Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 23;73(Pt 6):867–870. doi: 10.1107/S2056989017007186

Crystal structure of (3S*,4R*)-4-fluoro-3-(4-meth­oxy­phen­yl)-1-oxo-2-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-4-carb­oxy­lic acid

Anna Lehmann a, Lisa Lechner a, Krzysztof Radacki b, Holger Braunschweig b, Ulrike Holzgrabe a,*
PMCID: PMC5458312  PMID: 28638647

The title compound exhibits a cis conformation with respect to the F atom and the methine H atom. It crystallized from a racemic mixture as a pure diastereomer, hence the unit-cell contains both the 3S,4R- and 3R,4S-enanti­omers.

Keywords: crystal structure, cis conformation, fluorination, 1-oxo­tetra­hydro­iso­quinolinon-4-carb­oxy­lic acid, hydrogen bonding

Abstract

The title compound, C23H18FNO4, crystallized as a racemate. It exhibits a cis conformation with respect to the F atom and the methine H atom. The piperidine ring has a screw-boat conformation. The meth­oxy­phenyl ring and the phenyl ring are inclined to the mean plane of the iso­quinoline ring system by 89.85 (4) and 46.62 (5)°, respectively, and by 78.15 (5)° to one another. In the crystal, mol­ecules are linked by an O—H⋯O hydrogen bond forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane.

Chemical context  

Several decades ago, Cushman et al. (1977) described a general synthesis of 4-carb­oxy-3,4-di­hydro­isoquinolin-1(2H)-ones by a condensation reaction of various aldimines with homophthalic anhydride. In most cases, a mixture of trans and cis diastereomers was obtained. As the trans isomer is the thermodynamically more stable product, it was possible to epimerize the cis compound completely to the more stable isoform. Accordingly, Haimova et al. (1977) reported the isolation of the pure thermodynamic product after the treatment of the reaction mixture with 10% NaOH solution.

Combined synthesis conditions resulted in isolation of stereopure trans compound (±) 3 (Fig. 1). First of all, the imine derivative 1 was synthesized by condensation of 4-meth­oxy­benzaldehyde and aniline. Conversion of homophthalic anhydride 2 with 1 in conc. HOAc gave a diastereomeric cis/trans mixture, which was completely converted to the pure trans enanti­omers by treatment with 8 M NaOH solution. The cis/trans isomers can be differentiated by the proton-coupling constants JAB between H-3 and H-4, being JAB 1.5 Hz for the trans compounds and JAB 6.0 Hz for the cis isomers.

Figure 1.

Figure 1

Synthesis scheme to obtain the trans-isomer (±) 3. Reagents and conditions: (a) EtOH, r.t., 3 h; (b) homophthalic anhydride (2), conc. HOAc, 393 K, 5 h; EtOH, 8 M NaOH, r.t., 24 h.

To prevent epimerization during subsequent synthesis steps, e.g. an amide formation, the isosteric substitution of the acidic proton H-4 by a fluorine atom was investigated (Fig. 2). First, the carb­oxy­lic acid (±) 3 was protected by tert-butyl ester to obtain the ester (±) 4 (Takeda et al., 1994). Fluorination to (±) 5 was achieved by deprotonation with lithiumbis(tri­methyl­sil­yl)amide (LiHMDS) and addition of N-fluoro­benzene­sulfonimide (NFSI) (Differding & Ofner, 1991; Davis et al., 1995). Finally, the fluorinated product was deprotected using mild conditions (Li et al., 2006) to obtain the pure diastereomer (±) 6.graphic file with name e-73-00867-scheme1.jpg

Figure 2.

Figure 2

Synthesis scheme to obtain the fluorinated cis-enanti­omers (±) 6. Reagents and conditions: (a) absolute THF, DMAP, di-tert-butyl dicarbonate, r.t., 24 h; (b) absolute THF, LiHMDS, NFSI, 201 K–r.t., 42 h; (c) CH3CN, 85% (w/w) H3PO4, 323 K, 4 d.

Structural commentary  

Compound (±) 6 exhibits a cis-conformation with respect to the fluorine atom F12 and the H atom H10, as shown in Fig. 3. The piperidine ring (N1/C2/C3/C8–C10) has a screw-boat conformation [puckering amplitude Q = 0.3812 (11) Å, θ = 64.50 (17)°, φ = 279.15 (18)°]. The meth­oxy­phenyl ring (C16–C21) and the phenyl ring (C24–C29) are inclined to the mean plane of the iso­quinoline ring system (N1/C1–C10) by 89.85 (4) and 46.62 (5)°, respectively, and by 78.15 (5)° to one another.

Figure 3.

Figure 3

The mol­ecular structure of compound (±) 6, with atom labelling and 50% probability displacement ellipsoids.

Supra­molecular features  

In the crystal, mol­ecules are linked by an O—H⋯O hydrogen bond, between the carb­oxy­lic OH group (OH14) and amide oxygen atom (O11), forming chains propagating along the a-axis direction (Fig. 4 and Table 1). The chains are linked by C—H⋯F hydrogen bonds, forming layers parallel to the ab plane (Fig. 4 and Table 1). Individual chains are homo-chiral, with adjacent molecules related by translation only. It is interesting that carboxylate inversion dimers are not observed. It is supposed that the formation of such dimers is hindered by the quite strong F⋯ H interactions, causing a fixed arrangement between the chain layers.

Figure 4.

Figure 4

A view along the c axis of the crystal packing of compound (±) 6, with hydrogen bonds drawn as dashed lines (see Table 1). For clarity, only H atoms H14 and H23C (grey balls) have been included.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O11i 0.84 1.75 2.5645 (11) 163
C23—H23C⋯F12ii 0.98 2.50 3.2435 (14) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Synthesis and crystallization  

The synthesis of the title compound, (±) 6, is outlined in Figs. 1 and 2.

1-(4-Meth­oxy­phen­yl)- N -phenyl­methanimine (1): Synthesized according to the procedure reported by Torregrosa et al. (2005). The imine was prepared by condensation of 4-meth­oxy­benzaldehyde (5.00 g, 36.7 mmol) and aniline (3.40 ml, 36.7 mmol) in EtOH (20 ml) at room temperature to obtain colourless crystals (yield 7.20 g, 34.0 mmol, 92%). The NMR spectra and melting point corresponds to reported data (Torregrosa et al., 2005).

trans -3-(4-Meth­oxy­phen­yl)-1-oxo-2-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-4-carb­oxy­lic acid, (±) 3: Synthesized according to the procedure reported by Guy et al. (2013). Homophthalic anhydride (3.50 g, 21.5 mmol) was dissolved in conc. HOAc, 1 (6.00 g, 28.4 mmol) was added and the reaction mixture stirred for 4 h at 393 K. Afterwards, the mixture was adjusted to neutral pH value with NaOH solution and extracted with CHCl3, the organic phase dried over Na2SO4 and concentrated in vacuo. The crude product was purified by silica gel chromatography (CHCl3/EtOH/FA 10/0.3/0.1) to isolate mixture of cis/trans-diastereomers. The solid was dissolved in EtOH (10 ml), 8 M NaOH solution (2.30 ml) was added and the reaction mixture stirred for 24 h at room temperature. After adjusting the pH value to acidic conditions, the mixture was extracted with CHCl3, dried over Na2SO4 and concentrated in vacuo to obtain a racemic mixture of trans-enanti­omers as a colourless amorphous solid (yield 6.50 g, 17.3 mmol, 77%; m.p. 443–444 K). 1H NMR (CDCl3, 400 MHz): δ 8.27–8.22 (m, 1H), 7.49–7.44 (m, 2H), 7.27–7.16 (m, 6H), 7.05–7.01 (m, 2H), 6.75–6.72 (m, 2H), 5.52 (s, 1H), 3.97 (d, J = 1.4 Hz, 1H), 3.72 (s, 3H). 13C NMR (CDCl3, 100 MHz): δ 174.5, 163.7, 159.4, 142.2, 132.7, 132.2, 130.9, 129.6, 129.5, 129.1, 128.8, 128.6, 127.7 (2C), 127.3, 126.9, 114.3 (2C), 64.4, 55.3, 51.6. IR 1723, 1602, 1510, 1491, 1462, 1247, 1172, 1027, 828, 730, 693, 628 cm−1. ESI–MS: m/z 374.2 [M + H+].

tert -Butyl- trans -3-(4-meth­oxy­phen­yl)-1-οxo-2-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-4-carboxyl­ate, (±) 4: 2.50 g of 3 (6.70 mmol) were dissolved in abs. THF (70 ml). After the addition of di-tert-butyl­dicarbonate (1.40 ml, 6.00 mmol) and DMAP (81.5 mg, 0.70 mmol) the reaction mixture stirred for 24 h at room temperature. Afterwards the reaction was quenched with water (100 ml), extracted with CHCl3, dried over Na2SO4 and concentrated in vacuo. The crude product was purified by MPLC (petroleum ether/EtOAc 1/0 to 0/1) to isolate 4 as a colourless amorphous solid (yield 1.60 g, 3.70 mmol, 55%; m.p. 421–422 K). 1H NMR (CDCl3, 400 MHz): δ 8.25–8.21 (m, 1H), 7.45–7.41 (m, 2H), 7.33–7.32 (m, 4H), 7.24–7.19 (m, 1H), 7.17–7.15 (m, 1H), 7.08–7.05 (m, 2H), 6.75–6.71 (m, 2H), 5.54 (d, J = 1.4 Hz, 1H), 3.89 (d, J = 1.7 Hz, 1H), 3.71 (s, 3H), 1.38 (s, 9H). 13C NMR (CDCl3, 100 MHz): δ 169.9, 163.5, 159.2, 142.6, 133.4, 132.3, 131.6, 129.6, 129.4, 129.0, 128.4, 128.3, 127.7 (2C), 126.9, 126.6, 114.2 (2C), 82.5, 64.7, 55.3, 53.2, 28.0. IR 2975, 1730, 1661, 1510, 1399, 1300, 1244, 1139, 1028, 826 cm−1. ESI–MS: m/z 430.1 [M + H+].

tert -Butyl- cis -4-fluoro-3-(4-μeth­oxy­phen­yl)-1-oxo-2-phen­yl-1,2,3,4-tetra­hydro­iso­quinoline-4-carboxyl­ate, (±) 5: 500 mg of compound 4 (1.20 mmol) were dissolved in abs. THF (38 ml) under an argon atmosphere and cooled to 301 K. After the addition of 1 M LiHMDS solution (1.40 ml, 1.40 mmol), the mixture was stirred for 1 h while cooling. Afterwards, NFSI (511 mg, 1.60 mmol) was added and the mixture stirred for a further 30 min at 301 K and then 40 h at room temperature. The reaction mixture was extracted with CHCl3, dried over Na2SO4 and concentrated in vacuo. The crude product was purified by MPLC (petroleum ether/EtOAc 1/0 to 0/1) to isolate (±) 5 as colourless crystals (yield 320 mg, 0.70 mmol, 62%; m.p. 452–453 K). 1H NMR (CDCl3, 400 MHz): δ 8.41–8.39 (m, 1H), 7.69–7.60 (m, 2H), 7.51–7.48 (m, 1H), 7.34–7.29 (m, 2H), 7.27–7.23 (m, 1H), 7.11–7.07 (m, 2H), 6.92–6.88 (m, 2H), 6.72–6.68 (m, 2H), 5.21 (d, J = 15.7 Hz, 1H), 3.73 (s, 3H), 1.26 (s, 9H). 13C NMR (CDCl3, 100 MHz): δ 165.8 (d, J CF = 26.8 Hz), 162.0 (d, J CF = 1.3 Hz), 160.1, 141.3, 132.6 (d, J CF = 2.9 Hz), 132.3, 130.9 (d, J CF = 3.9 Hz), 130.3 (d, J CF = 3.2 Hz), 130.1 (2C), 129.3, 129.2 (d, J CF = 2.7 Hz), 128.4 (d, J CF = 3.5 Hz), 127.8, 127.7, 126.9 (d, J CF = 8.9 Hz), 114.1 (2C), 92.5 (d, J CF = 189.9 Hz), 84.4, 70.9 (d, J CF = 28.3 Hz), 55.3, 27.8. 19F NMR (CDCl3, 188 MHz): δ −123.4. IR 2929, 1737, 1664, 1513, 1458, 1416, 1306, 1250, 1156, 1031 cm−1. ESI–MS: m/z 448.1 [M + H+].

Synthesis of the title compound: cis -4-fluoro-3-(4-meth­oxy­phen­yl)-1-oxo-2-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-4-carb­oxy­lic acid, (±) 6: 68.5 mg of 5 (0.20 mmol) were dissolved in CH3CN (1.2 ml), 85% (w/w) H3PO4 (86.5 µl, 0.80 mmol) was added and the mixture stirred at 323 K for 4 d. Afterwards, the mixture was extracted with CHCl3, dried over Na2SO4 and concentrated in vacuo. The crude product was purified by MPLC (EtOAc to EtOAc+0.1% FA) to isolate (±) 6 as colourless crystals (yield 21.3 mg, 54.0 mmol, 36%; m.p. 461–462 K). 1H NMR (DMSO-d 6, 400 MHz): δ 8.22–8.17 (m, 1H), 7.75–7.70 (m, 2H), 7.59–7.55 (m, 1H), 7.34–7.31 (m, 2H), 7.24–7.20 (m, 1H), 7.13–7.10 (m, 2H), 7.00–6.69 (m, 2H), 6.77–6.74 (m, 2H), 5.53 (d, J = 14.0 Hz, 1H), 3.66 (s, 3H). 13C NMR (DMSO-d 6, 100 MHz): δ 167.6 (d, J CF = 26.6 Hz), 161.6, 159.2, 140.8, 132.9 (d, J CF = 1.5 Hz), 132.5 (d, J CF = 19.3 Hz), 130.7 (d, J CF = 3.0 Hz), 129.7, 129.2 (d, J CF = 3.6 Hz), 128.8, 128.3, 127.5, 127.4, 127.0, 125.9 (d, J CF = 6.6 Hz), 113.7 (2C), 92.6 (d, J CF = 188.0 Hz), 68.7 (d, J CF = 28.1 Hz), 55.0. 19F NMR (CD3OD, 188 MHz): δ −130.0. IR 2834, 2594, 1737, 1617, 1511, 1464, 1281, 1219, 1036 cm−1. ESI–MS: m/z 392.0 [M + H+].

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding: O—H = 0.84 Å, C–H = 0.95–1.00 Å with U iso(H) = 1.5U eq(O-hydroxyl,C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C23H18FNO4
M r 391.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.4849 (11), 15.407 (3), 14.157 (2)
β (°) 102.598 (16)
V3) 1806.1 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.28 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.718, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 48705, 3697, 3509
R int 0.024
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.081, 1.05
No. of reflections 3697
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.21

Computer programs: APEX2 and SAINT-Plus (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), SHELXLE (Hübschle et al., 2011) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017007186/su5371sup1.cif

e-73-00867-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007186/su5371Isup2.hkl

e-73-00867-Isup2.hkl (295KB, hkl)

CCDC reference: 1535140

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support to UH for this work was provided by: Deutsche Forschungsgemeinschaft (CRU216).

supplementary crystallographic information

Crystal data

C23H18FNO4 F(000) = 816
Mr = 391.38 Dx = 1.439 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.4849 (11) Å Cell parameters from 9581 reflections
b = 15.407 (3) Å θ = 2.8–28.3°
c = 14.157 (2) Å µ = 0.11 mm1
β = 102.598 (16)° T = 100 K
V = 1806.1 (5) Å3 Block, colourless
Z = 4 0.28 × 0.20 × 0.18 mm

Data collection

Bruker D8 Quest diffractometer 3697 independent reflections
Radiation source: microfocus sealed tube (Incoatec ImS) 3509 reflections with I > 2σ(I)
Multi-layer mirror monochromator Rint = 0.024
Detector resolution: 10.24 pixels mm-1 θmax = 26.4°, θmin = 2.6°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −19→19
Tmin = 0.718, Tmax = 0.746 l = −17→17
48705 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0355P)2 + 1.0295P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3697 reflections Δρmax = 0.38 e Å3
264 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: (SHELXL2016; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0347 (17)

Special details

Experimental. The crystal was immersed in a film of perfluoropolyether oil, mounted on a polyimide microloop (MicroMounts of MiTeGen) and transferred to stream of cold nitrogen (Bruker Kryoflex2).Melting points were determined on a Melting point meter MPM-H2 (Schorpp Geraetetechnik, Ueberlingen, Germany) and were not corrected. IR spectra were obtained using a JASCO FT/IR-6100 spectrometer (JASCO, Gross-Umstadt, Germany). TLC was performed on pre-coated aluminium sheets with silica gel 60 F254 (Macherey-Nagel, Dueren, Germany). 1H (400 MHz) and 13C (100 MHz) NMR spectra were recorded on a Bruker AV 400 instrument (Bruker Biospin, Ettlingen, Germany). 19F (188 MHz) NMR spectra were recorded on a Bruker Advance 200Hz Spektrometer (Bruker Biospin, Bremen, Germany) at 298 K. Chemical shifts are given in ppm and were calibrated on residual solvent peaks as internal standard (CDCl3: 1H 7.26 ppm, 13C 77.1 ppm; DMSO-d6: 1H 2.50 ppm, 13C 39.52 ppm; CD3OD: 1H 3.31 ppm, 13C 49.00 ppm (Gottlieb et al., 1997)). NMR signals are specified as s (singlet), d (doublet), m (multiplet). Coupling constants J are given in Hz. Medium pressure liquid chromatography (MPLC) was performed on puriFlash®430 system (Interchim, Montluçon, France) using pre-packed silica gel 50 µ columns from Interchim (Montluçon, France). MS data were obtained using an Agilent 1100 Series LC/MSD Trap (Agilent Technologies, Boeblingen, Germany). Commercial available chemicals were used without further purification. Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem.62, 7512-7515.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.33200 (10) 0.61320 (6) 0.66591 (6) 0.01065 (19)
C2 0.24318 (12) 0.57637 (7) 0.72408 (7) 0.0111 (2)
C3 0.32751 (12) 0.51757 (7) 0.80230 (7) 0.0111 (2)
C4 0.24489 (13) 0.48959 (7) 0.87212 (8) 0.0137 (2)
H4 0.139982 0.511308 0.871797 0.016*
C5 0.31679 (13) 0.42986 (7) 0.94204 (8) 0.0159 (2)
H5 0.262356 0.411839 0.990646 0.019*
C8 0.48373 (12) 0.48743 (7) 0.80421 (7) 0.0110 (2)
C7 0.55226 (13) 0.42559 (7) 0.87261 (8) 0.0146 (2)
H7 0.656607 0.403150 0.872799 0.018*
C6 0.46852 (14) 0.39665 (7) 0.94054 (8) 0.0167 (2)
H6 0.515302 0.353782 0.986387 0.020*
C9 0.56834 (12) 0.51784 (7) 0.72743 (7) 0.0104 (2)
C10 0.50982 (12) 0.60708 (7) 0.68386 (7) 0.0103 (2)
H10 0.538244 0.609658 0.618980 0.012*
O11 0.09652 (9) 0.59098 (5) 0.71148 (6) 0.01599 (18)
F12 0.53273 (7) 0.45825 (4) 0.64999 (4) 0.01453 (16)
C13 0.75401 (12) 0.52245 (7) 0.76088 (8) 0.0113 (2)
O14 0.82294 (9) 0.51358 (6) 0.68636 (6) 0.01713 (18)
H14 0.919081 0.530769 0.701830 0.026*
O15 0.82280 (9) 0.53632 (6) 0.84323 (6) 0.01743 (19)
C16 0.59280 (12) 0.68403 (7) 0.74097 (7) 0.0108 (2)
C17 0.55319 (13) 0.71191 (7) 0.82625 (8) 0.0133 (2)
H17 0.469288 0.683326 0.848858 0.016*
C18 0.63400 (13) 0.78083 (7) 0.87914 (8) 0.0142 (2)
H18 0.606692 0.798420 0.937867 0.017*
C19 0.75537 (12) 0.82394 (7) 0.84538 (8) 0.0125 (2)
C20 0.79674 (13) 0.79631 (7) 0.76033 (8) 0.0139 (2)
H20 0.880507 0.824902 0.737609 0.017*
C21 0.71594 (13) 0.72720 (7) 0.70881 (8) 0.0131 (2)
H21 0.744716 0.708909 0.650739 0.016*
O22 0.83760 (9) 0.89465 (5) 0.88880 (6) 0.01602 (18)
C23 0.81993 (14) 0.91544 (8) 0.98427 (8) 0.0175 (2)
H23A 0.883876 0.967223 1.007349 0.026*
H23B 0.857866 0.866633 1.027671 0.026*
H23C 0.705912 0.926726 0.983278 0.026*
C24 0.25598 (12) 0.67125 (7) 0.58933 (8) 0.0124 (2)
C25 0.16993 (13) 0.74324 (7) 0.60909 (9) 0.0174 (2)
H25 0.160006 0.754905 0.673429 0.021*
C26 0.09829 (14) 0.79821 (8) 0.53368 (10) 0.0239 (3)
H26 0.038507 0.847210 0.546762 0.029*
C27 0.11357 (15) 0.78197 (8) 0.43966 (10) 0.0257 (3)
H27 0.065221 0.819873 0.388597 0.031*
C28 0.19975 (15) 0.71015 (9) 0.42085 (9) 0.0236 (3)
H28 0.210460 0.698898 0.356566 0.028*
C29 0.27096 (13) 0.65417 (8) 0.49529 (8) 0.0167 (2)
H29 0.329296 0.604724 0.481866 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0066 (4) 0.0132 (4) 0.0116 (4) 0.0003 (3) 0.0007 (3) 0.0019 (3)
C2 0.0094 (5) 0.0113 (5) 0.0128 (5) −0.0010 (4) 0.0025 (4) −0.0019 (4)
C3 0.0101 (5) 0.0109 (5) 0.0119 (5) −0.0024 (4) 0.0017 (4) −0.0015 (4)
C4 0.0118 (5) 0.0154 (5) 0.0143 (5) −0.0033 (4) 0.0039 (4) −0.0023 (4)
C5 0.0180 (5) 0.0176 (5) 0.0127 (5) −0.0070 (4) 0.0045 (4) 0.0002 (4)
C8 0.0101 (5) 0.0106 (5) 0.0121 (5) −0.0027 (4) 0.0019 (4) −0.0013 (4)
C7 0.0118 (5) 0.0131 (5) 0.0178 (5) −0.0010 (4) 0.0009 (4) 0.0007 (4)
C6 0.0185 (5) 0.0149 (5) 0.0148 (5) −0.0033 (4) −0.0006 (4) 0.0040 (4)
C9 0.0088 (5) 0.0108 (5) 0.0111 (5) −0.0006 (4) 0.0015 (4) −0.0023 (4)
C10 0.0071 (5) 0.0133 (5) 0.0110 (5) 0.0001 (4) 0.0028 (4) 0.0014 (4)
O11 0.0079 (4) 0.0188 (4) 0.0215 (4) 0.0009 (3) 0.0038 (3) 0.0035 (3)
F12 0.0135 (3) 0.0146 (3) 0.0154 (3) −0.0022 (2) 0.0030 (2) −0.0051 (2)
C13 0.0096 (5) 0.0095 (5) 0.0150 (5) 0.0006 (4) 0.0034 (4) 0.0017 (4)
O14 0.0087 (4) 0.0271 (4) 0.0165 (4) −0.0028 (3) 0.0047 (3) −0.0019 (3)
O15 0.0109 (4) 0.0258 (4) 0.0146 (4) −0.0015 (3) 0.0005 (3) 0.0002 (3)
C16 0.0090 (5) 0.0102 (5) 0.0126 (5) 0.0014 (4) 0.0010 (4) 0.0022 (4)
C17 0.0118 (5) 0.0135 (5) 0.0156 (5) −0.0010 (4) 0.0052 (4) 0.0015 (4)
C18 0.0152 (5) 0.0144 (5) 0.0137 (5) 0.0004 (4) 0.0048 (4) −0.0005 (4)
C19 0.0108 (5) 0.0102 (5) 0.0148 (5) 0.0002 (4) −0.0009 (4) 0.0012 (4)
C20 0.0107 (5) 0.0148 (5) 0.0166 (5) −0.0015 (4) 0.0040 (4) 0.0032 (4)
C21 0.0126 (5) 0.0148 (5) 0.0125 (5) 0.0008 (4) 0.0039 (4) 0.0016 (4)
O22 0.0173 (4) 0.0146 (4) 0.0162 (4) −0.0053 (3) 0.0036 (3) −0.0024 (3)
C23 0.0171 (5) 0.0191 (5) 0.0152 (5) −0.0036 (4) 0.0015 (4) −0.0036 (4)
C24 0.0078 (4) 0.0129 (5) 0.0150 (5) −0.0030 (4) −0.0009 (4) 0.0031 (4)
C25 0.0122 (5) 0.0151 (5) 0.0230 (6) −0.0011 (4) −0.0002 (4) −0.0002 (4)
C26 0.0144 (5) 0.0142 (6) 0.0383 (7) −0.0008 (4) −0.0046 (5) 0.0042 (5)
C27 0.0196 (6) 0.0217 (6) 0.0287 (7) −0.0075 (5) −0.0102 (5) 0.0134 (5)
C28 0.0228 (6) 0.0285 (7) 0.0162 (6) −0.0091 (5) −0.0026 (5) 0.0069 (5)
C29 0.0152 (5) 0.0183 (6) 0.0157 (5) −0.0032 (4) 0.0012 (4) 0.0021 (4)

Geometric parameters (Å, º)

N1—C2 1.3560 (14) C16—C21 1.3960 (15)
N1—C24 1.4444 (13) C17—C18 1.3907 (15)
N1—C10 1.4774 (12) C17—H17 0.9500
C2—O11 1.2386 (13) C18—C19 1.3946 (15)
C2—C3 1.4878 (14) C18—H18 0.9500
C3—C4 1.3987 (15) C19—O22 1.3655 (13)
C3—C8 1.3992 (15) C19—C20 1.3923 (15)
C4—C5 1.3912 (16) C20—C21 1.3847 (15)
C4—H4 0.9500 C20—H20 0.9500
C5—C6 1.3899 (17) C21—H21 0.9500
C5—H5 0.9500 O22—C23 1.4282 (13)
C8—C7 1.3920 (15) C23—H23A 0.9800
C8—C9 1.5023 (14) C23—H23B 0.9800
C7—C6 1.3880 (16) C23—H23C 0.9800
C7—H7 0.9500 C24—C25 1.3895 (16)
C6—H6 0.9500 C24—C29 1.3899 (16)
C9—F12 1.4112 (12) C25—C26 1.3940 (17)
C9—C10 1.5440 (14) C25—H25 0.9500
C9—C13 1.5445 (14) C26—C27 1.388 (2)
C10—C16 1.5187 (14) C26—H26 0.9500
C10—H10 1.0000 C27—C28 1.384 (2)
C13—O15 1.2036 (14) C27—H27 0.9500
C13—O14 1.3202 (13) C28—C29 1.3935 (16)
O14—H14 0.8400 C28—H28 0.9500
C16—C17 1.3901 (15) C29—H29 0.9500
C2—N1—C24 119.90 (8) C21—C16—C10 119.43 (9)
C2—N1—C10 123.43 (9) C16—C17—C18 121.29 (10)
C24—N1—C10 116.15 (8) C16—C17—H17 119.4
O11—C2—N1 120.70 (10) C18—C17—H17 119.4
O11—C2—C3 121.52 (9) C17—C18—C19 119.57 (10)
N1—C2—C3 117.78 (9) C17—C18—H18 120.2
C4—C3—C8 120.18 (10) C19—C18—H18 120.2
C4—C3—C2 118.68 (9) O22—C19—C20 115.65 (9)
C8—C3—C2 121.08 (9) O22—C19—C18 124.66 (10)
C5—C4—C3 119.81 (10) C20—C19—C18 119.67 (10)
C5—C4—H4 120.1 C21—C20—C19 120.09 (10)
C3—C4—H4 120.1 C21—C20—H20 120.0
C6—C5—C4 119.78 (10) C19—C20—H20 120.0
C6—C5—H5 120.1 C20—C21—C16 120.96 (10)
C4—C5—H5 120.1 C20—C21—H21 119.5
C7—C8—C3 119.39 (10) C16—C21—H21 119.5
C7—C8—C9 121.58 (9) C19—O22—C23 117.14 (8)
C3—C8—C9 118.86 (9) O22—C23—H23A 109.5
C6—C7—C8 120.17 (10) O22—C23—H23B 109.5
C6—C7—H7 119.9 H23A—C23—H23B 109.5
C8—C7—H7 119.9 O22—C23—H23C 109.5
C7—C6—C5 120.53 (10) H23A—C23—H23C 109.5
C7—C6—H6 119.7 H23B—C23—H23C 109.5
C5—C6—H6 119.7 C25—C24—C29 120.38 (10)
F12—C9—C8 107.70 (8) C25—C24—N1 120.76 (10)
F12—C9—C10 105.86 (8) C29—C24—N1 118.85 (10)
C8—C9—C10 113.83 (8) C24—C25—C26 119.43 (11)
F12—C9—C13 107.42 (8) C24—C25—H25 120.3
C8—C9—C13 114.13 (9) C26—C25—H25 120.3
C10—C9—C13 107.41 (8) C27—C26—C25 120.57 (12)
N1—C10—C16 112.29 (8) C27—C26—H26 119.7
N1—C10—C9 110.66 (8) C25—C26—H26 119.7
C16—C10—C9 114.28 (8) C28—C27—C26 119.51 (11)
N1—C10—H10 106.3 C28—C27—H27 120.2
C16—C10—H10 106.3 C26—C27—H27 120.2
C9—C10—H10 106.3 C27—C28—C29 120.63 (12)
O15—C13—O14 125.92 (10) C27—C28—H28 119.7
O15—C13—C9 123.50 (9) C29—C28—H28 119.7
O14—C13—C9 110.50 (9) C24—C29—C28 119.48 (11)
C13—O14—H14 109.5 C24—C29—H29 120.3
C17—C16—C21 118.42 (10) C28—C29—H29 120.3
C17—C16—C10 122.12 (9)
C24—N1—C2—O11 1.02 (15) F12—C9—C13—O15 −148.60 (10)
C10—N1—C2—O11 172.43 (10) C8—C9—C13—O15 −29.28 (14)
C24—N1—C2—C3 −179.57 (9) C10—C9—C13—O15 97.91 (12)
C10—N1—C2—C3 −8.16 (15) F12—C9—C13—O14 34.57 (11)
O11—C2—C3—C4 −10.34 (15) C8—C9—C13—O14 153.90 (9)
N1—C2—C3—C4 170.26 (9) C10—C9—C13—O14 −78.92 (10)
O11—C2—C3—C8 166.87 (10) N1—C10—C16—C17 50.04 (13)
N1—C2—C3—C8 −12.53 (15) C9—C10—C16—C17 −77.06 (12)
C8—C3—C4—C5 −1.71 (16) N1—C10—C16—C21 −131.70 (10)
C2—C3—C4—C5 175.53 (10) C9—C10—C16—C21 101.20 (11)
C3—C4—C5—C6 −1.68 (16) C21—C16—C17—C18 −0.31 (16)
C4—C3—C8—C7 3.75 (15) C10—C16—C17—C18 177.98 (9)
C2—C3—C8—C7 −173.41 (9) C16—C17—C18—C19 1.09 (16)
C4—C3—C8—C9 179.22 (9) C17—C18—C19—O22 176.94 (10)
C2—C3—C8—C9 2.05 (15) C17—C18—C19—C20 −1.42 (16)
C3—C8—C7—C6 −2.42 (16) O22—C19—C20—C21 −177.51 (9)
C9—C8—C7—C6 −177.76 (10) C18—C19—C20—C21 0.99 (16)
C8—C7—C6—C5 −0.97 (17) C19—C20—C21—C16 −0.21 (16)
C4—C5—C6—C7 3.03 (17) C17—C16—C21—C20 −0.14 (15)
C7—C8—C9—F12 84.49 (12) C10—C16—C21—C20 −178.47 (9)
C3—C8—C9—F12 −90.87 (11) C20—C19—O22—C23 −169.09 (9)
C7—C8—C9—C10 −158.47 (9) C18—C19—O22—C23 12.49 (15)
C3—C8—C9—C10 26.17 (13) C2—N1—C24—C25 54.81 (14)
C7—C8—C9—C13 −34.68 (14) C10—N1—C24—C25 −117.20 (11)
C3—C8—C9—C13 149.96 (9) C2—N1—C24—C29 −125.51 (11)
C2—N1—C10—C16 −93.63 (11) C10—N1—C24—C29 62.48 (12)
C24—N1—C10—C16 78.07 (11) C29—C24—C25—C26 0.14 (16)
C2—N1—C10—C9 35.38 (13) N1—C24—C25—C26 179.82 (10)
C24—N1—C10—C9 −152.92 (9) C24—C25—C26—C27 −0.58 (17)
F12—C9—C10—N1 75.45 (10) C25—C26—C27—C28 0.49 (18)
C8—C9—C10—N1 −42.65 (11) C26—C27—C28—C29 0.05 (18)
C13—C9—C10—N1 −170.02 (8) C25—C24—C29—C28 0.38 (16)
F12—C9—C10—C16 −156.62 (8) N1—C24—C29—C28 −179.30 (10)
C8—C9—C10—C16 85.28 (11) C27—C28—C29—C24 −0.48 (17)
C13—C9—C10—C16 −42.08 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O14—H14···O11i 0.84 1.75 2.5645 (11) 163
C23—H23C···F12ii 0.98 2.50 3.2435 (14) 133

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+3/2.

References

  1. Bruker (2014). APEX2, SAINT-Plus, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cushman, M., Gentry, J. & Dekow, F. W. (1977). J. Org. Chem. 42, 1111–1116. [DOI] [PubMed]
  3. Davis, F. A., Han, W. & Murphy, C. K. (1995). J. Org. Chem. 60, 4730–4737.
  4. Differding, E. & Ofner, H. (1991). Synlett, pp. 187–189.
  5. Guy, R. K., Zhu, F., Clark, J. A., Guiguemde, W. A., Floyd, D., Knapp, S., Stein, P. & Castro, S. (2013). PCT/IB2012/054305.
  6. Haimova, M. A., Mollov, N. M., Ivanova, S. C., Dimitrova, A. I. & Ognyanov, V. I. (1977). Tetrahedron, 33, 331–336.
  7. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  8. Li, B., Berliner, M., Buzon, R., Chiu, C. K., Colgan, S. T., Kaneko, T., Keene, N., Kissel, W., Le, T., Leeman, K. R., Marquez, B., Morris, R., Newell, L., Wunderwald, S., Witt, M., Weaver, J., Zhang, Z. & Zhang, Z. (2006). J. Org. Chem. 71, 9045–9050. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Takeda, K., Akiyama, A., Nakamura, H., Takizawa, S., Mizuno, Y., Takayanagi, H. & Harigaya, Y. (1994). Synthesis, pp. 1063–1066.
  13. Torregrosa, R., Pastor, I. M. & Yus, M. (2005). Tetrahedron, 61, 11148–11155.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017007186/su5371sup1.cif

e-73-00867-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007186/su5371Isup2.hkl

e-73-00867-Isup2.hkl (295KB, hkl)

CCDC reference: 1535140

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES