 (12)° (defined by atoms N1/C6/C9/C10, N2/C23/C18/C19, respectively). The lone pair on each N atom is oriented away from the biphenyl core of the mol­ecule.

Figure 1.

Figure 1

The mol­ecular structure of (I), with ellipsoids drawn at the 50% probability level.

Supra­molecular features  

Aside from weak van der Waals inter­actions, there are no noteworthy inter­molecular contacts in (I). The molecules pack into layers in the ab plane bounded top and bottom by piperidine groups, which in turn stack along c.

Database survey  

A search of the November 2014 release of the Cambridge Structure Database (Groom et al., 2016), with updates through May 2015, using the program Mogul (Bruno et al., 2004) for 4,4′-substituted biphenyl fragments was conducted. The search was restricted to purely organic, solvent-free structures with R <5% and Cl as the heaviest element. There were over 1000 hits, which produced a bimodal distribution of biphenyl torsion angles with a tight peak at 0° and a broader peak centred at 30°. Therefore the biphenyl torsion angle in (I) is not unusual.

Synthesis and crystallization  

Synthetic procedure: The inter­mediate 4,4′-bis­(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl (Wan et al., 2015) was obtained utilizing a previously reported procedure; compound (I) was synthesized by reacting piperidine with this inter­mediate.

To a suspension of 4,4′-bis(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl (100.0 mg, 0.26 mmol) in aceto­nitrile (7 mL), piperidine (66.4 mg, 0.78 mmol) was added at room temperature and the mixture was stirred continuously for 2 h, resulting in the formation of compound (I). Aceto­nitrile was removed under vacuum and the mixture was partitioned between water (50 mL) and di­chloro­methane (50 mL). The di­chloro­methane layer was collected and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate containing crude (I) was concentrated and purified by column chromatography (di­chloro­methane/methanol) to afford pure compound (I) in 80% yield.

Crystallization: Light-yellow crystals of compound (I) suitable for X-ray analysis were grown in a mixture of di­chloro­methane and methanol (2:1) by slow evaporation of the solvent at room temperature over a period of 24 h.

1H-NMR (400 Mz, CDCl3): δ 7.51 (q, 8H), 3.53 (s, 4H), 2.62 (s, 8H), 1.65–1.71 (m, 8H), 1.47 (s, 4H) ppm.

1C-NMR (100 Mz, CDCl3): δ 140.07, 132.35, 126.91, 122.54, 85.25, 53.56, 48.62, 25.93, 23.93 ppm.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.94 Å (Csp 2—H) and 0.98 Å (R 2—CH2). U iso(H) values were set to 1.2U eq of the attached carbon atom.

Table 1. Experimental details.

Crystal data
Chemical formula C28H32N2
M r 396.55
Crystal system, space group Monoclinic, C2/c
Temperature (K) 210
a, b, c (Å) 40.2728 (8), 6.9679 (1), 16.0119 (3)
β (°) 92.588 (1)
V3) 4488.63 (14)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.51
Crystal size (mm) 0.25 × 0.24 × 0.05
 
Data collection
Diffractometer Bruker X8 Proteum diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.822, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 28464, 4089, 3656
R int 0.040
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.120, 1.08
No. of reflections 4089
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.14

Computer programs: APEX2 and SAINT (Bruker, 2006), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL and XP in SHELXTL (Sheldrick, 2008) and CIFFIX (Parkin, 2013).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017007277/sj5530sup1.cif

e-73-00864-sup1.cif (887.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007277/sj5530Isup2.hkl

e-73-00864-Isup2.hkl (326.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007277/sj5530Isup3.cml

CCDC reference: 1550512

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This investigation was supported by the Arkansas Research Alliance (ARA).

supplementary crystallographic information

Crystal data

C28H32N2 F(000) = 1712
Mr = 396.55 Dx = 1.174 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
a = 40.2728 (8) Å Cell parameters from 9828 reflections
b = 6.9679 (1) Å θ = 2.2–68.5°
c = 16.0119 (3) Å µ = 0.51 mm1
β = 92.588 (1)° T = 210 K
V = 4488.63 (14) Å3 Plate, light yellow
Z = 8 0.25 × 0.24 × 0.05 mm

Data collection

Bruker X8 Proteum diffractometer 4089 independent reflections
Radiation source: fine-focus rotating anode 3656 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1 Rint = 0.040
φ and ω scans θmax = 68.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −48→48
Tmin = 0.822, Tmax = 0.942 k = −8→7
28464 measured reflections l = −12→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0642P)2 + 1.3326P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
4089 reflections Δρmax = 0.15 e Å3
272 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00034 (8)

Special details

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998). At 90K the diffraction pattern showed some diffuse scatter and the Bragg diffraction spots were fuzzy. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -63° C.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement progress was checked using Platon (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.09256 (2) 0.51979 (13) 0.25747 (5) 0.0358 (2)
N2 0.40754 (2) 0.51181 (13) 0.99141 (5) 0.0375 (2)
C1 0.08446 (3) 0.34286 (16) 0.30095 (7) 0.0408 (3)
H1A 0.0960 0.3411 0.3561 0.049*
H1B 0.0921 0.2325 0.2692 0.049*
C2 0.04725 (3) 0.32626 (19) 0.31130 (8) 0.0510 (3)
H2A 0.0358 0.3157 0.2562 0.061*
H2B 0.0426 0.2097 0.3429 0.061*
C3 0.03424 (3) 0.4991 (2) 0.35658 (8) 0.0531 (3)
H3A 0.0432 0.4996 0.4145 0.064*
H3B 0.0100 0.4920 0.3576 0.064*
C4 0.04421 (3) 0.6818 (2) 0.31330 (8) 0.0524 (3)
H4A 0.0375 0.7929 0.3461 0.063*
H4B 0.0327 0.6893 0.2581 0.063*
C5 0.08159 (3) 0.68738 (16) 0.30341 (7) 0.0429 (3)
H5A 0.0874 0.8043 0.2734 0.051*
H5B 0.0930 0.6906 0.3587 0.051*
C6 0.12794 (3) 0.52990 (17) 0.24185 (7) 0.0408 (3)
H6A 0.1319 0.6458 0.2091 0.049*
H6B 0.1337 0.4192 0.2077 0.049*
C7 0.15040 (3) 0.53310 (16) 0.31739 (7) 0.0390 (3)
C8 0.16846 (3) 0.53582 (15) 0.37892 (7) 0.0363 (3)
C9 0.19232 (3) 0.53774 (13) 0.44832 (6) 0.0326 (2)
C10 0.22585 (3) 0.50840 (14) 0.43383 (6) 0.0335 (2)
H10A 0.2324 0.4867 0.3790 0.040*
C11 0.24966 (2) 0.51066 (14) 0.49867 (6) 0.0313 (2)
H11A 0.2721 0.4898 0.4873 0.038*
C12 0.24091 (2) 0.54353 (13) 0.58071 (6) 0.0284 (2)
C13 0.20725 (2) 0.57162 (15) 0.59484 (6) 0.0355 (2)
H13A 0.2007 0.5932 0.6497 0.043*
C14 0.18335 (3) 0.56848 (16) 0.53020 (6) 0.0378 (3)
H14A 0.1609 0.5872 0.5416 0.045*
C15 0.26622 (2) 0.54789 (13) 0.65079 (6) 0.0281 (2)
C16 0.26055 (2) 0.64996 (14) 0.72383 (6) 0.0326 (2)
H16A 0.2409 0.7220 0.7272 0.039*
C17 0.28313 (2) 0.64730 (14) 0.79115 (6) 0.0331 (2)
H17A 0.2786 0.7173 0.8395 0.040*
C18 0.31256 (2) 0.54258 (14) 0.78869 (6) 0.0316 (2)
C19 0.31910 (2) 0.44566 (15) 0.71481 (6) 0.0337 (2)
H19A 0.3391 0.3779 0.7108 0.040*
C20 0.29630 (2) 0.44858 (14) 0.64742 (6) 0.0312 (2)
H20A 0.3012 0.3823 0.5983 0.037*
C21 0.33448 (2) 0.53494 (15) 0.86180 (6) 0.0352 (2)
C22 0.35066 (3) 0.53208 (16) 0.92647 (7) 0.0390 (3)
C23 0.37192 (3) 0.52602 (18) 1.00433 (7) 0.0424 (3)
H23A 0.3679 0.6422 1.0368 0.051*
H23B 0.3653 0.4158 1.0377 0.051*
C24 0.41943 (3) 0.68044 (16) 0.94747 (7) 0.0413 (3)
H24A 0.4138 0.7965 0.9784 0.050*
H24B 0.4083 0.6878 0.8919 0.050*
C25 0.45676 (3) 0.67152 (19) 0.93867 (7) 0.0498 (3)
H25A 0.4640 0.7830 0.9069 0.060*
H25B 0.4680 0.6759 0.9942 0.060*
C26 0.46631 (3) 0.48932 (19) 0.89439 (8) 0.0519 (3)
H26A 0.4906 0.4800 0.8937 0.062*
H26B 0.4575 0.4927 0.8364 0.062*
C27 0.45268 (3) 0.3159 (2) 0.93827 (8) 0.0528 (3)
H27A 0.4638 0.3029 0.9937 0.063*
H27B 0.4572 0.2000 0.9061 0.063*
C28 0.41548 (3) 0.33533 (17) 0.94746 (7) 0.0434 (3)
H28A 0.4042 0.3357 0.8920 0.052*
H28B 0.4074 0.2248 0.9784 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0341 (5) 0.0429 (5) 0.0297 (4) −0.0006 (4) −0.0047 (3) 0.0028 (3)
N2 0.0329 (5) 0.0501 (6) 0.0288 (4) −0.0020 (4) −0.0046 (3) 0.0012 (4)
C1 0.0456 (6) 0.0379 (6) 0.0388 (6) −0.0012 (5) 0.0003 (4) −0.0013 (4)
C2 0.0479 (7) 0.0545 (7) 0.0509 (7) −0.0114 (6) 0.0054 (5) −0.0028 (6)
C3 0.0438 (7) 0.0675 (8) 0.0488 (7) 0.0022 (6) 0.0096 (5) 0.0003 (6)
C4 0.0492 (7) 0.0564 (8) 0.0514 (7) 0.0146 (6) 0.0012 (5) 0.0027 (6)
C5 0.0485 (6) 0.0378 (6) 0.0418 (6) 0.0030 (5) −0.0050 (5) 0.0029 (5)
C6 0.0363 (6) 0.0528 (7) 0.0326 (5) −0.0018 (5) −0.0045 (4) 0.0057 (5)
C7 0.0356 (6) 0.0426 (6) 0.0382 (6) −0.0008 (4) −0.0042 (5) 0.0025 (4)
C8 0.0361 (6) 0.0345 (6) 0.0379 (6) 0.0006 (4) −0.0034 (4) 0.0011 (4)
C9 0.0348 (5) 0.0269 (5) 0.0356 (5) −0.0001 (4) −0.0053 (4) 0.0016 (4)
C10 0.0388 (5) 0.0324 (5) 0.0293 (5) −0.0012 (4) 0.0001 (4) −0.0003 (4)
C11 0.0299 (5) 0.0302 (5) 0.0338 (5) −0.0006 (4) 0.0016 (4) −0.0001 (4)
C12 0.0312 (5) 0.0221 (5) 0.0315 (5) 0.0001 (3) −0.0002 (4) 0.0012 (4)
C13 0.0335 (5) 0.0411 (6) 0.0319 (5) 0.0060 (4) 0.0009 (4) −0.0022 (4)
C14 0.0304 (5) 0.0434 (6) 0.0393 (6) 0.0064 (4) −0.0013 (4) −0.0007 (5)
C15 0.0293 (5) 0.0249 (5) 0.0300 (5) −0.0009 (4) 0.0008 (4) 0.0020 (4)
C16 0.0319 (5) 0.0316 (5) 0.0343 (5) 0.0047 (4) 0.0014 (4) −0.0016 (4)
C17 0.0351 (5) 0.0330 (5) 0.0310 (5) −0.0002 (4) 0.0005 (4) −0.0033 (4)
C18 0.0298 (5) 0.0300 (5) 0.0346 (5) −0.0044 (4) −0.0020 (4) 0.0020 (4)
C19 0.0276 (5) 0.0342 (5) 0.0391 (5) 0.0032 (4) −0.0006 (4) −0.0011 (4)
C20 0.0304 (5) 0.0309 (5) 0.0323 (5) 0.0014 (4) 0.0017 (4) −0.0033 (4)
C21 0.0312 (5) 0.0365 (6) 0.0375 (6) −0.0030 (4) −0.0015 (4) 0.0005 (4)
C22 0.0330 (5) 0.0461 (6) 0.0374 (6) −0.0026 (4) −0.0026 (4) −0.0007 (4)
C23 0.0344 (6) 0.0607 (7) 0.0317 (5) −0.0029 (5) −0.0031 (4) −0.0023 (5)
C24 0.0420 (6) 0.0419 (6) 0.0394 (6) −0.0032 (5) −0.0036 (4) −0.0013 (5)
C25 0.0415 (6) 0.0599 (8) 0.0479 (7) −0.0104 (5) −0.0007 (5) 0.0020 (5)
C26 0.0401 (7) 0.0682 (8) 0.0480 (7) 0.0049 (6) 0.0079 (5) 0.0065 (6)
C27 0.0494 (7) 0.0566 (8) 0.0523 (7) 0.0125 (6) 0.0025 (5) 0.0084 (6)
C28 0.0464 (6) 0.0425 (6) 0.0408 (6) 0.0004 (5) −0.0026 (5) 0.0045 (5)

Geometric parameters (Å, º)

N1—C5 1.4592 (14) C13—C14 1.3814 (14)
N1—C6 1.4595 (14) C13—H13A 0.9400
N1—C1 1.4599 (14) C14—H14A 0.9400
N2—C28 1.4596 (15) C15—C16 1.3964 (13)
N2—C24 1.4614 (14) C15—C20 1.3985 (13)
N2—C23 1.4616 (14) C16—C17 1.3787 (13)
C1—C2 1.5194 (16) C16—H16A 0.9400
C1—H1A 0.9800 C17—C18 1.3938 (14)
C1—H1B 0.9800 C17—H17A 0.9400
C2—C3 1.5113 (18) C18—C19 1.3974 (14)
C2—H2A 0.9800 C18—C21 1.4352 (13)
C2—H2B 0.9800 C19—C20 1.3849 (13)
C3—C4 1.5126 (19) C19—H19A 0.9400
C3—H3A 0.9800 C20—H20A 0.9400
C3—H3B 0.9800 C21—C22 1.1984 (15)
C4—C5 1.5210 (16) C22—C23 1.4807 (14)
C4—H4A 0.9800 C23—H23A 0.9800
C4—H4B 0.9800 C23—H23B 0.9800
C5—H5A 0.9800 C24—C25 1.5176 (15)
C5—H5B 0.9800 C24—H24A 0.9800
C6—C7 1.4776 (14) C24—H24B 0.9800
C6—H6A 0.9800 C25—C26 1.5123 (18)
C6—H6B 0.9800 C25—H25A 0.9800
C7—C8 1.1980 (15) C25—H25B 0.9800
C8—C9 1.4360 (13) C26—C27 1.5133 (18)
C9—C14 1.3921 (15) C26—H26A 0.9800
C9—C10 1.3956 (14) C26—H26B 0.9800
C10—C11 1.3810 (14) C27—C28 1.5177 (16)
C10—H10A 0.9400 C27—H27A 0.9800
C11—C12 1.3944 (14) C27—H27B 0.9800
C11—H11A 0.9400 C28—H28A 0.9800
C12—C13 1.3979 (13) C28—H28B 0.9800
C12—C15 1.4817 (13)
C5—N1—C6 111.59 (9) C13—C14—C9 120.42 (9)
C5—N1—C1 110.87 (8) C13—C14—H14A 119.8
C6—N1—C1 111.31 (8) C9—C14—H14A 119.8
C28—N2—C24 111.19 (8) C16—C15—C20 117.33 (9)
C28—N2—C23 111.30 (9) C16—C15—C12 120.78 (8)
C24—N2—C23 111.03 (9) C20—C15—C12 121.89 (8)
N1—C1—C2 111.04 (9) C17—C16—C15 121.39 (9)
N1—C1—H1A 109.4 C17—C16—H16A 119.3
C2—C1—H1A 109.4 C15—C16—H16A 119.3
N1—C1—H1B 109.4 C16—C17—C18 121.11 (9)
C2—C1—H1B 109.4 C16—C17—H17A 119.4
H1A—C1—H1B 108.0 C18—C17—H17A 119.4
C3—C2—C1 110.89 (10) C17—C18—C19 118.03 (9)
C3—C2—H2A 109.5 C17—C18—C21 119.27 (9)
C1—C2—H2A 109.5 C19—C18—C21 122.69 (9)
C3—C2—H2B 109.5 C20—C19—C18 120.59 (9)
C1—C2—H2B 109.5 C20—C19—H19A 119.7
H2A—C2—H2B 108.0 C18—C19—H19A 119.7
C2—C3—C4 110.24 (10) C19—C20—C15 121.48 (9)
C2—C3—H3A 109.6 C19—C20—H20A 119.3
C4—C3—H3A 109.6 C15—C20—H20A 119.3
C2—C3—H3B 109.6 C22—C21—C18 174.81 (11)
C4—C3—H3B 109.6 C21—C22—C23 177.50 (11)
H3A—C3—H3B 108.1 N2—C23—C22 114.63 (9)
C3—C4—C5 110.71 (10) N2—C23—H23A 108.6
C3—C4—H4A 109.5 C22—C23—H23A 108.6
C5—C4—H4A 109.5 N2—C23—H23B 108.6
C3—C4—H4B 109.5 C22—C23—H23B 108.6
C5—C4—H4B 109.5 H23A—C23—H23B 107.6
H4A—C4—H4B 108.1 N2—C24—C25 111.07 (9)
N1—C5—C4 110.83 (9) N2—C24—H24A 109.4
N1—C5—H5A 109.5 C25—C24—H24A 109.4
C4—C5—H5A 109.5 N2—C24—H24B 109.4
N1—C5—H5B 109.5 C25—C24—H24B 109.4
C4—C5—H5B 109.5 H24A—C24—H24B 108.0
H5A—C5—H5B 108.1 C26—C25—C24 110.61 (10)
N1—C6—C7 115.27 (9) C26—C25—H25A 109.5
N1—C6—H6A 108.5 C24—C25—H25A 109.5
C7—C6—H6A 108.5 C26—C25—H25B 109.5
N1—C6—H6B 108.5 C24—C25—H25B 109.5
C7—C6—H6B 108.5 H25A—C25—H25B 108.1
H6A—C6—H6B 107.5 C25—C26—C27 110.31 (10)
C8—C7—C6 179.62 (12) C25—C26—H26A 109.6
C7—C8—C9 175.36 (11) C27—C26—H26A 109.6
C14—C9—C10 118.25 (9) C25—C26—H26B 109.6
C14—C9—C8 122.49 (9) C27—C26—H26B 109.6
C10—C9—C8 119.26 (9) H26A—C26—H26B 108.1
C11—C10—C9 121.15 (9) C26—C27—C28 110.76 (10)
C11—C10—H10A 119.4 C26—C27—H27A 109.5
C9—C10—H10A 119.4 C28—C27—H27A 109.5
C10—C11—C12 120.92 (9) C26—C27—H27B 109.5
C10—C11—H11A 119.5 C28—C27—H27B 109.5
C12—C11—H11A 119.5 H27A—C27—H27B 108.1
C11—C12—C13 117.61 (9) N2—C28—C27 111.13 (9)
C11—C12—C15 121.50 (8) N2—C28—H28A 109.4
C13—C12—C15 120.90 (8) C27—C28—H28A 109.4
C14—C13—C12 121.63 (9) N2—C28—H28B 109.4
C14—C13—H13A 119.2 C27—C28—H28B 109.4
C12—C13—H13A 119.2 H28A—C28—H28B 108.0
C5—N1—C1—C2 59.37 (11) C11—C12—C15—C20 −26.18 (13)
C6—N1—C1—C2 −175.79 (9) C13—C12—C15—C20 153.55 (10)
N1—C1—C2—C3 −56.43 (13) C20—C15—C16—C17 −2.33 (14)
C1—C2—C3—C4 53.55 (14) C12—C15—C16—C17 176.66 (8)
C2—C3—C4—C5 −53.83 (14) C15—C16—C17—C18 0.11 (15)
C6—N1—C5—C4 175.67 (9) C16—C17—C18—C19 2.24 (14)
C1—N1—C5—C4 −59.65 (11) C16—C17—C18—C21 −176.50 (9)
C3—C4—C5—N1 57.03 (13) C17—C18—C19—C20 −2.32 (14)
C5—N1—C6—C7 62.09 (12) C21—C18—C19—C20 176.37 (9)
C1—N1—C6—C7 −62.35 (12) C18—C19—C20—C15 0.08 (15)
C14—C9—C10—C11 −0.34 (14) C16—C15—C20—C19 2.24 (14)
C8—C9—C10—C11 179.46 (9) C12—C15—C20—C19 −176.74 (8)
C9—C10—C11—C12 −0.38 (14) C28—N2—C23—C22 −61.65 (12)
C10—C11—C12—C13 0.76 (14) C24—N2—C23—C22 62.79 (12)
C10—C11—C12—C15 −179.51 (8) C28—N2—C24—C25 −58.93 (11)
C11—C12—C13—C14 −0.43 (15) C23—N2—C24—C25 176.57 (9)
C15—C12—C13—C14 179.83 (9) N2—C24—C25—C26 56.67 (12)
C12—C13—C14—C9 −0.29 (16) C24—C25—C26—C27 −54.12 (13)
C10—C9—C14—C13 0.67 (15) C25—C26—C27—C28 53.94 (14)
C8—C9—C14—C13 −179.13 (9) C24—N2—C28—C27 58.70 (11)
C11—C12—C15—C16 154.88 (10) C23—N2—C28—C27 −176.96 (9)
C13—C12—C15—C16 −25.40 (13) C26—C27—C28—N2 −56.26 (13)

References

  1. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  5. Parkin, S. (2013). CIFFIX, http://xray.uky.edu/people/parkin/programs/ciffix
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Wala, E. P., Crooks, P. A., McIntosh, J. M. & Holtman, J. R. (2012). Anesth. Analg. 115, 713–720. [DOI] [PMC free article] [PubMed]
  9. Wan, A., Penthala, N. R., Fifer, E. K., Parkin, S. & Crooks, P. A. (2015). Acta Cryst. E71, 1132–1135. [DOI] [PMC free article] [PubMed]
  10. Zheng, G., Zhang, Z., Dowell, C., Wala, E., Dwoskin, L. P., Holton, J. R., McIntosh, J. M. & Crooks, P. A. (2011). Bioorg. Med. Chem. Lett. 21, 2476–2479. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017007277/sj5530sup1.cif

e-73-00864-sup1.cif (887.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007277/sj5530Isup2.hkl

e-73-00864-Isup2.hkl (326.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007277/sj5530Isup3.cml

CCDC reference: 1550512

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES