Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 26;73(Pt 6):876–879. doi: 10.1107/S2056989017007381

Crystal structure of 5-chloro-N 1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine

Yegor Yartsev a,*, Vitaliy Palchikov b, Alexandr Gaponov b, Svitlana Shishkina c
PMCID: PMC5458314  PMID: 28638649

The title compound, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, which are far from planar. The aryl rings are inclined to one another by 58.77 (9)° in mol­ecule A and by 36.95 (8)° in mol­ecule B.

Keywords: crystal structure, pyrazol-3-amine, steric repulsion, hydrogen bonding

Abstract

The title compound, C15H13ClN4, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, which are far from planar as a result of steric repulsion between the rings. The benzene and phenyl rings are inclined to the central pyrazole ring by 46.64 (10) and 17.87 (10)° in mol­ecule A, and by 40.02 (10) and 14.18 (10)° in mol­ecule B. The aromatic rings are inclined to one another by 58.77 (9)° in mol­ecule A, and 36.95 (8)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked by two pairs of N—H⋯N hydrogen bonds forming AB dimers. These are further linked by a fifth N—H⋯N hydrogen bond, forming tetra­mer-like units that stack along the a-axis direction, forming columns, which are in turn linked by C—H⋯π inter­actions, forming layers parallel to the ac plane.

Chemical context  

The synthesis and reactions of benzodiazepin-2-ones and thio­nes have been studied in detail by our group (Gaponov et al., 2016; Okovytyy et al., 2009). The mechanism of ethanol-assisted hydrazinolysis of 1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes (Fig. 1) has been modelled by quantum-chemical calculations (Okovytyy et al., 2009). However, instead of obtaining the previously suggested products (IIIa) and (IIIb), compounds N 1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine (Ia) and its 5-chloro-derivative (Ib) were prepared from 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes (IIa) and (IIb) and hydrazine hydrate (Fig. 1). Amino­pirazoles are useful building blocks for the synthesis of new pharmaceutical agents (Sakya et al., 2006) and agrochemicals (Yuan et al., 2013), due to their notable biological properties (Peng et al., 2013; Zhang et al., 2014; Ansari et al., 2017). The crystal structure analysis of the title compound, (Ib), was undertaken as it may help to provide a better understanding of the properties of amino­pirazoles.

Figure 1.

Figure 1

Synthesis scheme for the title compound (Ib).

Structural commentary  

There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound (Ib), as illustrated in Fig. 2. They are composed of three unsaturated rings, two of which are connected by a bridging amino group. The mol­ecules are not planar as a result of steric repulsion between the rings, which results in some disturbance of the conjugation. Thus, the presence of a shortened intra­molecular contact C2 ⋯ H11 [2.80 Å in mol­ecule A and 2.81 Å in mol­ecule B as compared with the sum of their van der Waals radii of 2.87 Å (Zefirov, 1997)], indicates the presence of repulsion between the pyrazole ring and the phenyl substituent. The steric strain is compensated for by the elongation of the C1—C10 bond: 1.486 (2) Å in mol­ecule A and 1.482 (2) Å in mol­ecule B compared to a mean bond length of 1.470 Å for a typical conjugated system (Bürgi & Dunitz, 1994). In addition, the C2—C1—C10 bond angle increases to 130.6 (2)° in both mol­ecules, and the pyrazole and phenyl rings are twisted with respect to each other, with torsion angle C2—C1—C10—C11 being 18.1 (3)° in mol­ecule A and −14.3 (3)° in mol­ecule B.graphic file with name e-73-00876-scheme1.jpg

Figure 2.

Figure 2

The mol­ecular structure of the two independent mol­ecules (A and B) of compound (Ib), with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

There is an even stronger repulsion between the amino­chloro­phenyl and pyrazole rings linked through the bridging amino group [shortened intra­molecular contacts are: C2⋯C9 = 3.25 Å (A), 3.21 Å (B); C2⋯H9 = 2.75 Å (A), 2.67 Å (B); H3⋯H4 = 2.28 Å for both mol­ecules; C3⋯H9 = 2.76 Å for both mol­ecules] leads to a greater twist of these unsaturated rings relative to each other; the dihedral angle between the mean planes N1/N2/C1–C3 and C4–C9 is 46.6 (1)° for mol­ecule A and 40.0 (1)° for B. Moreover, the N3—C3 bonds [1.395 (3) Å in A and 1.394 (2) Å in B; mean value of 1.339 Å] and the N3—C4 bonds [1.408 (2) Å in A, 1.406 (2) Å in B; mean value of 1.353 Å] are elongated with respect to the mean values for such bonds, and the C2=C3—N3 bond angle is increased to 130.3 (2)° in A and 130.5 (2)° in B.

The bridging nitro­gen atom, N3, has an almost planar configuration (the bond-angle sum is 356° in A and 358° in B). The N4H2 amino group has a pyramidal configuration (bond-angle sum is 329° in A and 325° in B). The C5—N4 bond, 1.422 (3) Å in A and 1.425 (3) Å in B, is elongated in comparison with the mean value of 1.394 Å; this elongation is probably caused by the involvement of the nitro­gen lone pair in hydrogen bonding (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C10A–C15A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯N4B i 0.87 (2) 2.44 (2) 3.127 (3) 136 (2)
N3A—H3NA⋯N1B i 0.82 (2) 2.17 (2) 2.973 (2) 168 (2)
N2B—H2NB⋯N4A i 0.87 (2) 2.50 (2) 3.159 (3) 134 (2)
N3B—H3NB⋯N1A i 0.83 (2) 2.20 (2) 3.019 (2) 169 (2)
N4B—H4ND⋯N1A ii 0.89 (2) 2.43 (2) 3.207 (3) 146 (2)
C11B—H11BCg3iii 0.93 2.97 3.541 (2) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked by two pairs of N—H⋯N hydrogen bonds, forming AB dimers (Table 1 and Fig. 3). The dimers are linked by a fifth N—H⋯N hydrogen bond to form a tetra­mer-like arrangement (Table 1 and Fig. 3). These stack up the a-axis direction, forming columns (Table 2 and Fig. 4), which are linked by C—H⋯π inter­actions, forming layers parallel to the ac plane.

Figure 3.

Figure 3

A view of the hydrogen-bonded (dashed lines; see Table 1) tetra­meric units of compound (Ib). For clarity, only H atoms involved in hydrogen bonding have been included.

Table 2. Experimental details.

Crystal data
Chemical formula C15H13ClN4
M r 284.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.0709 (17), 20.322 (6), 13.886 (4)
β (°) 102.776 (18)
V3) 2771.7 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.20 × 0.10 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012).
T min, T max 0.649, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15157, 4795, 3132
R int 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.102, 0.94
No. of reflections 4795
No. of parameters 393
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.21

Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2012), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Figure 4.

Figure 4

A view along the a axis of the crystal packing of compound (Ib). The N—H⋯N hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as blue arrows (see Table 1). For clarity, only the H atoms involved in these inter­actions have been included.

Database survey  

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016) for N,5-diphenyl-1H-pyrazol-3-amine (S1; Fig. 5) gave only two relevant hits, viz. methyl 3-nitro-4-[(5-phenyl-1H-pyrazol-3-yl)amino]­benzo­ate (DIKSOG; Portilla et al., 2007) and N-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine (KUTFAH; Doumbia et al., 2010). They differ from compound (Ib) in the substituents on one of the aromatic rings (see Fig. 5). The mol­ecule of DIKSOG is practically planar, probably owing to the formation of intra­molecular N—H⋯O and C—H⋯N hydrogen bonds. In compound KUTFAH, while the phenyl ring is almost coplanar with the pyrazole ring (dihedral angle is ca 3.68° cf. 2.15° in DIKSOG), the o-amino­phenyl ring is inclined to the pyrazole ring by ca 64.03° (cf. 5.61° in DIKSOG). This conformation is similar to that of compound (Ib). In the crystal of DIKSOG, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers, while in the crystal of KUTFAH, mol­ecules are linked into chains by N—H⋯N hydrogen bonds.

Figure 5.

Figure 5

CSD search substructure S1, and relevant hits, KUTFAH and DIKSOG.

Synthesis and crystallization  

The initial 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes (IIa) and (IIb) were synthesized from the corres­ponding 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepin-2-ones according to the procedure described previously (Solomko et al., 1990). The synthesis of the title compound (Ib) is illustrated in Fig. 1.

General procedure:

Hydrazine hydrate (0.5 ml, 85% aq. solution) was added to a solution of the corresponding 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes, (IIa) or (IIb), (5 mmol) in ethanol (40 ml). The mixture was heated at reflux for 3 h (TLC monitoring), then the solvent and the excess of hydrazine hydrate were removed under reduced pressure. The residue was washed with small amounts of cold alcohol. Colourless crystals of (Ia) and (Ib) were grown by recrystallization of the crude product from ethanol solution.

Spectroscopic and analytical data for (I a ):

Yield 0.91 g, 73%; m.p. 415–417 K [415–417 K from ethanol in accordance with Essassi & Salem (1985)]. IR ν max (KBr): 3410–3220, 2970, 1605, 1545, 1505, 1260, 1030, 920, 860, 810 cm−1. 1H NMR (DMSO-d 6, 400 MHz): δ 4.91 (s, 2H, NH2), 6.16 (s, 1H, CH), 6.40–6.79 (m, 3H, ArH + NH), 7.03–7.95 (m, 7H, ArH), 12.42 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 251 [M + H] (18), 250 [M +] (100), 249 [M – H] (52), 234 (8), 233 (7), 221 (5), 219 (13), 132 (18), 131 (10), 130 (5), 125 (5), 119 (16), 104 (6), 103 (8), 102 (4), 92 (4), 91 (4), 77 (9). Analysis calculated for C15H14N4 (250.12): C, 71.98; H, 5.64; N, 22.38; found: C, 72.12; H, 5.54; N, 22.26.

Spectroscopic and analytical data for (I b ):

Yield 0.99 g, 70%; m.p. 468–470 K. IR ν max (KBr): 3400–3210, 2975, 1600, 1560, 1500, 1250, 1145, 1000, 960, 920, 880, 855, 800 cm−1. 1H NMR (Solv, MHz): δ 4.95 (s, 2H, NH2), 6.27 (s, 1H, CH), 6.57–6.66 (m, 2H, ArH + NH), 7.30–7.79 (m, 7H, ArH), 12.49 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 285 [M + H] (34), 284 [M +] (100), 283 [M – H] (44), 269 (6), 268 (10), 267 (12), 255 (8), 253 (12), 168 (8), 167 (8), 166 (25), 165 (13), 164 (7), 131 (7), 119 (26), 104 (8), 103 (7), 102 (7), 91 (6), 77 (13). Analysis calculated for C15H13ClN4 (284.08): C, 63.27; H, 4.60; N, 19.68; found: C, 63.08; H, 4.71; N, 19.73.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All of the H atoms could be located from difference-Fourier maps. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.93 Å with 1.2U eq(C). The N-bound H atoms were located in difference-Fourier maps and freely refined.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017007381/su5369sup1.cif

e-73-00876-sup1.cif (770.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007381/su5369Isup2.hkl

e-73-00876-Isup2.hkl (381.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007381/su5369Isup3.cml

CCDC reference: 703162

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C15H13ClN4 F(000) = 1184
Mr = 284.74 Dx = 1.365 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.0709 (17) Å Cell parameters from 5031 reflections
b = 20.322 (6) Å θ = 2.0–31.5°
c = 13.886 (4) Å µ = 0.27 mm1
β = 102.776 (18)° T = 293 K
V = 2771.7 (12) Å3 Parallelepiped, colourless
Z = 8 0.20 × 0.10 × 0.10 mm

Data collection

Agilent Xcalibur Sapphire3 diffractometer 4795 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3132 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1 Rint = 0.027
ω–scan θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012). h = −11→11
Tmin = 0.649, Tmax = 1.000 k = −24→24
15157 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: mixed
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3
4795 reflections (Δ/σ)max = 0.001
393 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 0.49786 (7) 0.24353 (3) 0.83066 (4) 0.0730 (2)
Cl1B 0.96923 (7) 0.24226 (3) 0.84367 (4) 0.0776 (2)
N1A 0.21769 (16) 0.51489 (7) 0.60279 (10) 0.0457 (5)
N2A 0.18787 (17) 0.55321 (8) 0.67697 (11) 0.0457 (5)
N3A 0.39006 (18) 0.44024 (8) 0.58852 (12) 0.0492 (6)
N4A 0.55691 (19) 0.39198 (9) 0.47173 (13) 0.0511 (6)
C1A 0.27518 (18) 0.54304 (9) 0.76473 (12) 0.0415 (6)
C2A 0.36726 (19) 0.49617 (9) 0.74824 (12) 0.0461 (6)
C3A 0.32764 (18) 0.48054 (9) 0.64684 (12) 0.0411 (6)
C4A 0.46130 (18) 0.38147 (8) 0.61844 (12) 0.0403 (6)
C5A 0.54902 (18) 0.35744 (9) 0.55934 (13) 0.0421 (6)
C6A 0.61960 (19) 0.29883 (9) 0.58605 (14) 0.0518 (7)
C7A 0.6070 (2) 0.26396 (10) 0.66977 (15) 0.0580 (7)
C8A 0.5203 (2) 0.28827 (9) 0.72658 (13) 0.0509 (7)
C9A 0.44765 (19) 0.34626 (9) 0.70194 (12) 0.0460 (6)
C10A 0.26315 (19) 0.57736 (8) 0.85694 (12) 0.0424 (6)
C11A 0.3742 (2) 0.57789 (10) 0.93726 (13) 0.0539 (7)
C12A 0.3656 (2) 0.60944 (11) 1.02456 (15) 0.0625 (8)
C13A 0.2459 (2) 0.64019 (10) 1.03356 (15) 0.0594 (8)
C14A 0.1350 (2) 0.63963 (10) 0.95502 (15) 0.0604 (8)
C15A 0.1432 (2) 0.60866 (9) 0.86679 (14) 0.0533 (7)
N1B 0.72238 (17) 0.52522 (8) 0.62179 (11) 0.0516 (5)
N2B 0.69078 (18) 0.56217 (9) 0.69663 (11) 0.0513 (6)
N3B 0.88215 (17) 0.44361 (8) 0.60966 (12) 0.0488 (6)
N4B 1.04647 (18) 0.39335 (9) 0.49141 (13) 0.0510 (6)
C1B 0.76350 (18) 0.54428 (9) 0.78701 (12) 0.0413 (6)
C2B 0.84788 (18) 0.49384 (9) 0.77092 (12) 0.0451 (6)
C3B 0.81946 (18) 0.48419 (9) 0.66735 (12) 0.0423 (6)
C4B 0.94813 (18) 0.38342 (9) 0.63783 (12) 0.0420 (6)
C5B 1.03456 (18) 0.35833 (9) 0.57797 (13) 0.0441 (6)
C6B 1.0996 (2) 0.29824 (9) 0.60360 (14) 0.0543 (7)
C7B 1.0828 (2) 0.26284 (10) 0.68562 (15) 0.0600 (8)
C8B 0.9971 (2) 0.28790 (10) 0.74217 (14) 0.0539 (7)
C9B 0.93023 (19) 0.34753 (9) 0.71968 (13) 0.0480 (6)
C10B 0.75168 (17) 0.57770 (9) 0.87960 (12) 0.0403 (6)
C11B 0.8117 (2) 0.54986 (10) 0.97074 (13) 0.0515 (7)
C12B 0.8070 (2) 0.58188 (11) 1.05840 (14) 0.0563 (7)
C13B 0.74198 (19) 0.64222 (10) 1.05668 (14) 0.0527 (7)
C14B 0.6804 (2) 0.67007 (10) 0.96768 (15) 0.0573 (7)
C15B 0.6852 (2) 0.63790 (9) 0.87961 (14) 0.0517 (7)
H2NA 0.120 (2) 0.5806 (10) 0.6599 (14) 0.059 (6)*
H3NA 0.3590 (18) 0.4435 (9) 0.5292 (13) 0.042 (5)*
H2A 0.44000 0.47860 0.79430 0.0550*
H4NB 0.631 (2) 0.3782 (9) 0.4504 (15) 0.058 (6)*
H4NA 0.563 (2) 0.4346 (12) 0.4845 (16) 0.076 (7)*
H6A 0.67640 0.28270 0.54700 0.0620*
H7A 0.65550 0.22520 0.68740 0.0700*
H9A 0.39010 0.36150 0.74100 0.0550*
H11A 0.45470 0.55700 0.93240 0.0650*
H12A 0.44070 0.60990 1.07740 0.0750*
H13A 0.24060 0.66100 1.09220 0.0710*
H14A 0.05440 0.66000 0.96080 0.0720*
H15A 0.06800 0.60880 0.81400 0.0640*
H2B 0.91050 0.47090 0.81830 0.0540*
H2NB 0.624 (2) 0.5897 (10) 0.6809 (15) 0.059 (6)*
H3NB 0.8595 (18) 0.4500 (9) 0.5492 (14) 0.045 (5)*
H6B 1.15590 0.28140 0.56470 0.0650*
H4ND 1.063 (2) 0.4357 (11) 0.5059 (15) 0.065 (7)*
H7B 1.12810 0.22320 0.70220 0.0720*
H4NC 1.116 (2) 0.3777 (10) 0.4691 (15) 0.062 (6)*
H9B 0.87370 0.36350 0.75900 0.0580*
H11B 0.85550 0.50940 0.97280 0.0620*
H12B 0.84760 0.56270 1.11850 0.0680*
H13B 0.74000 0.66370 1.11550 0.0630*
H14B 0.63570 0.71020 0.96620 0.0690*
H15B 0.64320 0.65700 0.81980 0.0620*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.1159 (5) 0.0493 (3) 0.0465 (3) −0.0072 (3) 0.0021 (3) 0.0085 (2)
Cl1B 0.1147 (5) 0.0600 (4) 0.0563 (3) 0.0078 (3) 0.0148 (3) 0.0152 (3)
N1A 0.0554 (9) 0.0491 (9) 0.0332 (8) 0.0080 (8) 0.0110 (7) −0.0007 (7)
N2A 0.0530 (10) 0.0473 (9) 0.0363 (8) 0.0095 (9) 0.0087 (8) −0.0029 (7)
N3A 0.0674 (11) 0.0510 (10) 0.0297 (8) 0.0155 (9) 0.0120 (8) 0.0032 (7)
N4A 0.0593 (11) 0.0478 (11) 0.0510 (10) 0.0010 (9) 0.0224 (9) −0.0045 (8)
C1A 0.0506 (11) 0.0394 (10) 0.0353 (9) −0.0022 (9) 0.0110 (9) 0.0019 (8)
C2A 0.0547 (11) 0.0487 (11) 0.0330 (9) 0.0085 (10) 0.0059 (9) 0.0024 (8)
C3A 0.0503 (11) 0.0394 (10) 0.0349 (9) 0.0028 (9) 0.0122 (9) 0.0033 (8)
C4A 0.0456 (10) 0.0374 (10) 0.0349 (9) 0.0002 (9) 0.0025 (8) −0.0057 (8)
C5A 0.0448 (10) 0.0397 (10) 0.0403 (10) −0.0049 (9) 0.0065 (8) −0.0070 (8)
C6A 0.0520 (12) 0.0440 (11) 0.0577 (12) 0.0048 (10) 0.0085 (10) −0.0110 (10)
C7A 0.0652 (14) 0.0389 (11) 0.0615 (13) 0.0079 (11) −0.0037 (11) −0.0020 (10)
C8A 0.0666 (13) 0.0386 (11) 0.0404 (10) −0.0064 (10) −0.0032 (10) −0.0010 (8)
C9A 0.0557 (11) 0.0439 (11) 0.0363 (10) −0.0007 (10) 0.0059 (9) −0.0035 (8)
C10A 0.0543 (11) 0.0378 (10) 0.0365 (9) −0.0060 (9) 0.0130 (9) −0.0006 (8)
C11A 0.0550 (12) 0.0610 (13) 0.0452 (11) −0.0021 (11) 0.0103 (10) −0.0064 (10)
C12A 0.0704 (14) 0.0710 (14) 0.0434 (12) −0.0096 (12) 0.0070 (11) −0.0121 (10)
C13A 0.0803 (15) 0.0569 (13) 0.0451 (12) −0.0094 (12) 0.0224 (12) −0.0136 (10)
C14A 0.0703 (14) 0.0598 (13) 0.0566 (13) 0.0066 (12) 0.0261 (12) −0.0080 (11)
C15A 0.0580 (12) 0.0562 (12) 0.0448 (11) 0.0044 (11) 0.0096 (10) −0.0028 (9)
N1B 0.0612 (10) 0.0596 (10) 0.0348 (8) 0.0172 (9) 0.0124 (8) 0.0032 (7)
N2B 0.0591 (11) 0.0596 (11) 0.0360 (9) 0.0234 (9) 0.0123 (8) 0.0060 (8)
N3B 0.0626 (11) 0.0525 (10) 0.0327 (8) 0.0131 (8) 0.0135 (8) 0.0021 (8)
N4B 0.0554 (11) 0.0484 (11) 0.0526 (10) 0.0004 (9) 0.0193 (9) −0.0085 (8)
C1B 0.0440 (10) 0.0442 (10) 0.0359 (9) 0.0008 (9) 0.0090 (8) 0.0053 (8)
C2B 0.0483 (11) 0.0489 (11) 0.0360 (10) 0.0101 (9) 0.0047 (8) 0.0016 (8)
C3B 0.0456 (11) 0.0437 (10) 0.0384 (10) 0.0034 (9) 0.0112 (9) 0.0040 (8)
C4B 0.0437 (10) 0.0413 (10) 0.0373 (10) 0.0005 (9) 0.0010 (8) −0.0048 (8)
C5B 0.0446 (10) 0.0452 (11) 0.0408 (10) −0.0032 (9) 0.0061 (8) −0.0102 (9)
C6B 0.0586 (12) 0.0474 (12) 0.0565 (12) 0.0068 (10) 0.0117 (10) −0.0089 (10)
C7B 0.0703 (14) 0.0457 (12) 0.0584 (13) 0.0114 (11) 0.0020 (11) −0.0052 (10)
C8B 0.0671 (13) 0.0460 (12) 0.0435 (10) −0.0013 (11) 0.0016 (10) −0.0017 (9)
C9B 0.0549 (12) 0.0472 (11) 0.0401 (10) 0.0027 (10) 0.0066 (9) −0.0033 (9)
C10B 0.0416 (10) 0.0427 (10) 0.0380 (9) −0.0035 (9) 0.0119 (8) 0.0025 (8)
C11B 0.0607 (12) 0.0507 (12) 0.0423 (11) 0.0063 (10) 0.0096 (10) 0.0021 (9)
C12B 0.0603 (13) 0.0687 (14) 0.0383 (10) −0.0018 (12) 0.0073 (10) 0.0015 (10)
C13B 0.0583 (12) 0.0567 (12) 0.0459 (11) −0.0104 (11) 0.0178 (10) −0.0134 (10)
C14B 0.0655 (13) 0.0531 (12) 0.0565 (13) 0.0059 (11) 0.0206 (11) −0.0018 (10)
C15B 0.0596 (12) 0.0520 (12) 0.0451 (11) 0.0099 (10) 0.0148 (10) 0.0075 (9)

Geometric parameters (Å, º)

Cl1A—C8A 1.764 (2) C7A—H7A 0.9300
Cl1B—C8B 1.761 (2) C9A—H9A 0.9300
N1A—C3A 1.337 (2) C11A—H11A 0.9300
N1A—N2A 1.376 (2) C12A—H12A 0.9300
N2A—C1A 1.352 (2) C13A—H13A 0.9300
N3A—C4A 1.408 (2) C14A—H14A 0.9300
N3A—C3A 1.395 (2) C15A—H15A 0.9300
N4A—C5A 1.422 (3) C1B—C2B 1.381 (3)
C1A—C10A 1.486 (2) C1B—C10B 1.482 (2)
C1A—C2A 1.383 (3) C2B—C3B 1.417 (2)
C2A—C3A 1.412 (2) N2B—H2NB 0.87 (2)
N2A—H2NA 0.87 (2) N3B—H3NB 0.830 (19)
N3A—H3NA 0.817 (18) C4B—C9B 1.395 (3)
C4A—C9A 1.395 (2) C4B—C5B 1.424 (3)
N4A—H4NB 0.91 (2) N4B—H4ND 0.89 (2)
N4A—H4NA 0.88 (2) N4B—H4NC 0.89 (2)
C4A—C5A 1.419 (3) C5B—C6B 1.394 (3)
C5A—C6A 1.395 (3) C6B—C7B 1.389 (3)
C6A—C7A 1.391 (3) C7B—C8B 1.386 (3)
C7A—C8A 1.391 (3) C8B—C9B 1.388 (3)
C8A—C9A 1.389 (3) C10B—C11B 1.396 (3)
C10A—C15A 1.398 (3) C10B—C15B 1.395 (3)
C10A—C11A 1.394 (3) C11B—C12B 1.390 (3)
C11A—C12A 1.391 (3) C12B—C13B 1.388 (3)
C12A—C13A 1.388 (3) C13B—C14B 1.376 (3)
C13A—C14A 1.378 (3) C14B—C15B 1.397 (3)
C14A—C15A 1.396 (3) C2B—H2B 0.9300
N1B—N2B 1.375 (2) C6B—H6B 0.9300
N1B—C3B 1.333 (2) C7B—H7B 0.9300
C2A—H2A 0.9300 C9B—H9B 0.9300
N2B—C1B 1.355 (2) C11B—H11B 0.9300
N3B—C4B 1.406 (2) C12B—H12B 0.9300
N3B—C3B 1.394 (2) C13B—H13B 0.9300
N4B—C5B 1.425 (3) C14B—H14B 0.9300
C6A—H6A 0.9300 C15B—H15B 0.9300
N2A—N1A—C3A 104.40 (14) C10A—C15A—H15A 120.00
N1A—N2A—C1A 112.47 (15) C14A—C15A—H15A 120.00
C3A—N3A—C4A 126.32 (15) N2B—C1B—C2B 105.97 (15)
N2A—C1A—C2A 106.40 (15) N2B—C1B—C10B 123.35 (17)
N2A—C1A—C10A 122.97 (16) C2B—C1B—C10B 130.61 (16)
C2A—C1A—C10A 130.62 (16) C1B—C2B—C3B 105.88 (15)
C1A—C2A—C3A 105.54 (16) N1B—N2B—H2NB 117.3 (14)
N1A—N2A—H2NA 116.4 (13) C1B—N2B—H2NB 129.7 (14)
C1A—N2A—H2NA 131.1 (13) N1B—C3B—N3B 118.36 (15)
N1A—C3A—N3A 118.34 (15) C3B—N3B—C4B 126.95 (16)
C3A—N3A—H3NA 114.6 (13) C3B—N3B—H3NB 115.5 (13)
C4A—N3A—H3NA 115.0 (13) C4B—N3B—H3NB 115.1 (13)
N1A—C3A—C2A 111.19 (16) N1B—C3B—C2B 110.95 (16)
N3A—C3A—C2A 130.28 (17) N3B—C3B—C2B 130.52 (17)
H4NB—N4A—H4NA 110.1 (18) H4ND—N4B—H4NC 107.7 (19)
C5A—C4A—C9A 119.52 (16) C5B—C4B—C9B 119.60 (17)
C5A—N4A—H4NA 109.1 (14) C5B—N4B—H4NC 109.7 (13)
N3A—C4A—C5A 117.59 (15) N3B—C4B—C5B 117.48 (16)
N3A—C4A—C9A 122.89 (16) N3B—C4B—C9B 122.91 (17)
C5A—N4A—H4NB 109.5 (13) C5B—N4B—H4ND 109.8 (13)
N4A—C5A—C4A 119.00 (16) N4B—C5B—C4B 119.34 (16)
N4A—C5A—C6A 121.84 (17) N4B—C5B—C6B 122.04 (17)
C4A—C5A—C6A 119.08 (16) C4B—C5B—C6B 118.54 (17)
C5A—C6A—C7A 121.47 (18) C5B—C6B—C7B 121.84 (18)
C6A—C7A—C8A 118.55 (18) C6B—C7B—C8B 118.58 (19)
C7A—C8A—C9A 121.61 (17) C7B—C8B—C9B 121.69 (18)
Cl1A—C8A—C7A 119.48 (15) Cl1B—C8B—C7B 119.31 (16)
Cl1A—C8A—C9A 118.89 (15) Cl1B—C8B—C9B 118.99 (15)
C4A—C9A—C8A 119.77 (17) C4B—C9B—C8B 119.74 (17)
C1A—C10A—C11A 119.28 (17) C1B—C10B—C11B 119.94 (17)
C1A—C10A—C15A 122.31 (16) C1B—C10B—C15B 122.19 (16)
C11A—C10A—C15A 118.41 (16) C11B—C10B—C15B 117.84 (16)
C10A—C11A—C12A 120.49 (19) C10B—C11B—C12B 120.82 (19)
C11A—C12A—C13A 120.58 (19) C11B—C12B—C13B 120.38 (18)
C12A—C13A—C14A 119.55 (19) C12B—C13B—C14B 119.74 (18)
C13A—C14A—C15A 120.23 (19) C13B—C14B—C15B 119.86 (19)
C10A—C15A—C14A 120.73 (18) C10B—C15B—C14B 121.34 (17)
N2B—N1B—C3B 104.53 (14) C1B—C2B—H2B 127.00
C3A—C2A—H2A 127.00 C3B—C2B—H2B 127.00
C1A—C2A—H2A 127.00 C5B—C6B—H6B 119.00
N1B—N2B—C1B 112.66 (16) C7B—C6B—H6B 119.00
C3B—N3B—C4B 126.95 (16) C6B—C7B—H7B 121.00
C5A—C6A—H6A 119.00 C8B—C7B—H7B 121.00
C7A—C6A—H6A 119.00 C4B—C9B—H9B 120.00
C8A—C7A—H7A 121.00 C8B—C9B—H9B 120.00
C6A—C7A—H7A 121.00 C10B—C11B—H11B 120.00
C8A—C9A—H9A 120.00 C12B—C11B—H11B 120.00
C4A—C9A—H9A 120.00 C11B—C12B—H12B 120.00
C10A—C11A—H11A 120.00 C13B—C12B—H12B 120.00
C12A—C11A—H11A 120.00 C12B—C13B—H13B 120.00
C11A—C12A—H12A 120.00 C14B—C13B—H13B 120.00
C13A—C12A—H12A 120.00 C13B—C14B—H14B 120.00
C14A—C13A—H13A 120.00 C15B—C14B—H14B 120.00
C12A—C13A—H13A 120.00 C10B—C15B—H15B 119.00
C13A—C14A—H14A 120.00 C14B—C15B—H15B 119.00
C15A—C14A—H14A 120.00
C3A—N1A—N2A—C1A −0.5 (2) C3B—N1B—N2B—C1B −1.2 (2)
N2A—N1A—C3A—N3A −175.01 (16) N2B—N1B—C3B—N3B −174.38 (17)
N2A—N1A—C3A—C2A 0.5 (2) N2B—N1B—C3B—C2B 1.2 (2)
N1A—N2A—C1A—C2A 0.2 (2) N1B—N2B—C1B—C2B 0.7 (2)
N1A—N2A—C1A—C10A −178.67 (16) N1B—N2B—C1B—C10B 178.09 (17)
C4A—N3A—C3A—N1A −149.84 (18) C4B—N3B—C3B—N1B −156.03 (18)
C4A—N3A—C3A—C2A 35.7 (3) C4B—N3B—C3B—C2B 29.4 (3)
C3A—N3A—C4A—C5A −162.61 (18) C3B—N3B—C4B—C5B −164.28 (18)
C3A—N3A—C4A—C9A 18.2 (3) C3B—N3B—C4B—C9B 16.9 (3)
N2A—C1A—C2A—C3A 0.1 (2) N2B—C1B—C2B—C3B 0.1 (2)
C10A—C1A—C2A—C3A 178.87 (19) C10B—C1B—C2B—C3B −177.05 (19)
N2A—C1A—C10A—C11A −163.29 (18) N2B—C1B—C10B—C11B 169.08 (19)
N2A—C1A—C10A—C15A 17.6 (3) N2B—C1B—C10B—C15B −12.8 (3)
C2A—C1A—C10A—C11A 18.1 (3) C2B—C1B—C10B—C11B −14.3 (3)
C2A—C1A—C10A—C15A −161.0 (2) C2B—C1B—C10B—C15B 163.8 (2)
C1A—C2A—C3A—N1A −0.4 (2) C1B—C2B—C3B—N1B −0.8 (2)
C1A—C2A—C3A—N3A 174.43 (19) C1B—C2B—C3B—N3B 174.08 (19)
N3A—C4A—C5A—N4A −2.4 (3) N3B—C4B—C5B—N4B −2.3 (3)
N3A—C4A—C5A—C6A −179.06 (17) N3B—C4B—C5B—C6B −179.09 (17)
C9A—C4A—C5A—N4A 176.89 (17) C9B—C4B—C5B—N4B 176.51 (17)
C9A—C4A—C5A—C6A 0.2 (3) C9B—C4B—C5B—C6B −0.3 (3)
N3A—C4A—C9A—C8A 179.43 (17) N3B—C4B—C9B—C8B 178.98 (18)
C5A—C4A—C9A—C8A 0.2 (3) C5B—C4B—C9B—C8B 0.2 (3)
N4A—C5A—C6A—C7A −177.36 (18) N4B—C5B—C6B—C7B −177.05 (19)
C4A—C5A—C6A—C7A −0.7 (3) C4B—C5B—C6B—C7B −0.4 (3)
C5A—C6A—C7A—C8A 0.9 (3) C5B—C6B—C7B—C8B 1.0 (3)
C6A—C7A—C8A—Cl1A 177.79 (15) C6B—C7B—C8B—Cl1B 177.56 (16)
C6A—C7A—C8A—C9A −0.4 (3) C6B—C7B—C8B—C9B −1.1 (3)
Cl1A—C8A—C9A—C4A −178.35 (14) Cl1B—C8B—C9B—C4B −178.18 (15)
C7A—C8A—C9A—C4A −0.1 (3) C7B—C8B—C9B—C4B 0.5 (3)
C1A—C10A—C11A—C12A −179.78 (18) C1B—C10B—C11B—C12B 177.10 (18)
C15A—C10A—C11A—C12A −0.6 (3) C15B—C10B—C11B—C12B −1.1 (3)
C1A—C10A—C15A—C14A 179.10 (17) C1B—C10B—C15B—C14B −177.09 (18)
C11A—C10A—C15A—C14A −0.1 (3) C11B—C10B—C15B—C14B 1.0 (3)
C10A—C11A—C12A—C13A 0.8 (3) C10B—C11B—C12B—C13B 0.2 (3)
C11A—C12A—C13A—C14A −0.3 (3) C11B—C12B—C13B—C14B 0.8 (3)
C12A—C13A—C14A—C15A −0.4 (3) C12B—C13B—C14B—C15B −0.8 (3)
C13A—C14A—C15A—C10A 0.5 (3) C13B—C14B—C15B—C10B −0.1 (3)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C10A–C15A ring.

D—H···A D—H H···A D···A D—H···A
N2A—H2NA···N4Bi 0.87 (2) 2.44 (2) 3.127 (3) 136 (2)
N3A—H3NA···N1Bi 0.82 (2) 2.17 (2) 2.973 (2) 168 (2)
N2B—H2NB···N4Ai 0.87 (2) 2.50 (2) 3.159 (3) 134 (2)
N3B—H3NB···N1Ai 0.83 (2) 2.20 (2) 3.019 (2) 169 (2)
N4B—H4ND···N1Aii 0.89 (2) 2.43 (2) 3.207 (3) 146 (2)
C11B—H11B···Cg3iii 0.93 2.97 3.541 (2) 121

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2.

References

  1. Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.
  2. Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.
  3. Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.
  4. Doumbia, M. L., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o841. [DOI] [PMC free article] [PubMed]
  5. Essassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755–758.
  6. Gaponov, A. A., Zlenko, E. T., Shishkina, S. V., Shishkin, O. V., Antypenko, O. M., Tretiakov, S. V. & Palchikov, V. A. (2016). Med. Chem. Res. 25, 1768–1780.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Okovytyy, S. I., Sviatenko, L., Gaponov, A., Tarabara, I., Kasyan, L. & Leszczynski, J. (2009). J. Phys. Chem. A, 113, 11376–11381. [DOI] [PubMed]
  10. Peng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963–2010. [DOI] [PubMed]
  11. Portilla, J., Mata, E. G., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o510–o513. [DOI] [PubMed]
  12. Sakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). Bioorg. Med. Chem. Lett. 16, 288–292. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Solomko, Z. F., Sharbatyan, P. A., Gaponov, A. A. & Avraraenko, V. I. (1990). Chem. Heterocycl. Compd. 26, 341–345.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Yuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236–4241. [DOI] [PubMed]
  18. Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.
  19. Zhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40–44. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989017007381/su5369sup1.cif

e-73-00876-sup1.cif (770.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007381/su5369Isup2.hkl

e-73-00876-Isup2.hkl (381.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007381/su5369Isup3.cml

CCDC reference: 703162

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES