Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 23;73(Pt 6):871–875. doi: 10.1107/S2056989017007095

An infinite two-dimensional hybrid water–chloride network in a 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine nickel(II) matrix

Wei-Wei Fu a,*, Ya-Qian Li a, Yang Liu a, Man-Sheng Chen a, Wei Li a, Ying-Qun Yang a
PMCID: PMC5458313  PMID: 28638648

An unprecedented two-dimensional water–chloride anionic {[(H2O)10Cl2]2−}n network has been structurally identified in a hydro­phobic matrix of the nickel(II) complex [Ni(ftpy)2]Cl2·10H2O [ftpy = 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine].

Keywords: crystal structure, terpyridine, NiII, water cluster, water–chloride network, hydrogen bonds

Abstract

A new complex, namely bis­[4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine]­nickel(II) dichloride deca­hydrate, [Ni(C19H13N3O)2]Cl2·10H2O, has been crystallized by solvent evaporation and characterized by single-crystal X-ray diffraction. The coordination environment of the NiII cation is distorted octa­hedral with slight deviations from an idealized geometry. The most intriguing structural feature is an infinite two-dimensional hybrid water–chloride network parallel to (011) constructed by O—H⋯O and O—H⋯Cl hydrogen bonds involving two independent chloride ions and ten independent solvent water mol­ecules with an l-shaped pattern. One of the furyl rings is disordered with a refined occupancy ratio of 0.786 (13):0.214 (13)

Chemical context  

Water has received much scientific inter­est as it is a major chemical constituent on the earth’s surface and it is also the source of life. Many discrete water clusters and polymeric water aggregates, with different types of hydrogen bonds and in diverse sizes and shapes, captured in the crystal lattice of an organic or metal coordination complex during crystallization have been found and investigated experimentally and theoretically (Dutta et al., 2015; Ganguly & Mondal, 2015; Han et al., 2014; Hundal et al., 2014; Pati et al., 2014).graphic file with name e-73-00871-scheme1.jpg

Hybrid water–chloride associates incorporated in various crystal matrixes are one of the most inter­esting combinations in water clusters research due to their fundamental importance for understanding water–halide inter­actions in the atmosphere, the ocean and in biological systems (Inumaru et al., 2008; Kumar et al., 2011; Lakshminarayanan et al., 2006; Li et al., 2008). According to a search of the Cambridge Structural Database (CSD Version 5.37, May 2016; Groom et al., 2016), there are about nine examples with water–chloride hydrogen bonds forming one-dimensional tapes (Boyer et al., 2011; van Holst et al., 2008; Kepert et al., 1999; Jitsukawa et al., 1994), two-dimensional (Kepert et al., 1994; Chowdhury et al., 2011; Duan et al., 2016) and three-dimensional (Figgis et al., 1983; Pruchnik et al., 1996) networks from 2,2′:6′,2′′-terpyridine ligands. When 4′-substituted terpyridines with phenyl, pyridyl, imidazolyl rings were considered, two-dimensional and three-dimensional water–chloride networks with two chloride ions and at least six water mol­ecules were found (Constable et al., 1990; Kou et al., 2008; Chen et al., 2013; Fernandes et al., 2008; McMurtrie & Dance, 2010; Padhi et al., 2010; Indumathy et al., 2008; Mahendiran et al., 2016). The hydro­phobic and hydro­philic layers are further linked by two kinds of C—H⋯O hydrogen bonds into three-dimensional networks. In this context, a ftpy–NiII complex [ftpy = 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine] (Fig. 1) with two chlorides as counter-ions and ten solvent water mol­ecules (1) is described herein.

Figure 1.

Figure 1

The mol­ecular structure of [Ni(ftpy)2]2+ in 1, with displacement ellipsoids drawn at the 30% probability level.

Structural commentary  

The asymmetric unit of 1 is composed of a cationic [Ni(ftpy)2]2+ part, two chloride anions, and ten water mol­ecules of crystallization. The distances between Ni1 and the N atoms of the central pyridyl rings [1.974 (3) and 1.977 (3) Å] are slightly shorter than those between Ni1 and the N atoms of outer pyridyl rings [2.093 (3) −2.099 (3) Å; Table 1]. The angles involving Ni1 can be divided into two sets, viz. three transoid angles [178.36 (10), 155.38 (11) and 155.89 (11)°] and 12 cisoid angles, which range from 77.74 (11) to 103.80 (10)°. The differences in the bond lengths and angles indicate a distorted octa­hedral geometry (Constable et al., 1990; Logacheva et al., 2009; Padhi et al., 2010; Fu et al., 2013). The terpyridyl ring systems [maximum deviations of ±0.058 (4) Å for C27/C31 and 0.192 (4) Å for C17] are almost perpendicular to each other, subtending a dihedral angle of 87.35 (6)°. The furyl rings are almost coplanar with the terpyridyl ring systems, making dihedral angles of 8.1 (2) and 3.2 (3)° for the O1- and O2-containing rings, respectively.

Table 1. Selected geometric parameters (Å, °).

Ni1—N5 1.974 (3) Ni1—N3 2.096 (3)
Ni1—N2 1.977 (3) Ni1—N1 2.098 (3)
Ni1—N6 2.093 (3) Ni1—N4 2.099 (3)
       
N5—Ni1—N2 178.36 (10) N2—Ni1—N1 77.77 (11)
N5—Ni1—N6 77.81 (11) N6—Ni1—N1 93.13 (11)
N2—Ni1—N6 102.65 (11) N3—Ni1—N1 155.38 (11)
N5—Ni1—N3 100.71 (11) N5—Ni1—N4 78.10 (11)
N2—Ni1—N3 77.74 (11) N2—Ni1—N4 101.46 (12)
N6—Ni1—N3 89.84 (11) N6—Ni1—N4 155.89 (11)
N5—Ni1—N1 103.80 (10) N3—Ni1—N4 95.46 (11)

Supra­molecular features  

In the crystal, there are hydro­phobic layers composed of [Ni(ftpy)2]2+ dications and hydro­philic layers composed of water mol­ecules and chloride anions (Fig. 2). In the hydro­phobic layers, shown in Fig. 3, [Ni(ftpy)2]2+ dications are linked by two kinds of face-to-face π–π inter­actions with centroid–centroid distances of 3.530 (4) and 3.760 (4) Å between the furyl and outer pyridyl rings, forming one-dimensional (1D) chains. These 1D chains are linked by further π–π inter­actions with centroid distances of 4.367 (4) Å between furyl rings and 4.405 (4) Å between furyl and central pyridyl rings, forming two-dimensional networks. The water mol­ecules and chloride anions form a two-dimensional network parallel to (011) via O—H⋯O and O—H⋯Cl hydrogen bonds (Table 2), as shown in Fig. 4.

Figure 2.

Figure 2

View of the hydro­phobic (represented by wireframes) and hydro­philic (represented by spheres) layers in 1.

Figure 3.

Figure 3

A view of the two-dimensional undulating sheet of hydro­phobic layers, with π–π inter­actions highlighted by dashed lines [purple for 3.533 (5) and 3.761 (4) Å, and green for 4.338 (14) and 4.405 (4) Å].

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl1 0.87 2.25 3.113 (4) 169
O1W—H1WB⋯O9W i 0.87 2.06 2.923 (6) 175
O2W—H2WB⋯O5W ii 0.83 1.99 2.813 (7) 172
O2W—H2WA⋯Cl1 0.84 2.39 3.215 (4) 168
O3W—H3WC⋯O4W 0.86 2.05 2.760 (9) 140
O3W—H3WA⋯O6W iii 0.88 2.35 3.134 (7) 148
O4W—H4WB⋯Cl2 0.88 2.58 3.107 (5) 119
O4W—H4WA⋯Cl2 0.87 2.56 3.107 (5) 122
O5W—H5WA⋯Cl2 0.87 2.37 3.079 (4) 138
O5W—H5WB⋯O9W 0.89 2.16 2.991 (6) 156
O6W—H6WC⋯O2W ii 0.83 2.11 2.929 (6) 167
O6W—H6WA⋯O7W 0.83 2.18 2.838 (6) 136
O7W—H7WA⋯Cl2 0.87 2.34 3.190 (4) 167
O7W—H7WB⋯O4W ii 0.87 1.93 2.798 (5) 172
O8W—H8WC⋯O3W ii 0.85 2.06 2.856 (8) 155
O8W—H8WD⋯Cl2iv 0.85 2.40 3.204 (6) 157
O9W—H9WA⋯O10W v 0.86 1.93 2.756 (6) 159
O9W—H9WB⋯O1W vi 0.86 2.11 2.878 (5) 147
O10W—H10A⋯Cl1vii 0.88 2.27 3.141 (4) 171
O10W—H10B⋯Cl1viii 0.87 2.38 3.225 (4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 4.

Figure 4

A view of the hybrid water–chloride hydrogen-bonded assemblies in 1, with water mol­ecules and chloride anions shown as coloured balls and hydrogen bonds as dashed lines.

The multicyclic {[(H2O)10Cl2]2−}n fragments in the hydro­philic layers are constructed by means of 11 non-equivalent O—H⋯O hydrogen bonds with O⋯O distances ranging from 2.756 (6) to 3.134 (7) Å and nine O—H⋯Cl hydrogen bonds with O⋯Cl distances ranging from 3.079 (4) to 3.225 (4) Å (Table 2, Fig. 4). Both the O⋯O and O⋯Cl distances are comparable with those found in various types of water clusters and water–chloride associates (Safin et al., 2015; Bhat & Revankar, 2016; Ris et al., 2016). The resulting two-dimensional network can be considered as a set of alternating cyclic fragments with three tetra­nuclear, three penta­nuclear, one hexa­nuclear and two octa­nuclear fragments, as shown in Fig. 5 a. Two of these fragments are composed only of water mol­ecules, whereas the other seven rings are water–chloride hybrids with one or two Cl anions. Most of the rings are non-planar, contributing to the formation of an intricate relief geometry of the water–chloride layer. Using the method described by Infantes and co-workers (Infantes & Motherwell, 2002; Infantes et al., 2003), this two-dimensional water–chloride network can be described as having an L4(6)4(6)4(6)5(5)5(6)5(6)6(8)8(8)8(10) pattern.

Figure 5.

Figure 5

Multicyclic {[(H2O)10Cl2]2−}n fragments with repeating units of two-dimensional water–chloride networks in (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5.

Comparison with other terpyridine complexes possessing 10 solvent water mol­ecules  

It is inter­esting to make a comparison of the two-dimensional water–chloride networks in 1 and those found in other terpyridine complexes possessing 10 solvent water mol­ecules, viz. [Fe(phtpy)2]Cl2·10H2O (2; refcode: VOBKON; Fernandes et al., 2008), [Ni(phtpy)2]Cl2·10H2O, (3; refcode: SIXLIU01; Chen et al., 2013), [Ru(phtpy)2]Cl2·10H2O (4; refcode: FAFFID; McMurtrie & Dance, 2010) and [Ru(pytpy)2]Cl2·10H2O (5; refcode: TUXGUP; Padhi et al., 2010) [phtpy = 4′-phenyl-2,2′:6′,2′′-terpyridine and pytpy = 4′-(2-pyrid­yl)-2,2′:6′,2′′-terpyridine]. In spite of the differences in the metal ions and terpyridine ligands, the crystal parameters are almost the same for compounds 25. Where a five-membered furyl ring is involved instead of a six-membered phenyl or pyridyl ring, the size of the crystal cell decreases with reduction in the cell volume of about 4.5% from 2200 to 2100 Å3. Considering the O⋯O and O⋯Cl distances within the two-dimensional water–chloride networks, a different number of trinuclear, tetra­nuclear, penta­nuclear, hexa­nuclear and octa­nuclear rings have been determined, giving an L4(6)4(6)4(6)4(6)4(6)5(6)5(6)5(6)6(8)8(12) pattern for 2, an L4(6)4(6)4(6)5(7)5(7)5(8)5(8)6(7)6(9)6(9)8(12) pattern for 3, an L4(6)4(6)4(6)4(6)4(6)4(6)5(6)5(6)5(7)6(7)8(12) pattern for 4 and an L3(6)4(6)5(5)5(6)5(6)6(8)6(8)8(8)8(10) pattern for 5 (Fig. 5 be). These results illustrate how a water–chloride assembly could be fine-tuned by adopting diverse ligands and different metal ions. It is potentially useful for future studies of water–water or water–chloride inter­actions for chemists as well as theoreticians.

Synthesis and crystallization  

4′-Furyl-2,2′:6′,2′′-terpyridine was prepared by a literature method (Wang & Hanan, 2005). Other reagents and solvents used in reactions were purchased from Aladdin Chemical and used without purification, unless otherwise indicated.

NiCl2·6H2O (0.1 mmol, 0.024g) and ftpy (0.2 mmol, 0.060 g) were dissolved in 10 ml distilled water and 10 ml methanol. The solution was left alone for slow evaporation without disturbance for about one month and reddish brown crystals of (1) suitable for X-ray analysis were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms except those of water mol­ecules were generated geometrically and refined isotropically using a riding model, with C—H = 0.93 Å and U iso(H) = 1.2U eq(C). The hydrogen atoms of solvent water mol­ecules were located in difference-Fourier maps, refined with DFIX restraints of O—H distances and finally fixed at those positions using AFIX 3 in SHELXL (Sheldrick, 2015b ). Atoms C36, C37, C38 and O2 were found to be disordered over two sets of sites with a refined occupancy ratio of 0.786 (13):0.214 (13) for C36/C36A, C37/C37A, C38/C38A, and O2/O2A. In order to model the disorder of this furyl ring, various restraints (DFIX, FLAT, ISOR, DELU, EADP) were applied in the refinement.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C19H13N3O)2]Cl2·10H2O
M r 908.42
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 10.351 (7), 11.894 (8), 19.070 (13)
α, β, γ (°) 76.33 (1), 88.582 (12), 67.077 (11)
V3) 2095 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.23 × 0.18 × 0.15
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.864, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 10779, 7382, 5322
R int 0.029
(sin θ/λ)max−1) 0.597
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.144, 1.07
No. of reflections 7382
No. of parameters 546
No. of restraints 75
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.53

Computer programs: SMART and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a ); SHELXL2014 (Sheldrick, 2015b ), OLEX2(Dolomanov et al., 2009), DIAMOND (Brandenburg & Putz, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007095/lh5845sup1.cif

e-73-00871-sup1.cif (431.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007095/lh5845Isup2.hkl

e-73-00871-Isup2.hkl (586.3KB, hkl)

CCDC reference: 1498201

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the Key Discipline Project of Hunan Province, the Open Fund of the Key Laboratory of Functional Organometallic Materials of Hunan Province College (GN14K02), the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Scientific Research Fund of Hunan Provincial Education Department (16B037) and Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education (CHCL16002) are gratefully acknowledged.

supplementary crystallographic information

Crystal data

[Ni(C19H13N3O)2]Cl2·10H2O Z = 2
Mr = 908.42 F(000) = 948
Triclinic, P1 Dx = 1.440 Mg m3
a = 10.351 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.894 (8) Å Cell parameters from 3615 reflections
c = 19.070 (13) Å θ = 2.2–24.0°
α = 76.33 (1)° µ = 0.66 mm1
β = 88.582 (12)° T = 296 K
γ = 67.077 (11)° Block, brown
V = 2095 (2) Å3 0.23 × 0.18 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer 5322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
phi and ω scans θmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −12→8
Tmin = 0.864, Tmax = 0.908 k = −14→13
10779 measured reflections l = −22→19
7382 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.144 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0689P)2] where P = (Fo2 + 2Fc2)/3
7382 reflections (Δ/σ)max < 0.001
546 parameters Δρmax = 0.42 e Å3
75 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.97894 (4) 0.78241 (4) 0.74747 (2) 0.03697 (15)
Cl1 0.30308 (10) 0.17463 (10) 0.94851 (6) 0.0626 (3)
Cl2 0.28593 (15) 0.70315 (14) 0.37352 (7) 0.0975 (4)
N1 0.9435 (3) 0.6158 (2) 0.77056 (14) 0.0395 (6)
N2 1.0808 (3) 0.6936 (2) 0.84370 (14) 0.0371 (6)
N3 1.0524 (3) 0.9124 (2) 0.76977 (14) 0.0402 (6)
N4 1.1361 (3) 0.7137 (2) 0.67860 (15) 0.0404 (6)
N5 0.8802 (3) 0.8743 (2) 0.65098 (14) 0.0363 (6)
N6 0.7778 (3) 0.8893 (3) 0.77339 (14) 0.0399 (6)
O1W 0.0399 (3) 0.1312 (3) 1.0094 (2) 0.1017 (12)
H1WA 0.1069 0.1479 0.9865 0.153*
H1WB −0.0184 0.1283 0.9785 0.153*
O1 1.3786 (3) 0.5497 (3) 1.07455 (16) 0.0771 (8)
O2W 0.3405 (4) 0.3554 (3) 0.8020 (2) 0.1191 (14)
H2WB 0.4256 0.3390 0.7997 0.179*
H2WA 0.3280 0.3179 0.8431 0.179*
O2 0.7323 (4) 1.0325 (5) 0.38766 (18) 0.0652 (12) 0.786 (13)
O2A 0.5318 (13) 1.1546 (17) 0.4459 (8) 0.0652 (12) 0.214 (13)
O3W 0.0344 (6) 0.4187 (5) 0.4364 (3) 0.161 (2)
H3WC 0.1242 0.3849 0.4377 0.241*
H3WA −0.0004 0.4792 0.3967 0.241*
O4W 0.2936 (5) 0.4343 (4) 0.4358 (2) 0.1321 (15)
H4WB 0.2366 0.5098 0.4401 0.198*
H4WA 0.3534 0.4658 0.4168 0.198*
O5W 0.3714 (4) 0.7092 (4) 0.21731 (19) 0.1075 (12)
H5WA 0.3229 0.7484 0.2484 0.161*
H5WB 0.3079 0.7751 0.1866 0.161*
O6W 0.8002 (4) 0.6442 (4) 0.3295 (2) 0.1187 (14)
H6WC 0.7594 0.6559 0.2898 0.178*
H6WA 0.7339 0.6982 0.3442 0.178*
O7W 0.5809 (3) 0.6957 (3) 0.42459 (18) 0.0892 (10)
H7WA 0.5069 0.6842 0.4137 0.134*
H7WB 0.6169 0.6500 0.4680 0.134*
O8W 0.9848 (5) 0.7051 (5) 0.4183 (3) 0.165 (2)
H8WC 0.9741 0.6910 0.4634 0.247*
H8WD 1.0541 0.7266 0.4086 0.247*
O9W 0.1697 (4) 0.8720 (3) 0.08918 (18) 0.0972 (11)
H9WA 0.2328 0.8596 0.0583 0.146*
H9WB 0.1381 0.9527 0.0824 0.146*
O10W 0.6127 (3) 0.1247 (3) −0.00361 (17) 0.0790 (9)
H10A 0.5244 0.1474 −0.0182 0.119*
H10B 0.6177 0.0479 0.0111 0.119*
C1 1.4491 (5) 0.4603 (6) 1.1365 (3) 0.0893 (16)
H1A 1.4970 0.4732 1.1724 0.107*
C2 1.4381 (5) 0.3551 (6) 1.1366 (2) 0.0892 (16)
H2A 1.4785 0.2800 1.1719 0.107*
C3 1.3555 (4) 0.3735 (4) 1.0750 (2) 0.0629 (10)
H3A 1.3284 0.3149 1.0618 0.075*
C4 1.3234 (4) 0.4928 (4) 1.03888 (19) 0.0502 (8)
C5 1.2401 (3) 0.5626 (3) 0.97208 (18) 0.0439 (8)
C6 1.2338 (3) 0.6820 (3) 0.93761 (18) 0.0450 (8)
H6 1.2842 0.7184 0.9575 0.054*
C7 1.1634 (3) 0.5118 (3) 0.93943 (18) 0.0435 (8)
H7 1.1657 0.4322 0.9610 0.052*
C8 1.0858 (3) 0.5796 (3) 0.87613 (17) 0.0400 (7)
C9 1.1521 (3) 0.7449 (3) 0.87409 (17) 0.0386 (7)
C10 1.1305 (3) 0.8734 (3) 0.83215 (18) 0.0405 (8)
C11 1.1802 (4) 0.9497 (4) 0.8570 (2) 0.0519 (9)
H11 1.2359 0.9201 0.9003 0.062*
C12 1.1457 (4) 1.0711 (4) 0.8163 (2) 0.0591 (10)
H12 1.1772 1.1250 0.8319 0.071*
C13 1.0652 (4) 1.1115 (4) 0.7531 (2) 0.0574 (10)
H13 1.0410 1.1932 0.7251 0.069*
C14 1.0200 (4) 1.0298 (3) 0.7311 (2) 0.0506 (9)
H14 0.9649 1.0577 0.6877 0.061*
C15 0.9995 (3) 0.5383 (3) 0.83507 (18) 0.0384 (7)
C16 0.9774 (4) 0.4297 (3) 0.8607 (2) 0.0485 (9)
H16 1.0166 0.3774 0.9060 0.058*
C17 0.8971 (4) 0.3996 (4) 0.8187 (2) 0.0568 (10)
H17 0.8794 0.3274 0.8356 0.068*
C18 0.8430 (4) 0.4757 (4) 0.7518 (2) 0.0557 (10)
H18 0.7900 0.4550 0.7223 0.067*
C19 0.8678 (4) 0.5830 (3) 0.7287 (2) 0.0491 (9)
H19 0.8315 0.6347 0.6828 0.059*
C20 1.2646 (4) 0.6268 (3) 0.6978 (2) 0.0507 (9)
H20 1.2924 0.5921 0.7468 0.061*
C21 1.3586 (4) 0.5861 (4) 0.6483 (2) 0.0624 (11)
H21 1.4483 0.5246 0.6635 0.075*
C22 1.3193 (4) 0.6362 (4) 0.5779 (2) 0.0605 (10)
H22 1.3821 0.6104 0.5435 0.073*
C23 1.1853 (4) 0.7262 (4) 0.5561 (2) 0.0515 (9)
H23 1.1565 0.7615 0.5073 0.062*
C24 1.0956 (3) 0.7623 (3) 0.60840 (18) 0.0389 (7)
C25 0.9482 (3) 0.8536 (3) 0.59157 (17) 0.0383 (7)
C26 0.8800 (4) 0.9120 (3) 0.52461 (18) 0.0438 (8)
H26 0.9271 0.8958 0.4836 0.053*
C27 0.7407 (4) 0.9953 (3) 0.51755 (18) 0.0421 (8)
C28 0.6734 (4) 1.0179 (3) 0.57974 (18) 0.0423 (8)
H28 0.5803 1.0746 0.5767 0.051*
C29 0.7472 (3) 0.9549 (3) 0.64582 (17) 0.0367 (7)
C30 0.6892 (3) 0.9652 (3) 0.71648 (17) 0.0378 (7)
C31 0.5555 (4) 1.0467 (3) 0.7236 (2) 0.0488 (8)
H31 0.4960 1.0997 0.6831 0.059*
C32 0.5115 (4) 1.0483 (4) 0.7922 (2) 0.0551 (10)
H32 0.4211 1.1021 0.7987 0.066*
C33 0.6021 (4) 0.9698 (4) 0.8509 (2) 0.0549 (10)
H33 0.5743 0.9694 0.8977 0.066*
C34 0.7340 (4) 0.8921 (3) 0.83933 (19) 0.0499 (9)
H34 0.7956 0.8391 0.8791 0.060*
C35 0.6651 (4) 1.0581 (3) 0.44799 (17) 0.0473 (8)
C36 0.5368 (6) 1.1455 (5) 0.4263 (4) 0.0530 (14) 0.786 (13)
H36 0.4693 1.1807 0.4566 0.064* 0.786 (13)
C36A 0.695 (2) 1.046 (2) 0.3801 (7) 0.0530 (14) 0.214 (13)
H36A 0.7779 0.9894 0.3672 0.064* 0.214 (13)
C37 0.5193 (7) 1.1758 (6) 0.3518 (4) 0.0582 (16) 0.786 (13)
H37 0.4390 1.2338 0.3231 0.070* 0.786 (13)
C37A 0.585 (3) 1.130 (2) 0.3344 (7) 0.0582 (16) 0.214 (13)
H37A 0.5793 1.1393 0.2846 0.070* 0.214 (13)
C38 0.6383 (8) 1.1068 (6) 0.3293 (2) 0.0593 (15) 0.786 (13)
H38 0.6561 1.1081 0.2811 0.071* 0.786 (13)
C38A 0.4838 (19) 1.198 (2) 0.3714 (10) 0.0593 (15) 0.214 (13)
H38A 0.3980 1.2620 0.3516 0.071* 0.214 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0399 (3) 0.0386 (3) 0.0332 (2) −0.01552 (19) 0.00434 (16) −0.01032 (18)
Cl1 0.0538 (6) 0.0650 (6) 0.0640 (6) −0.0216 (5) −0.0007 (4) −0.0095 (5)
Cl2 0.1043 (10) 0.1146 (11) 0.0714 (9) −0.0447 (9) 0.0106 (7) −0.0168 (8)
N1 0.0398 (15) 0.0438 (16) 0.0373 (16) −0.0172 (13) 0.0044 (12) −0.0131 (13)
N2 0.0400 (15) 0.0369 (15) 0.0358 (15) −0.0158 (12) 0.0047 (11) −0.0110 (12)
N3 0.0430 (16) 0.0411 (16) 0.0405 (16) −0.0189 (13) 0.0082 (12) −0.0138 (13)
N4 0.0399 (16) 0.0407 (15) 0.0411 (17) −0.0147 (13) 0.0069 (12) −0.0136 (13)
N5 0.0383 (15) 0.0357 (14) 0.0361 (15) −0.0151 (12) 0.0085 (11) −0.0106 (12)
N6 0.0434 (15) 0.0457 (16) 0.0337 (15) −0.0192 (13) 0.0088 (12) −0.0132 (13)
O1W 0.075 (2) 0.106 (3) 0.121 (3) −0.032 (2) 0.034 (2) −0.033 (2)
O1 0.080 (2) 0.091 (2) 0.0604 (19) −0.0284 (18) −0.0039 (15) −0.0255 (17)
O2W 0.153 (4) 0.072 (2) 0.096 (3) −0.015 (2) 0.047 (3) −0.008 (2)
O2 0.054 (2) 0.083 (3) 0.0378 (19) −0.010 (2) −0.0021 (15) −0.0050 (18)
O2A 0.054 (2) 0.083 (3) 0.0378 (19) −0.010 (2) −0.0021 (15) −0.0050 (18)
O3W 0.202 (5) 0.220 (6) 0.127 (4) −0.143 (5) 0.047 (4) −0.068 (4)
O4W 0.120 (3) 0.150 (4) 0.113 (4) −0.051 (3) −0.009 (3) −0.011 (3)
O5W 0.149 (4) 0.128 (3) 0.073 (2) −0.083 (3) 0.012 (2) −0.025 (2)
O6W 0.114 (3) 0.157 (4) 0.141 (4) −0.090 (3) 0.056 (3) −0.079 (3)
O7W 0.085 (2) 0.081 (2) 0.084 (2) −0.0156 (18) −0.0003 (17) −0.0184 (18)
O8W 0.163 (5) 0.214 (6) 0.121 (4) −0.081 (4) 0.011 (3) −0.034 (4)
O9W 0.097 (2) 0.104 (3) 0.092 (3) −0.049 (2) 0.031 (2) −0.015 (2)
O10W 0.0620 (18) 0.094 (2) 0.085 (2) −0.0325 (17) −0.0038 (15) −0.0244 (18)
C1 0.064 (3) 0.129 (5) 0.055 (3) −0.010 (3) −0.018 (2) −0.034 (3)
C2 0.089 (4) 0.093 (4) 0.042 (2) 0.003 (3) −0.0113 (18) −0.003 (2)
C3 0.075 (3) 0.0587 (19) 0.050 (2) −0.022 (2) 0.0019 (17) −0.0116 (17)
C4 0.047 (2) 0.0585 (18) 0.0374 (19) −0.0128 (18) 0.0000 (14) −0.0124 (14)
C5 0.0400 (19) 0.048 (2) 0.0362 (19) −0.0093 (16) 0.0054 (14) −0.0112 (16)
C6 0.0435 (19) 0.051 (2) 0.044 (2) −0.0188 (17) 0.0034 (15) −0.0183 (17)
C7 0.050 (2) 0.0385 (19) 0.0375 (19) −0.0151 (16) 0.0043 (15) −0.0055 (15)
C8 0.0401 (18) 0.0429 (19) 0.0377 (19) −0.0152 (16) 0.0080 (14) −0.0135 (16)
C9 0.0388 (18) 0.0428 (19) 0.0337 (18) −0.0132 (15) 0.0066 (13) −0.0141 (15)
C10 0.0414 (18) 0.0447 (19) 0.042 (2) −0.0201 (16) 0.0089 (14) −0.0181 (16)
C11 0.055 (2) 0.058 (2) 0.052 (2) −0.0278 (19) 0.0027 (17) −0.0200 (19)
C12 0.064 (3) 0.056 (2) 0.073 (3) −0.034 (2) 0.014 (2) −0.028 (2)
C13 0.071 (3) 0.043 (2) 0.063 (3) −0.027 (2) 0.007 (2) −0.0150 (19)
C14 0.055 (2) 0.045 (2) 0.048 (2) −0.0179 (18) 0.0037 (16) −0.0072 (17)
C15 0.0359 (17) 0.0386 (18) 0.0415 (19) −0.0134 (15) 0.0070 (14) −0.0139 (15)
C16 0.048 (2) 0.041 (2) 0.054 (2) −0.0163 (17) 0.0054 (16) −0.0071 (17)
C17 0.059 (2) 0.046 (2) 0.073 (3) −0.0288 (19) 0.007 (2) −0.016 (2)
C18 0.054 (2) 0.055 (2) 0.068 (3) −0.029 (2) 0.0026 (19) −0.022 (2)
C19 0.051 (2) 0.053 (2) 0.047 (2) −0.0222 (18) −0.0010 (16) −0.0158 (18)
C20 0.044 (2) 0.049 (2) 0.056 (2) −0.0134 (18) 0.0049 (17) −0.0156 (18)
C21 0.038 (2) 0.064 (3) 0.077 (3) −0.0086 (19) 0.0091 (19) −0.023 (2)
C22 0.050 (2) 0.067 (3) 0.066 (3) −0.018 (2) 0.024 (2) −0.030 (2)
C23 0.050 (2) 0.059 (2) 0.047 (2) −0.0196 (19) 0.0147 (16) −0.0205 (18)
C24 0.0402 (18) 0.0378 (18) 0.043 (2) −0.0171 (15) 0.0103 (14) −0.0145 (15)
C25 0.0433 (19) 0.0414 (18) 0.0358 (18) −0.0197 (16) 0.0114 (14) −0.0154 (15)
C26 0.051 (2) 0.049 (2) 0.0360 (19) −0.0231 (18) 0.0153 (15) −0.0148 (16)
C27 0.050 (2) 0.0430 (19) 0.0353 (19) −0.0212 (17) 0.0044 (14) −0.0087 (15)
C28 0.0429 (19) 0.0409 (19) 0.040 (2) −0.0133 (16) 0.0039 (14) −0.0102 (15)
C29 0.0415 (19) 0.0349 (17) 0.0358 (18) −0.0157 (15) 0.0086 (14) −0.0121 (14)
C30 0.0422 (19) 0.0366 (18) 0.0377 (19) −0.0169 (15) 0.0076 (14) −0.0128 (15)
C31 0.047 (2) 0.047 (2) 0.048 (2) −0.0144 (17) 0.0088 (16) −0.0121 (17)
C32 0.051 (2) 0.059 (2) 0.060 (3) −0.0197 (19) 0.0225 (19) −0.027 (2)
C33 0.063 (2) 0.063 (2) 0.044 (2) −0.025 (2) 0.0233 (18) −0.023 (2)
C34 0.061 (2) 0.056 (2) 0.0343 (19) −0.0238 (19) 0.0103 (16) −0.0136 (17)
C35 0.058 (2) 0.057 (2) 0.0349 (19) −0.029 (2) 0.0046 (16) −0.0142 (17)
C36 0.057 (3) 0.050 (3) 0.049 (3) −0.016 (2) 0.016 (3) −0.019 (3)
C36A 0.057 (3) 0.050 (3) 0.049 (3) −0.016 (2) 0.016 (3) −0.019 (3)
C37 0.045 (3) 0.057 (3) 0.060 (3) −0.010 (3) −0.003 (3) −0.010 (3)
C37A 0.045 (3) 0.057 (3) 0.060 (3) −0.010 (3) −0.003 (3) −0.010 (3)
C38 0.056 (3) 0.074 (4) 0.033 (2) −0.014 (3) −0.004 (2) −0.005 (2)
C38A 0.056 (3) 0.074 (4) 0.033 (2) −0.014 (3) −0.004 (2) −0.005 (2)

Geometric parameters (Å, º)

Ni1—N5 1.974 (3) C7—H7 0.9300
Ni1—N2 1.977 (3) C8—C15 1.487 (4)
Ni1—N6 2.093 (3) C9—C10 1.480 (4)
Ni1—N3 2.096 (3) C10—C11 1.376 (5)
Ni1—N1 2.098 (3) C11—C12 1.378 (5)
Ni1—N4 2.099 (3) C11—H11 0.9300
N1—C15 1.335 (4) C12—C13 1.356 (6)
N1—C19 1.350 (4) C12—H12 0.9300
N2—C8 1.331 (4) C13—C14 1.377 (5)
N2—C9 1.339 (4) C13—H13 0.9300
N3—C14 1.329 (4) C14—H14 0.9300
N3—C10 1.333 (4) C15—C16 1.373 (5)
N4—C20 1.322 (4) C16—C17 1.364 (5)
N4—C24 1.332 (4) C16—H16 0.9300
N5—C29 1.326 (4) C17—C18 1.361 (5)
N5—C25 1.340 (4) C17—H17 0.9300
N6—C34 1.329 (4) C18—C19 1.368 (5)
N6—C30 1.332 (4) C18—H18 0.9300
O1W—H1WA 0.8732 C19—H19 0.9300
O1W—H1WB 0.8701 C20—C21 1.370 (5)
O1—C4 1.336 (4) C20—H20 0.9300
O1—C1 1.379 (6) C21—C22 1.336 (6)
O2W—H2WB 0.8275 C21—H21 0.9300
O2W—H2WA 0.8393 C22—C23 1.379 (5)
O2—C35 1.364 (4) C22—H22 0.9300
O2—C38 1.373 (5) C23—C24 1.373 (4)
O2A—C35 1.404 (9) C23—H23 0.9300
O2A—C38A 1.421 (9) C24—C25 1.476 (5)
O3W—H3WC 0.8556 C25—C26 1.362 (5)
O3W—H3WA 0.8797 C26—C27 1.383 (5)
O4W—H4WB 0.8839 C26—H26 0.9300
O4W—H4WA 0.8729 C27—C28 1.389 (4)
O5W—H5WA 0.8692 C27—C35 1.435 (5)
O5W—H5WB 0.8890 C28—C29 1.374 (5)
O6W—H6WC 0.8315 C28—H28 0.9300
O6W—H6WA 0.8339 C29—C30 1.474 (4)
O7W—H7WA 0.8667 C30—C31 1.372 (5)
O7W—H7WB 0.8744 C31—C32 1.375 (5)
O8W—H8WC 0.8502 C31—H31 0.9300
O8W—H8WD 0.8528 C32—C33 1.372 (5)
O9W—H9WA 0.8616 C32—H32 0.9300
O9W—H9WB 0.8629 C33—C34 1.365 (5)
O10W—H10A 0.8785 C33—H33 0.9300
O10W—H10B 0.8705 C34—H34 0.9300
C1—C2 1.299 (7) C35—C36 1.328 (6)
C1—H1A 0.9300 C35—C36A 1.352 (9)
C2—C3 1.394 (6) C36—C37 1.378 (6)
C2—H2A 0.9300 C36—H36 0.9300
C3—C4 1.334 (5) C36A—C37A 1.344 (10)
C3—H3A 0.9300 C36A—H36A 0.9300
C4—C5 1.432 (5) C37—C38 1.315 (6)
C5—C6 1.394 (5) C37—H37 0.9300
C5—C7 1.400 (5) C37A—C38A 1.351 (9)
C6—C9 1.368 (5) C37A—H37A 0.9300
C6—H6 0.9300 C38—H38 0.9300
C7—C8 1.355 (5) C38A—H38A 0.9300
N5—Ni1—N2 178.36 (10) N3—C14—H14 118.9
N5—Ni1—N6 77.81 (11) C13—C14—H14 118.9
N2—Ni1—N6 102.65 (11) N1—C15—C16 121.9 (3)
N5—Ni1—N3 100.71 (11) N1—C15—C8 114.7 (3)
N2—Ni1—N3 77.74 (11) C16—C15—C8 123.5 (3)
N6—Ni1—N3 89.84 (11) C17—C16—C15 119.0 (4)
N5—Ni1—N1 103.80 (10) C17—C16—H16 120.5
N2—Ni1—N1 77.77 (11) C15—C16—H16 120.5
N6—Ni1—N1 93.13 (11) C18—C17—C16 119.8 (3)
N3—Ni1—N1 155.38 (11) C18—C17—H17 120.1
N5—Ni1—N4 78.10 (11) C16—C17—H17 120.1
N2—Ni1—N4 101.46 (12) C17—C18—C19 119.1 (3)
N6—Ni1—N4 155.89 (11) C17—C18—H18 120.5
N3—Ni1—N4 95.46 (11) C19—C18—H18 120.5
N1—Ni1—N4 91.74 (10) N1—C19—C18 121.7 (4)
C15—N1—C19 118.5 (3) N1—C19—H19 119.1
C15—N1—Ni1 114.5 (2) C18—C19—H19 119.1
C19—N1—Ni1 126.9 (2) N4—C20—C21 122.5 (4)
C8—N2—C9 120.0 (3) N4—C20—H20 118.8
C8—N2—Ni1 120.1 (2) C21—C20—H20 118.8
C9—N2—Ni1 119.7 (2) C22—C21—C20 118.9 (4)
C14—N3—C10 118.6 (3) C22—C21—H21 120.6
C14—N3—Ni1 126.4 (2) C20—C21—H21 120.6
C10—N3—Ni1 114.8 (2) C21—C22—C23 119.9 (4)
C20—N4—C24 118.8 (3) C21—C22—H22 120.0
C20—N4—Ni1 127.0 (3) C23—C22—H22 120.0
C24—N4—Ni1 114.1 (2) C24—C23—C22 118.4 (4)
C29—N5—C25 120.9 (3) C24—C23—H23 120.8
C29—N5—Ni1 119.5 (2) C22—C23—H23 120.8
C25—N5—Ni1 119.6 (2) N4—C24—C23 121.5 (3)
C34—N6—C30 118.6 (3) N4—C24—C25 115.4 (3)
C34—N6—Ni1 126.8 (2) C23—C24—C25 123.1 (3)
C30—N6—Ni1 114.5 (2) N5—C25—C26 120.4 (3)
H1WA—O1W—H1WB 109.3 N5—C25—C24 112.8 (3)
C4—O1—C1 105.9 (4) C26—C25—C24 126.8 (3)
H2WB—O2W—H2WA 108.4 C25—C26—C27 120.0 (3)
C35—O2—C38 106.7 (4) C25—C26—H26 120.0
C35—O2A—C38A 104.3 (8) C27—C26—H26 120.0
H3WC—O3W—H3WA 110.8 C26—C27—C28 118.7 (3)
H4WB—O4W—H4WA 89.3 C26—C27—C35 121.7 (3)
H5WA—O5W—H5WB 81.1 C28—C27—C35 119.7 (3)
H6WC—O6W—H6WA 96.0 C29—C28—C27 118.6 (3)
H7WA—O7W—H7WB 110.0 C29—C28—H28 120.7
H8WC—O8W—H8WD 111.3 C27—C28—H28 120.7
H9WA—O9W—H9WB 101.0 N5—C29—C28 121.4 (3)
H10A—O10W—H10B 87.7 N5—C29—C30 113.5 (3)
C2—C1—O1 109.2 (4) C28—C29—C30 125.1 (3)
C2—C1—H1A 125.4 N6—C30—C31 122.3 (3)
O1—C1—H1A 125.4 N6—C30—C29 114.5 (3)
C1—C2—C3 108.6 (5) C31—C30—C29 123.1 (3)
C1—C2—H2A 125.7 C30—C31—C32 118.4 (3)
C3—C2—H2A 125.7 C30—C31—H31 120.8
C4—C3—C2 105.5 (4) C32—C31—H31 120.8
C4—C3—H3A 127.3 C33—C32—C31 119.4 (3)
C2—C3—H3A 127.3 C33—C32—H32 120.3
C3—C4—O1 110.8 (3) C31—C32—H32 120.3
C3—C4—C5 129.7 (4) C34—C33—C32 118.7 (3)
O1—C4—C5 119.5 (3) C34—C33—H33 120.7
C6—C5—C7 118.2 (3) C32—C33—H33 120.7
C6—C5—C4 121.2 (3) N6—C34—C33 122.6 (3)
C7—C5—C4 120.6 (3) N6—C34—H34 118.7
C9—C6—C5 118.8 (3) C33—C34—H34 118.7
C9—C6—H6 120.6 C36—C35—O2 107.6 (4)
C5—C6—H6 120.6 C36A—C35—O2A 109.5 (8)
C8—C7—C5 119.4 (3) C36—C35—C27 133.6 (4)
C8—C7—H7 120.3 C36A—C35—C27 133.4 (8)
C5—C7—H7 120.3 O2—C35—C27 118.8 (3)
N2—C8—C7 121.8 (3) O2A—C35—C27 117.1 (7)
N2—C8—C15 112.6 (3) C35—C36—C37 109.4 (4)
C7—C8—C15 125.6 (3) C35—C36—H36 125.3
N2—C9—C6 121.7 (3) C37—C36—H36 125.3
N2—C9—C10 112.7 (3) C37A—C36A—C35 108.2 (9)
C6—C9—C10 125.5 (3) C37A—C36A—H36A 125.9
N3—C10—C11 122.2 (3) C35—C36A—H36A 125.9
N3—C10—C9 114.7 (3) C38—C37—C36 106.7 (4)
C11—C10—C9 122.9 (3) C38—C37—H37 126.7
C10—C11—C12 118.4 (4) C36—C37—H37 126.7
C10—C11—H11 120.8 C36A—C37A—C38A 110.1 (10)
C12—C11—H11 120.8 C36A—C37A—H37A 124.9
C13—C12—C11 119.5 (3) C38A—C37A—H37A 124.9
C13—C12—H12 120.3 C37—C38—O2 109.6 (4)
C11—C12—H12 120.3 C37—C38—H38 125.2
C12—C13—C14 119.1 (4) O2—C38—H38 125.2
C12—C13—H13 120.4 C37A—C38A—O2A 107.8 (9)
C14—C13—H13 120.4 C37A—C38A—H38A 126.1
N3—C14—C13 122.1 (4) O2A—C38A—H38A 126.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···Cl1 0.87 2.25 3.113 (4) 169
O1W—H1WB···O9Wi 0.87 2.06 2.923 (6) 175
O2W—H2WB···O5Wii 0.83 1.99 2.813 (7) 172
O2W—H2WA···Cl1 0.84 2.39 3.215 (4) 168
O3W—H3WC···O4W 0.86 2.05 2.760 (9) 140
O3W—H3WA···O6Wiii 0.88 2.35 3.134 (7) 148
O4W—H4WB···Cl2 0.88 2.58 3.107 (5) 119
O4W—H4WA···Cl2 0.87 2.56 3.107 (5) 122
O5W—H5WA···Cl2 0.87 2.37 3.079 (4) 138
O5W—H5WB···O9W 0.89 2.16 2.991 (6) 156
O6W—H6WC···O2Wii 0.83 2.11 2.929 (6) 167
O6W—H6WA···O7W 0.83 2.18 2.838 (6) 136
O7W—H7WA···Cl2 0.87 2.34 3.190 (4) 167
O7W—H7WB···O4Wii 0.87 1.93 2.798 (5) 172
O8W—H8WC···O3Wii 0.85 2.06 2.856 (8) 155
O8W—H8WD···Cl2iv 0.85 2.40 3.204 (6) 157
O9W—H9WA···O10Wv 0.86 1.93 2.756 (6) 159
O9W—H9WB···O1Wvi 0.86 2.11 2.878 (5) 147
O10W—H10A···Cl1vii 0.88 2.27 3.141 (4) 171
O10W—H10B···Cl1viii 0.87 2.38 3.225 (4) 165

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+1, −y+1, −z; (vi) x, y+1, z−1; (vii) x, y, z−1; (viii) −x+1, −y, −z+1.

References

  1. Bhat, S. S. & Revankar, V. K. (2016). J. Chem. Crystallogr. 46, 9–14.
  2. Boyer, J. L., Polyansky, D. E., Szalda, D. J., Zong, R., Thummel, R. P. & Fujita, E. (2011). Angew. Chem. Int. Ed. 50, 12600–12604. [DOI] [PubMed]
  3. Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2012). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.
  5. Chen, G.-J., Wang, Z.-G., Kou, Y.-Y., Tian, J.-L. & Yan, S.-P. (2013). J. Inorg. Biochem. 122, 49–56. [DOI] [PubMed]
  6. Chowdhury, A. D., Das, A. K. I., Mobin, S. M. & Lahiri, G. K. (2011). Inorg. Chem. 50, 1775–1785. [DOI] [PubMed]
  7. Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Duan, L., Manbeck, G. F., Kowalczyk, M., Szalda, D. J., Muckerman, J. T., Himeda, Y. & Fujita, E. (2016). Inorg. Chem. 55, 4582–4594. [DOI] [PubMed]
  10. Dutta, R., Akhuli, B. & Ghosh, P. (2015). Dalton Trans. 44, 15075–15078. [DOI] [PubMed]
  11. Fernandes, R. R., Kirillov, A. M., da Silva, M. F. C. G., Ma, Z., da Silva, J. A. L., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2008). Cryst. Growth Des. 8, 782–785.
  12. Figgis, B., Kucharski, E. & White, A. (1983). Aust. J. Chem. 36, 1563–1571.
  13. Fu, W.-W., Kuang, D.-Z., Zhang, F.-X., Liu, Y., Li, W. & Kuang, Y.-F. (2013). Chin. J. Inorg. Chem. 29, 654–658.
  14. Ganguly, S. & Mondal, R. (2015). Cryst. Growth Des. 15, 2211–2222.
  15. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  16. Han, L.-L., Hu, T.-P., Chen, J.-S., Li, Z.-H., Wang, X.-P., Zhao, Y.-Q., Li, X.-Y. & Sun, D. (2014). Dalton Trans. 43, 8774–8780. [DOI] [PubMed]
  17. Holst, M. van, Le Pevelen, D. & Aldrich-Wright, J. (2008). Eur. J. Inorg. Chem. pp. 4608–4615.
  18. Hundal, G., Hundal, M. S., Hwang, Y. K. & Chang, J. S. (2014). Cryst. Growth Des. 14, 172–176.
  19. Indumathy, R., Kanthimathi, M., Weyhermuller, T. & Nair, B. U. (2008). Polyhedron, 27, 3443–3450.
  20. Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486.
  21. Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.
  22. Inumaru, K., Kikudome, T., Fukuoka, H. & Yamanaka, S. (2008). J. Am. Chem. Soc. 130, 10038–10039. [DOI] [PubMed]
  23. Jitsukawa, K., Hata, T., Yamamoto, T., Kano, K., Masuda, H. & Einaga, H. (1994). Chem. Lett. 23, 1169–1172.
  24. Kepert, C., Lu, W., Skelton, B. & White, A. (1994). Aust. J. Chem. 47, 365–384.
  25. Kepert, C. J., Semenova, L. I., Wei-Min, L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 481–496.
  26. Kou, Y.-Y., Gu, W., Liu, H., Ma, X.-F., Li, D.-D. & Yan, S.-P. (2008). Acta Sci. Nat. Univ. Nankaiensis, 41, 19–25.
  27. Kumar, R., Pandey, A. K., Sharma, M. K., Panicker, L. V., Sodaye, S., Suresh, G., Ramagiri, S. V., Bellare, J. R. & Goswami, A. (2011). J. Phys. Chem. B, 115, 5856–5867. [DOI] [PubMed]
  28. Lakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807–3811. [DOI] [PubMed]
  29. Li, Y., Jiang, L., Feng, X.-L. & Lu, T.-B. (2008). Cryst. Growth Des. 8, 3689–3694.
  30. Logacheva, N. M., Baulin, V. E., Tsivadze, A. Y., Pyatova, E. N., Ivanova, I. S., Velikodny, Y. A. & Chernyshev, V. V. (2009). Dalton Trans. pp. 2482–2489. [DOI] [PubMed]
  31. Mahendiran, D., Kumar, R. S., Viswanathan, V., Velmurugan, D. & Rahiman, A. K. (2016). Dalton Trans. 45, 7794–7814. [DOI] [PubMed]
  32. McMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 3207–3217.
  33. Padhi, S. K., Sahu, R. & Manivannan, V. (2010). Polyhedron, 29, 709–714.
  34. Pati, A., Athilakshmi, J., Ramkumar, V. & Chand, D. K. (2014). CrystEngComm, 16, 6827–6830.
  35. Pruchnik, F. P., Robert, F., Jeannin, Y. & Jeannin, S. (1996). Inorg. Chem. 35, 4261–4263. [DOI] [PubMed]
  36. Ris, D. P., Schneider, G. E., Ertl, C. D., Kohler, E., Müntener, T., Neuburger, M., Constable, E. C. & Housecroft, C. E. (2016). J. Organomet. Chem. 812, 272–279.
  37. Safin, D. A., Szell, P. M. J., Keller, A., Korobkov, I., Bryce, D. L. & Murugesu, M. (2015). New J. Chem. 39, 7147–7152.
  38. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  39. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  40. Wang, J. & Hanan, G. S. (2005). Synlett, pp. 1251–1254.
  41. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007095/lh5845sup1.cif

e-73-00871-sup1.cif (431.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007095/lh5845Isup2.hkl

e-73-00871-Isup2.hkl (586.3KB, hkl)

CCDC reference: 1498201

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES