Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 26;73(Pt 6):880–885. doi: 10.1107/S2056989017007472

Synthesis and crystal structures of three new benzotriazolylpropanamides

Donna S Amenta a, Phil Liebing b, Julia E Biero a, Robert J Sherman a, John W Gilje a,*, Frank T Edelmann b,*
PMCID: PMC5458315  PMID: 28638650

The crystal structures of benzotriazolylpropanamides are governed by π–π stacking between the benzotriazolyl residues and, in the case of primary amide NH2 groups, by N—H⋯O and N—H⋯N bridging.

Keywords: crystal structure, acryl­amide, benzotriazole, benzotriazolylpropanamide, hydrogen bond, π–π stacking

Abstract

The base-catalyzed Michael addition of 2-methyl­acryl­amide to benzotriazole afforded 3-(1H-benzotriazol-1-yl)-2-methyl­propanamide, C10H12N4O (1), in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl)-2-methyl­propanamide, C10H12N4O (2). In a similar manner, 3-(1H-benzotriazol-1-yl)-N,N-di­methyl­propanamide, C11H14N4O (3), was prepared from benzotriazole and N,N-di­methyl­acryl­amide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H⋯O and N—H⋯N bridges, as well as π–π inter­actions, while the mol­ecules of 3 are aggregated to simple π-dimers in the crystal.

Chemical context  

Di- and tridentate pyrazolyl-based ligands play an important role in the design of supra­molecular assemblies of metal complexes. Particularly notable among the large variety of such ligands are Trofimenko’s famous poly(pyrazol­yl)borates (‘scorpionates’) (Trofimenko, 1993, 2004; Marques et al., 2002; Paulo et al., 2004; Smith, 2008) and the poly(pyrazol­yl)methane ligands (Bassanetti et al., 2016; Bigmore et al., 2005; Krieck et al., 2016; Otero et al., 2013; Semeniuc & Reger, 2016). In a series of previous studies, we reported the synthesis and supra­molecular coordination chemistry of the simple, functionalized pyrazolyl-based ligand 3-(pyrazol-1-yl)prop­an­a­mide. This ligand is readily available in one step via base-catalyzed Michael addition of pyrazole to acryl­amide (Girma et al., 2008). In combination with various first- and second-row transition metals (e.g. Mn, Fe, Ru, Co, Ni), 3-(1H-pyrazol-1-yl)propanamide allows the design of a variety of hydrogen-bonded supra­molecular assemblies, including different chains, sheets, and three-dimensional arrays (D’Amico et al., 2015). As an additional advantage, the pyrazolylpropanamide ligand system can be easily modified either by attachment of substituents to the propanamide backbone (D’Amico et al., 2015) or by replacing the pyrazole ring by other N-heterocycles such as triazole (D’Amico et al., 2015; Wagner et al., 2012). In our most recent study, we investigated the structural influence of benzotriazolyl as a hydro­phobic functional group, which imparts amphiphilic character to the ligand and forms the basis of novel supra­molecular assemblies. In the course of this work, the solid-state structures of 3-(1H-benzotriazol-1-yl)-propane­amide (= ‘BTPA’) and of several first-row transition metal complexes (Mn, Co, Cu) derived thereof have been described (Wang et al., 2017). We report here the synthesis and structural characterization of three new potentially useful benzotriazolylpropanamide ligands.

The title compounds were prepared by base-catalyzed Michael addition of benzotriazole to methyl-substituted acryl­amides, namely 2-methyl­acryl­amide and N,N-di­methyl­acryl­amide. As shown in the reaction scheme (Fig. 1), benzotriazole exists in two tautomeric forms A and B. Spectroscopic data (UV, IR and 1H NMR) (Negri & Caminati, 1996; Nesmeyanov et al., 1969; Poznański et al., 2007) and dipole moment measurements (Mauret et al., 1974) revealed that the 1H-tautomer A is the predominant species at room temperature.

Figure 1.

Figure 1

Formation of the 1H- and 2H-benzotriazolylpropanamides 14 from benzotriazole.

The thermal reaction of benzotriazole with 2-methyl­acryl­amide was carried out in the usual manner (D’Amico et al., 2015; Wagner et al., 2012; Wang et al., 2017) in the presence of Triton B (= benzyl­tri­methyl­ammonium hydroxide) as basic catalyst. Repeated recrystallization of the crude product from ethanol afforded 3-(1H-benzotriazol-1-yl)-2-methyl­prop­an­amide (1) in 32% isolated yield. The compound was characterized through elemental analysis as well as IR and NMR (1H, 13C) spectroscopy. In the 13C NMR spectrum, the amide carbonyl C atom gives a characteristic resonance at 175.2 ppm. The formation of 1 as the main reaction product corresponds to the predominant presence of tautomer A in the starting benzotriazole. From the mother liquor of the recrystallization of 1, a small amount of colorless crystals could be isolated, which were found to be the isomer 3-(2H-benzotriazol-2-yl)-2-methyl­propanamide (2) resulting from the reaction of the 2H-tautomer B with 2-methyl­acryl­amide. Compound 2 could also be fully characterized by elemental analysis as well as IR and NMR data.graphic file with name e-73-00880-scheme1.jpg

In a similar manner, a reaction of benzotriazole with neat N,N-di­methyl­acryl­amide in the presence of Triton B afforded a yellow oil which was shown to be an approximate 2:1 mixture of 3 and 4. Once again, the main component was the Michael addition product resulting from the 1H-tautomer A of benzotriazole. Thus far, only isomer 3 could be isolated in pure form by recrystallization of the oily crude product from ethanol. The identity of 3-(1H-benzotriazol-1-yl)-N,N-di­methyl­propanamide 3 was confirmed by elemental analysis and spectroscopic data (IR, 1H and 13C NMR). In the 13C NMR spectrum, the NMe2 group gives rise to two resonances at δ 33.2 and 35.5 ppm, whereas the signal of the amide carbonyl C atom is found at δ 169.5 ppm.

Structural commentary  

Compounds 13 exist as well-defined monomeric mol­ecules in the crystal, without any solvent of crystallization (Figs. 2–4 ). The C=O separations are in a narrow range around 1.24 Å and are therefore virtually equal with those observed in related functionalized propanamides (Girma et al. 2008; Wagner et al. 2012; D’Amico et al. 2015; Wang et al. 2017). Thus, the C=O distance is not markedly influenced by hydrogen bonding, as there are N—H⋯O bridges in 1 and 2, but not in 3 (see Supra­molecular features section). The same applies to the amide C—N separation, which is around 1.33 Å in all compounds. The torsion angle C1—C2—C3—N between the amide group and the 1H-benzotriazol-1-yl residue is 71.0 (1)° (1) and −72.2 (2)° (3), respectively, which is close to the value observed in the unsubstituted BTPA (71.3 (1)°; Wang et al., 2017). By contrast, the same torsion angle in the 2H-benzotriazole-derived compound 2 is considerably smaller at 59.7 (1)°.

Figure 2.

Figure 2

The mol­ecular structure of 1 in the crystal. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

The mol­ecular structure of 2 in the crystal. Displacement ellipsoids are drawn at the 50% probability level.

Figure 4.

Figure 4

The mol­ecular structure of 3 in the crystal. Displacement ellipsoids are drawn at the 50% probability level. The methyl group C11 shows rotational disorder over two orientations (only one orientation of the H atoms is shown).

Supra­molecular features  

In 1 and 2, the mol­ecules are inter­connected to dimeric subunits by Inline graphic(8)-type N—H⋯O bridges, which is a very typical motif (Bernstein et al., 1995). These amide dimers are again inter­connected by N—H⋯N bridges (Tables 1 and 2) between the remaining amide N—H moiety and the benzotriazolyl group, resulting in an infinite chain of rings in both cases. In 1, the dimeric subunits are linked by a Inline graphic(16) bridge to N4 (Fig. 5), while a C(7) bridge involving N2 is realized in compound 2 (Fig. 7). The latter leads to an Inline graphic(18) motif at the binary level. The hydrogen-bridge pattern in 1 and 2 is therefore entirely different than in the unbridged BTPA, where supra­molecular layers are formed exclusively by N—H⋯O bridges (Wang et al., 2017). As has been discussed for BTPA and its metal complexes, the N—H⋯N bonds are significantly weaker than the N—H⋯O bonds. Both the N⋯O separation [1: N1⋯O 2.897 (1) Å; 2: N1⋯O 2.875 (2) Å] and the N⋯N separations [1: N1⋯N4 3.002 (1) Å; 2: N1⋯N2 3.085 (2) Å] are in the typical range. In the crystal structure of 3, no hydrogen bonds are present as the amide H atoms are replaced by methyl groups.

Table 1. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯Oi 0.88 2.02 2.8970 (12) 175
N1—H1⋯N4ii 0.88 2.16 3.0017 (14) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Oi 0.88 2.00 2.8745 (18) 170
N1—H2⋯N2ii 0.88 2.24 3.0850 (18) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 5.

Figure 5

Supra­molecular chain of rings in 1, formed by N—H⋯O and N—H⋯N bridging.

Figure 7.

Figure 7

Supra­molecular chain of rings in 2, formed by N—H⋯O and N—H⋯N bridging, extending along the crystallographic a axis.

In both 1 and 2, the supra­molecular chains are further aggregated by π–π inter­actions between the benzotriazolyl rings. In 1, a three-dimensional framework is present (Fig. 6), where two different types of π inter­actions can be distinguished. First, the C6 rings of each two adjoining benzotriazolyl groups are stacked in a typical parallel-displaced fashion (cf. Fig. 10 a). The shortest C⋯C contact is 3.364 (2) Å between C7 and C9 and the distance between the C6 ring centroids is 3.655 (2) Å, which is in the range of strong π inter­actions (McGaughey et al., 1998). The so-formed π dimers are inter­connected by another π inter­action to an infinite chain, where an attractive inter­action seems to exist between the whole bicyclic C6N3 system rather than between the C6 rings only (cf. Fig. 10 c). The closest inter­molecular separations are 3.308 (2) Å (C9⋯N2) and 3.403 (2) Å (C5⋯C10), and therefore in the same range as in the former mentioned inter­action. In the case of 2, a layer structure parallel to (001) is formed (Fig. 8). The geometry of the inter­action between the C6 rings is similar as in 1, but the closest C⋯C contact exists between C5 and C9 with 3.521 (2) Å, and the corresponding separation between the C6 centroids is considerably larger at 3.933 (2) Å (cf. Fig. 10 b). In 3, only two mol­ecules are stacked together to a simple π dimer (Fig. 9), with participation of the whole C6N3 bicycle similar as described above for 1 (cf. Fig. 10 c). Here, the closest inter­molecular contacts are 3.468 (2) Å (C8⋯N2) and 3.509 (2) Å (C4⋯C9), which is significantly larger than in 1. Comparable π inter­actions as in 13 have not been observed in the unbridged BTPA, but in its metal complexes [MCl2(BTPA)2] (M = Mn, Co, Cu; min. C⋯C 3.45 Å; Wang et al., 2017). The arrangement of the benzotriazolyl groups in the latter compounds is similar to that in 3 (cf. Fig. 10 c).

Figure 6.

Figure 6

The unit cell of 1, illustrating the aggregation of the chains shown in Fig. 5 by π–π stacking into a three-dimensional framework, viewed in a projection on (010).

Figure 10.

Figure 10

Comparison of the arrangement of the benzotriazolyl rings in the crystal structures of 3-benzotriazolyl­propan­amides: stacking of C6 rings in 1 (a) and in 2 (b), stacking of C6N3 bicycles in 1, 3 and in [MCl2(BTPA)2] (M = Mn, Co, Cu) (c), each viewed in a projection on the C6N3 plane.

Figure 8.

Figure 8

The unit cell of 2, illustrating the aggregation of the chains shown in Fig. 6 by π–π stacking, to a two-dimensional array extending parallel to (001), viewed in a projection on (100).

Figure 9.

Figure 9

Supra­molecular dimer of 3, formed by π–π stacking.

Database survey  

For reviews on di- and tridentate pyrazolyl-based ligands, see Bassanetti et al. (2016), Bigmore et al. (2005), Krieck et al. (2016), Marques et al. (2002), Otero et al. (2013), Paulo et al. (2004), Semeniuc & Reger (2016), Smith (2008), Trofimenko (1993, 2004).

For the tautomerism of benzotriazole, see Mauret et al. (1974), Negri & Caminati (1996); Nesmeyanov et al. (1969), Poznański et al. (2007).

For other structurally characterized 3-pyrazolylpropanamide-derived ligands, see D’Amico et al. (2015), Girma et al. (2008), Wagner et al. (2012), Wang et al. (2017).

Synthesis and crystallization  

All manipulations were performed under inert nitro­gen or argon atmospheres using standard Schlenk techniques or in a Vacuum Atmospheres Glove Box. The starting materials were obtained from commercial sources and used as received. Solvents were dried using an Innovative Technology, Inc, solvent purification system. Microanalysis was performed by Galbraith Laboratories, Inc, Knoxville, TN, USA. NMR spectra were obtained using Bruker Avance 300 MHz and 400 MHz NMR Spectrometers. IR spectra were recorded using KBr pellets with a ThermoNicolet Avatar 370 FT–IR between 4000 cm−1 and 400 cm−1.

Preparation of 2-methyl-3-(1H-benzotriazol-1-yl)propan­amide (1) and 2-methyl-3-(2H-benzotriazol-2-yl)propanamide (2):

In a 150 mL three-neck flask, a mixture of benzotriazole (5.032 g, 42.24 mmol), 2-methyl acryl­amide (3.731 g, 43.84 mmol) and 2 mL of Triton B was heated for 6.5 h in a boiling water bath. The mixture solidified upon cooling. The crude product was slurried with 95% ethanol and the remaining solid recrystallized three times from 95% ethanol to yield 2.841g (13.91 mmol, 32%) of spectroscopically pure 1. Single crystals suitable for X-ray diffraction were obtained from these recrystallizations. M.p. 476–479 K. Analysis calculated for C10H12N4O, M = 204.20 g mol−1: C 58.82; H 5.92; N 27.44. Found: C 58.73; H 5.96; N 27.72. IR (KBr, cm−1): 3307 vs, 3208 s, 3155 vs, 2968 m, 2930 w, 1685 vs, 1442 m, 1315 m, 1226 s, 780 m, 742 vs. 1H NMR (400 MHz, DMSO-d 6): 1.07 (d, J 2-4 = 7 Hz, 3H; CH 3), 3.06 (sext, J 2-4 = 7 Hz, J 2-3 = 7 Hz, 1H; 2-CH), 4.61 (dd, J 2-3 = 7 Hz, J 2-2′ = 14 Hz, 1H; CH 2), 4.86 (dd, J 2-3 = 7 Hz, J 2-2′ = 14 Hz, 1H; CH 2), 6.88 (s br, 1H; NH), 7.39 (m, 1H; 8-CH or 9-CH), 7.42 (s br, 1H; NH) 7.54 (m, 1H; 8-CH or 9-CH), 7.87 (m, 1H; 7-CH or 10-CH), 8.02 (m, 1H; 7-CH or 10-CH) ppm. The resonances for positions 7–10 appear as multiplets that can be inter­preted if the coupling constants between adjacent protons are 7–8 Hz, with longer range couplings of about 1 Hz. 13C{1H} NMR (100 MHz, DMSO-d 6): 16.2 (CH3), 40.6 (2-CH), 50.6 (CH2), 111.5 (10-CH), 119.4 (7-CH), 124.3 (8-CH), 127.5 (9-CH), 133.5 (5-C), 145.4 (6-C), 175.3 (CO) (for numbering scheme cf. Fig. 2).

The mother liquor remaining after the isolation of 1 was concentrated, and two additional crops of crystals were obtained. The second crop was several milligrams of nearly pure 2 and contained crystals suitable for X-ray diffraction. M.p. 476–479 K. Analysis calculated for C10H12N4O, M = 204.20 g mol−1: C 58.82; H 5.92; N 27.44. Found: C 58.92; H 6.20; N 27.50. IR (KBr, cm−1): 3307 vs, 3208 s, 3155 vs, 2968 m, 2930 w, 1685 vs, 1442 m, 1315 m, 1226 s, 780 m, 742 vs. 1H NMR (400 MHz, DMSO-d 6): 1.06 (d, J 2-4 = 7.0 Hz, 3H; CH 3), 3.06 (sext, J 2-4 = 7.0 Hz, J 2-3 = 7.0 Hz, J 2-3′ = 7.7 Hz, 1H; 2-CH), 4.64 (dd, J 2-3 = 7.0 Hz, J 3-3′ = 13.3 Hz, 1H; CH 2), 4.93 (dd, J 2-3 = 7.7 Hz, J 3-3′ = 13.3 Hz, 1H; CH 2), 6.91 (s br, 1H; NH), 7.43 (m, 2H; 6,9-CH), 7.48 (s br; NH), 7.91 (m, 2H; 7,8-CH). The resonances for 6-CH, 7-CH, 8-CH and 9-CH appear as an AA’BB’ pattern. While there is no unique solution for AABB′ spectra, the 1H spectrum of the aromatic region of 2 can be duplicated using reasonable values of the coupling constants: J 7-8 = 6.8 Hz, J 6-7 = J 8-9 = 8.6 Hz, J 6-8 = J 7-9 = 1.0 Hz, and J 6-9 = 1.0 Hz. 13C{1H} NMR (100 MHz, DMSO-d 6): 16.2 (CH3), 40.5 (2-CH), 58.5 (CH2), 118.3 (6,9-CH), 126.8 (7,8-CH), 144.1 (5,10-C), 175.0 (CO) (for numbering scheme cf. Fig. 3).

Preparation of N,N-dimethyl-3-(1H-benzotriazol-1-yl)propanamide (3):

In a 150 mL three-neck flask, a mixture of benzotriazole (5.99 g, 50.0 mmol), N,N-di­methyl­acryl­amide (4.78 g, 48.8 mmol) and 2 mL of Triton B was heated for 6.5 h in a boiling water bath under nitro­gen. Upon cooling to 278 K, a yellow oil was obtained. This mixture was an approximate 2:1 mixture of 3 and 4. After recrystallization from ethanol, samples of pure 3 could be obtained. Single crystals suitable for X-ray diffraction were obtained from recrystallization from a CHCl3/hexa­nes mixture. M.p. 338–339 K. Analysis calculated for C10H12N4O, M = 218.26 g mol−1: C 60.53; H 6.47; N 25.60. Found: C 60.48; H 6.27; N 25.87. IR (KBr, cm−1): 3082 w, 3050 w, 3015 w, 2967 m, 2939 m, 2911 m, 1644 vs, 1496 s, 1452 s, 1414 s, 1396 s, 1338 m, 1298 m, 1216 s, 1151 s, 1092 s, 942 m, 761 s, 743 vs. 1H NMR (300 MHz, CDCl3): 2.92 (s, 3H; NCH 3), 2.94 (s; NCH 3), 3.14 (t, J 2-3 = 7 Hz, 2H; 2-CH 2), 4.98 (t, J 2-3 = 7 Hz, 2H; 3-CH 2), 7.38 (m, 2H; 7-CH or 8-CH), 7.51 (m, 2H; 7-CH or 8-CH), 7.20 (m, 2H; 6-CH or 9-CH), 8.05 (m, 2H; 6-CH or 9-CH). The resonances for positions 6–9 appear as multiplets that can be inter­preted if the coupling constants between adjacent protons are 7–8 Hz, with longer range couplings of about 1 Hz. 13C{1H} NMR (100 MHz, CDCl3): 33.2 (NCH3), 35.5 (NCH3), 37.0 (2-CH2), 43.9 (3-CH2), 110.0 (9-CH), 119.7 (6-CH), 123.9 (7-CH), 127.4 (8-CH), 133.3 (4-C), 145.8 (5-C), 169.5 (CO) (for numbering scheme cf. Fig. 4).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were fixed geom­etrically using a riding model with U iso(H) = 1.2 U eq(X) (X = C, N). The CH3 groups were allowed to rotate freely around the C—X vector (X = C, N) (AFIX 137 in SHELXL), and the amide NH2 groups in 1 and 2 were constrained to be planar (AFIX 93 in SHELXL). C—H distances in CH3 groups were constrained to 0.98 Å, those in CH2 groups to 0.99 Å and those in CH groups to 1.00 Å. N—H distances in 1 and 2 were constrained to 0.88 Å. For compound 2, reflection (Inline graphic62) strongly disagreed with the structural model and was therefore omitted from the refinement. In the case of compound 3, one N-bonded methyl group (C11) was refined as rotationally disordered over two positions. Site occupancy factors were refined freely to 0.59 (2) for H12A, H13A and H14A, and to 0.41 (2) for H12B, H13B and H14B.

Table 3. Experimental details.

  1 2 3
Crystal data
Chemical formula C10H12N4O C10H12N4O C11H14N4O
M r 204.24 204.24 218.26
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 100 133 153
a, b, c (Å) 7.3885 (9), 8.072 (1), 9.2976 (13) 5.5961 (11), 9.3462 (19), 10.472 (2) 7.1732 (6), 7.9945 (6), 9.5912 (7)
α, β, γ (°) 69.039 (12), 89.498 (10), 75.915 (10) 109.83 (3), 90.93 (3), 97.14 (3) 83.910 (6), 86.247 (6), 81.528 (6)
V3) 500.37 (12) 510.2 (2) 540.25 (7)
Z 2 2 2
Radiation type Cu Kα Mo Kα Mo Kα
μ (mm−1) 0.76 0.09 0.09
Crystal size (mm) 0.15 × 0.10 × 0.08 0.48 × 0.33 × 0.25 0.34 × 0.32 × 0.28
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Nova Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Multi-scan (CrysAlis PRO, Agilent, 2003)
T min, T max 0.919, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28193, 2053, 2012 3731, 1774, 1653 4194, 1904, 1596
R int 0.026 0.056 0.062
(sin θ/λ)max−1) 0.626 0.595 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.081, 1.11 0.037, 0.087, 1.09 0.047, 0.131, 1.03
No. of reflections 2053 1774 1904
No. of parameters 138 138 149
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.21 0.25, −0.18 0.22, −0.20

Computer programs: CrysAlis PRO (Agilent, 2003), X-AREA and X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SIR97 (Altomare et al., 1999), SHELXL2016 (Sheldrick, 2015) and DIAMOND (Brandenburg, 1999).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989017007472/zl2702sup1.cif

e-73-00880-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989017007472/zl27021sup2.hkl

e-73-00880-1sup2.hkl (113KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007472/zl27021sup5.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989017007472/zl27022sup3.hkl

e-73-00880-2sup3.hkl (97.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007472/zl27022sup6.cml

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989017007472/zl27023sup4.hkl

e-73-00880-3sup4.hkl (104.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007472/zl27023sup7.cml

CCDC references: 1550158, 1550157, 1550156

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The material is based on work supported by the National Science Foundation under CHE-1461175. General financial support by the Otto-von-Guericke-Universität Magdeburg is also gratefully acknowledged.

supplementary crystallographic information

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Crystal data

C10H12N4O Z = 2
Mr = 204.24 F(000) = 216
Triclinic, P1 Dx = 1.356 Mg m3
a = 7.3885 (9) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.072 (1) Å Cell parameters from 21215 reflections
c = 9.2976 (13) Å θ = 5.1–76.1°
α = 69.039 (12)° µ = 0.76 mm1
β = 89.498 (10)° T = 100 K
γ = 75.915 (10)° Prism, colorless
V = 500.37 (12) Å3 0.15 × 0.10 × 0.08 mm

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Data collection

Agilent Xcalibur, Atlas, Nova diffractometer 2053 independent reflections
Radiation source: fine-focus sealed tube 2012 reflections with I > 2σ(I)
Detector resolution: 10.3543 pixels mm-1 Rint = 0.026
ω scans θmax = 75.0°, θmin = 5.1°
Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2003) h = −9→9
Tmin = 0.919, Tmax = 1.000 k = −10→10
28193 measured reflections l = −9→11

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.1806P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
2053 reflections Δρmax = 0.33 e Å3
138 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0117 (12)

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.15133 (14) 0.68751 (14) 0.89673 (11) 0.0176 (2)
C2 0.25594 (14) 0.83380 (13) 0.82012 (11) 0.0179 (2)
H3 0.165006 0.949315 0.752342 0.022*
C3 0.40506 (14) 0.76911 (14) 0.72364 (11) 0.0184 (2)
H4 0.488091 0.853320 0.694399 0.022*
H5 0.482564 0.645326 0.787098 0.022*
C4 0.35221 (17) 0.87131 (16) 0.94623 (13) 0.0262 (3)
H8 0.258168 0.911025 1.010223 0.031*
H6 0.416372 0.967988 0.898144 0.031*
H7 0.443677 0.758907 1.011003 0.031*
C5 0.29153 (13) 0.61763 (14) 0.55521 (12) 0.0167 (2)
C6 0.21574 (14) 0.69407 (14) 0.40143 (12) 0.0181 (2)
C7 0.16602 (14) 0.58415 (15) 0.32859 (12) 0.0213 (2)
H9 0.113426 0.634772 0.224400 0.026*
C8 0.19688 (14) 0.40025 (15) 0.41480 (13) 0.0220 (2)
H10 0.165146 0.321802 0.369143 0.026*
C9 0.27490 (14) 0.32485 (14) 0.57016 (13) 0.0214 (2)
H11 0.294873 0.196704 0.625394 0.026*
C10 0.32283 (14) 0.43018 (14) 0.64405 (12) 0.0191 (2)
H12 0.373910 0.379176 0.748680 0.023*
N1 −0.03436 (12) 0.74707 (12) 0.89024 (10) 0.0209 (2)
H2 −0.101453 0.669647 0.936062 0.025*
H1 −0.089861 0.863817 0.840137 0.025*
N2 0.32450 (12) 0.76231 (11) 0.58395 (10) 0.0173 (2)
N3 0.27302 (13) 0.91737 (12) 0.45699 (10) 0.0209 (2)
N4 0.20701 (13) 0.87851 (12) 0.34604 (10) 0.0213 (2)
O 0.23854 (10) 0.52560 (10) 0.96498 (9) 0.02255 (19)

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0225 (5) 0.0179 (5) 0.0130 (4) −0.0063 (4) 0.0019 (4) −0.0056 (4)
C2 0.0214 (5) 0.0164 (5) 0.0158 (5) −0.0061 (4) 0.0012 (4) −0.0049 (4)
C3 0.0195 (5) 0.0197 (5) 0.0171 (5) −0.0071 (4) 0.0007 (4) −0.0065 (4)
C4 0.0344 (6) 0.0286 (6) 0.0207 (5) −0.0144 (5) 0.0023 (4) −0.0110 (4)
C5 0.0152 (4) 0.0180 (5) 0.0173 (5) −0.0046 (4) 0.0030 (4) −0.0068 (4)
C6 0.0171 (5) 0.0187 (5) 0.0163 (5) −0.0030 (4) 0.0026 (4) −0.0048 (4)
C7 0.0190 (5) 0.0278 (6) 0.0182 (5) −0.0050 (4) 0.0021 (4) −0.0103 (4)
C8 0.0200 (5) 0.0259 (5) 0.0258 (6) −0.0083 (4) 0.0055 (4) −0.0148 (4)
C9 0.0209 (5) 0.0178 (5) 0.0256 (5) −0.0063 (4) 0.0053 (4) −0.0071 (4)
C10 0.0187 (5) 0.0182 (5) 0.0178 (5) −0.0049 (4) 0.0021 (4) −0.0035 (4)
N1 0.0207 (4) 0.0165 (4) 0.0213 (4) −0.0050 (3) 0.0022 (3) −0.0018 (3)
N2 0.0206 (4) 0.0152 (4) 0.0148 (4) −0.0053 (3) 0.0018 (3) −0.0037 (3)
N3 0.0255 (5) 0.0170 (4) 0.0170 (4) −0.0046 (3) 0.0022 (3) −0.0032 (3)
N4 0.0247 (5) 0.0195 (4) 0.0170 (4) −0.0037 (4) 0.0007 (3) −0.0050 (3)
O 0.0222 (4) 0.0172 (4) 0.0234 (4) −0.0045 (3) 0.0025 (3) −0.0020 (3)

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Geometric parameters (Å, º)

C1—O 1.2369 (13) C5—C10 1.4014 (14)
C1—N1 1.3329 (14) C6—N4 1.3752 (13)
C1—C2 1.5271 (14) C6—C7 1.4049 (15)
C2—C3 1.5261 (14) C7—C8 1.3730 (15)
C2—C4 1.5316 (14) C7—H9 0.9500
C2—H3 1.0000 C8—C9 1.4157 (16)
C3—N2 1.4576 (13) C8—H10 0.9500
C3—H4 0.9900 C9—C10 1.3744 (15)
C3—H5 0.9900 C9—H11 0.9500
C4—H8 0.9800 C10—H12 0.9500
C4—H6 0.9800 N1—H2 0.8800
C4—H7 0.9800 N1—H1 0.8800
C5—N2 1.3628 (13) N2—N3 1.3505 (12)
C5—C6 1.3977 (14) N3—N4 1.3096 (13)
O—C1—N1 123.48 (9) N4—C6—C5 108.40 (9)
O—C1—C2 120.43 (9) N4—C6—C7 130.82 (10)
N1—C1—C2 116.03 (9) C5—C6—C7 120.77 (10)
C3—C2—C1 110.96 (8) C8—C7—C6 116.99 (10)
C3—C2—C4 108.61 (9) C8—C7—H9 121.5
C1—C2—C4 108.83 (8) C6—C7—H9 121.5
C3—C2—H3 109.5 C7—C8—C9 121.51 (10)
C1—C2—H3 109.5 C7—C8—H10 119.2
C4—C2—H3 109.5 C9—C8—H10 119.2
N2—C3—C2 112.50 (8) C10—C9—C8 122.44 (10)
N2—C3—H4 109.1 C10—C9—H11 118.8
C2—C3—H4 109.1 C8—C9—H11 118.8
N2—C3—H5 109.1 C9—C10—C5 115.74 (10)
C2—C3—H5 109.1 C9—C10—H12 122.1
H4—C3—H5 107.8 C5—C10—H12 122.1
C2—C4—H8 109.5 C1—N1—H2 120.0
C2—C4—H6 109.5 C1—N1—H1 120.0
H8—C4—H6 109.5 H2—N1—H1 120.0
C2—C4—H7 109.5 N3—N2—C5 110.44 (8)
H8—C4—H7 109.5 N3—N2—C3 119.41 (8)
H6—C4—H7 109.5 C5—N2—C3 130.14 (8)
N2—C5—C6 104.07 (9) N4—N3—N2 108.81 (8)
N2—C5—C10 133.36 (9) N3—N4—C6 108.28 (8)
C6—C5—C10 122.55 (10)
O—C1—C2—C3 47.10 (12) C8—C9—C10—C5 −0.69 (15)
N1—C1—C2—C3 −135.56 (9) N2—C5—C10—C9 −177.82 (10)
O—C1—C2—C4 −72.35 (12) C6—C5—C10—C9 0.27 (15)
N1—C1—C2—C4 104.99 (10) C6—C5—N2—N3 −0.07 (11)
C1—C2—C3—N2 70.99 (10) C10—C5—N2—N3 178.28 (11)
C4—C2—C3—N2 −169.42 (8) C6—C5—N2—C3 −179.08 (9)
N2—C5—C6—N4 0.01 (11) C10—C5—N2—C3 −0.74 (18)
C10—C5—C6—N4 −178.56 (9) C2—C3—N2—N3 82.84 (11)
N2—C5—C6—C7 178.91 (9) C2—C3—N2—C5 −98.22 (12)
C10—C5—C6—C7 0.34 (15) C5—N2—N3—N4 0.11 (11)
N4—C6—C7—C8 178.10 (10) C3—N2—N3—N4 179.24 (8)
C5—C6—C7—C8 −0.53 (15) N2—N3—N4—C6 −0.10 (11)
C6—C7—C8—C9 0.13 (15) C5—C6—N4—N3 0.06 (11)
C7—C8—C9—C10 0.51 (16) C7—C6—N4—N3 −178.70 (10)

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H2···Oi 0.88 2.02 2.8970 (12) 175
N1—H1···N4ii 0.88 2.16 3.0017 (14) 161

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y+2, −z+1.

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Crystal data

C10H12N4O Z = 2
Mr = 204.24 F(000) = 216
Triclinic, P1 Dx = 1.329 Mg m3
a = 5.5961 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.3462 (19) Å Cell parameters from 5587 reflections
c = 10.472 (2) Å θ = 2.1–29.2°
α = 109.83 (3)° µ = 0.09 mm1
β = 90.93 (3)° T = 133 K
γ = 97.14 (3)° Prism, colorless
V = 510.2 (2) Å3 0.48 × 0.33 × 0.25 mm

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Data collection

Stoe IPDS 2T diffractometer 1653 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.056
Detector resolution: 6.67 pixels mm-1 θmax = 25.0°, θmin = 2.1°
area detector scans h = −6→6
3731 measured reflections k = −11→11
1774 independent reflections l = −12→12

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.028P)2 + 0.190P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1774 reflections Δρmax = 0.25 e Å3
138 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.11 (2)

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0227 (2) 0.64543 (13) 0.69653 (13) 0.0214 (3)
C2 0.0204 (2) 0.74112 (14) 0.84610 (13) 0.0225 (3)
H3 −0.098923 0.815190 0.857903 0.027*
C3 0.2682 (3) 0.82849 (15) 0.90085 (13) 0.0252 (3)
H5 0.262252 0.888303 0.998666 0.030*
H4 0.383837 0.754250 0.892496 0.030*
C4 −0.0516 (3) 0.63442 (17) 0.92572 (15) 0.0341 (4)
H6 −0.215805 0.581749 0.895255 0.041*
H8 −0.045568 0.694636 1.022969 0.041*
H7 0.060441 0.558341 0.910078 0.041*
C5 0.5730 (2) 1.03192 (15) 0.71230 (13) 0.0223 (3)
C6 0.3863 (2) 1.11949 (15) 0.75999 (13) 0.0232 (3)
C7 0.3662 (3) 1.25214 (16) 0.72735 (15) 0.0298 (3)
H9 0.239683 1.311962 0.758654 0.036*
C8 0.5363 (3) 1.29041 (17) 0.64894 (15) 0.0325 (4)
H10 0.528050 1.379345 0.625352 0.039*
C9 0.7253 (3) 1.20216 (18) 0.60133 (15) 0.0347 (4)
H11 0.840016 1.233870 0.547020 0.042*
C10 0.7479 (3) 1.07309 (17) 0.63095 (15) 0.0311 (4)
H12 0.874723 1.014003 0.598479 0.037*
N1 −0.1609 (2) 0.64790 (12) 0.61694 (11) 0.0250 (3)
H1 −0.170803 0.591949 0.529944 0.030*
H2 −0.273477 0.705494 0.650863 0.030*
N2 0.5490 (2) 0.91227 (12) 0.75780 (11) 0.0239 (3)
N3 0.3548 (2) 0.93272 (12) 0.82946 (11) 0.0220 (3)
N4 0.2480 (2) 1.05296 (13) 0.83583 (12) 0.0258 (3)
O 0.18732 (19) 0.56749 (11) 0.65622 (10) 0.0320 (3)

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0270 (7) 0.0161 (6) 0.0212 (7) 0.0033 (5) 0.0079 (5) 0.0062 (5)
C2 0.0281 (7) 0.0205 (6) 0.0194 (7) 0.0058 (5) 0.0064 (5) 0.0065 (5)
C3 0.0304 (7) 0.0262 (7) 0.0195 (6) 0.0050 (6) 0.0012 (5) 0.0084 (5)
C4 0.0497 (10) 0.0282 (7) 0.0268 (7) 0.0063 (7) 0.0146 (7) 0.0116 (6)
C5 0.0203 (7) 0.0247 (6) 0.0197 (6) 0.0020 (5) −0.0010 (5) 0.0053 (5)
C6 0.0207 (7) 0.0240 (6) 0.0221 (7) 0.0005 (5) 0.0007 (5) 0.0050 (5)
C7 0.0279 (8) 0.0265 (7) 0.0351 (8) 0.0044 (6) 0.0017 (6) 0.0104 (6)
C8 0.0330 (8) 0.0294 (7) 0.0361 (8) −0.0040 (6) −0.0060 (6) 0.0157 (6)
C9 0.0273 (8) 0.0466 (9) 0.0323 (8) −0.0058 (7) 0.0017 (6) 0.0198 (7)
C10 0.0230 (7) 0.0412 (8) 0.0296 (7) 0.0047 (6) 0.0062 (6) 0.0124 (6)
N1 0.0286 (6) 0.0252 (6) 0.0203 (6) 0.0096 (5) 0.0050 (5) 0.0042 (4)
N2 0.0226 (6) 0.0267 (6) 0.0210 (6) 0.0050 (5) 0.0029 (4) 0.0057 (4)
N3 0.0230 (6) 0.0212 (5) 0.0203 (6) 0.0029 (4) 0.0010 (4) 0.0051 (4)
N4 0.0250 (6) 0.0246 (6) 0.0276 (6) 0.0045 (5) 0.0050 (5) 0.0080 (5)
O 0.0331 (6) 0.0341 (6) 0.0240 (5) 0.0136 (5) 0.0027 (4) 0.0008 (4)

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Geometric parameters (Å, º)

C1—O 1.2364 (16) C5—C10 1.410 (2)
C1—N1 1.3199 (18) C6—N4 1.3607 (18)
C1—C2 1.5187 (18) C6—C7 1.4098 (19)
C2—C3 1.514 (2) C7—C8 1.360 (2)
C2—C4 1.5255 (18) C7—H9 0.9500
C2—H3 1.0000 C8—C9 1.415 (2)
C3—N3 1.4598 (17) C8—H10 0.9500
C3—H5 0.9900 C9—C10 1.363 (2)
C3—H4 0.9900 C9—H11 0.9500
C4—H6 0.9800 C10—H12 0.9500
C4—H8 0.9800 N1—H1 0.8800
C4—H7 0.9800 N1—H2 0.8800
C5—N2 1.3498 (18) N2—N3 1.3276 (16)
C5—C6 1.4013 (19) N3—N4 1.3198 (16)
O—C1—N1 123.67 (12) N4—C6—C5 108.31 (12)
O—C1—C2 119.91 (12) N4—C6—C7 130.81 (13)
N1—C1—C2 116.40 (11) C5—C6—C7 120.88 (13)
C3—C2—C1 110.76 (11) C8—C7—C6 116.86 (13)
C3—C2—C4 108.52 (12) C8—C7—H9 121.6
C1—C2—C4 108.88 (11) C6—C7—H9 121.6
C3—C2—H3 109.6 C7—C8—C9 122.17 (13)
C1—C2—H3 109.6 C7—C8—H10 118.9
C4—C2—H3 109.6 C9—C8—H10 118.9
N3—C3—C2 112.65 (11) C10—C9—C8 122.07 (14)
N3—C3—H5 109.1 C10—C9—H11 119.0
C2—C3—H5 109.1 C8—C9—H11 119.0
N3—C3—H4 109.1 C9—C10—C5 116.47 (14)
C2—C3—H4 109.1 C9—C10—H12 121.8
H5—C3—H4 107.8 C5—C10—H12 121.8
C2—C4—H6 109.5 C1—N1—H1 120.0
C2—C4—H8 109.5 C1—N1—H2 120.0
H6—C4—H8 109.5 H1—N1—H2 120.0
C2—C4—H7 109.5 N3—N2—C5 103.09 (11)
H6—C4—H7 109.5 N4—N3—N2 117.11 (11)
H8—C4—H7 109.5 N4—N3—C3 121.80 (11)
N2—C5—C6 108.57 (12) N2—N3—C3 121.07 (11)
N2—C5—C10 129.88 (13) N3—N4—C6 102.93 (11)
C6—C5—C10 121.56 (13)
O—C1—C2—C3 45.53 (16) C8—C9—C10—C5 −0.2 (2)
N1—C1—C2—C3 −136.47 (12) N2—C5—C10—C9 −179.87 (13)
O—C1—C2—C4 −73.73 (16) C6—C5—C10—C9 0.0 (2)
N1—C1—C2—C4 104.27 (14) C6—C5—N2—N3 −0.24 (13)
C1—C2—C3—N3 59.74 (14) C10—C5—N2—N3 179.62 (14)
C4—C2—C3—N3 179.22 (10) C5—N2—N3—N4 0.10 (14)
N2—C5—C6—N4 0.30 (14) C5—N2—N3—C3 −178.27 (11)
C10—C5—C6—N4 −179.57 (12) C2—C3—N3—N4 65.73 (15)
N2—C5—C6—C7 −179.77 (12) C2—C3—N3—N2 −115.97 (13)
C10—C5—C6—C7 0.4 (2) N2—N3—N4—C6 0.08 (15)
N4—C6—C7—C8 179.50 (14) C3—N3—N4—C6 178.44 (11)
C5—C6—C7—C8 −0.41 (19) C5—C6—N4—N3 −0.23 (14)
C6—C7—C8—C9 0.2 (2) C7—C6—N4—N3 179.86 (13)
C7—C8—C9—C10 0.2 (2)

(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Oi 0.88 2.00 2.8745 (18) 170
N1—H2···N2ii 0.88 2.24 3.0850 (18) 161

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z.

(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide . Crystal data

C11H14N4O Z = 2
Mr = 218.26 F(000) = 232
Triclinic, P1 Dx = 1.342 Mg m3
a = 7.1732 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.9945 (6) Å Cell parameters from 6240 reflections
c = 9.5912 (7) Å θ = 2.1–29.2°
α = 83.910 (6)° µ = 0.09 mm1
β = 86.247 (6)° T = 153 K
γ = 81.528 (6)° Block, colorless
V = 540.25 (7) Å3 0.34 × 0.32 × 0.28 mm

(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide . Data collection

Stoe IPDS 2T diffractometer 1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.062
Detector resolution: 6.67 pixels mm-1 θmax = 25.0°, θmin = 2.1°
area detector scans h = −8→8
4194 measured reflections k = −9→9
1904 independent reflections l = −11→11

(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.073P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
1904 reflections Δρmax = 0.22 e Å3
149 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.062 (15)

(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2374 (2) 0.1609 (2) 0.89843 (17) 0.0317 (4)
C2 0.2225 (3) 0.3473 (2) 0.91977 (18) 0.0357 (4)
H2 0.312766 0.361341 0.990012 0.043*
H1 0.093801 0.387131 0.957760 0.043*
C3 0.2629 (3) 0.4566 (2) 0.78541 (18) 0.0363 (4)
H4 0.187972 0.427798 0.710496 0.044*
H3 0.221528 0.577397 0.800163 0.044*
C4 0.5548 (2) 0.34481 (19) 0.63744 (16) 0.0308 (4)
C5 0.7407 (3) 0.3710 (2) 0.64288 (17) 0.0356 (4)
C6 0.8817 (3) 0.2937 (2) 0.5534 (2) 0.0441 (5)
H5 1.009954 0.309393 0.557083 0.053*
C7 0.8268 (3) 0.1947 (2) 0.46046 (19) 0.0441 (5)
H6 0.919384 0.139249 0.398995 0.053*
C8 0.6372 (3) 0.1724 (2) 0.45317 (18) 0.0397 (5)
H7 0.604940 0.104362 0.385487 0.048*
C9 0.4981 (3) 0.2455 (2) 0.54036 (17) 0.0352 (4)
H8 0.370003 0.230034 0.535556 0.042*
C10 0.2411 (3) 0.0869 (3) 1.15684 (19) 0.0505 (5)
H10 0.138000 0.036749 1.209814 0.061*
H9 0.219291 0.210450 1.159458 0.061*
H11 0.360994 0.040258 1.198882 0.061*
C11 0.2605 (3) −0.1321 (2) 0.9926 (2) 0.0454 (5)
H13A 0.386119 −0.190604 1.015826 0.054* 0.59 (2)
H14A 0.238741 −0.144173 0.894596 0.054* 0.59 (2)
H12A 0.164666 −0.182399 1.054197 0.054* 0.59 (2)
H12B 0.140231 −0.154180 0.960587 0.054* 0.41 (2)
H13B 0.287609 −0.200611 1.081816 0.054* 0.41 (2)
H14B 0.361685 −0.162385 0.922216 0.054* 0.41 (2)
N1 0.2484 (2) 0.04712 (18) 1.01231 (15) 0.0362 (4)
N2 0.4605 (2) 0.43518 (16) 0.73920 (14) 0.0327 (4)
N3 0.5824 (2) 0.51402 (18) 0.80163 (15) 0.0390 (4)
N4 0.7510 (2) 0.4768 (2) 0.74587 (16) 0.0422 (4)
O 0.2366 (2) 0.11687 (15) 0.77971 (13) 0.0442 (4)

(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0305 (8) 0.0308 (8) 0.0359 (9) −0.0073 (6) −0.0002 (7) −0.0095 (7)
C2 0.0391 (10) 0.0295 (8) 0.0404 (9) −0.0059 (7) 0.0002 (7) −0.0114 (7)
C3 0.0403 (10) 0.0251 (8) 0.0446 (9) −0.0027 (7) −0.0055 (8) −0.0088 (7)
C4 0.0403 (9) 0.0226 (7) 0.0307 (8) −0.0074 (7) −0.0052 (7) −0.0021 (6)
C5 0.0421 (10) 0.0325 (8) 0.0345 (8) −0.0118 (7) −0.0058 (7) −0.0020 (7)
C6 0.0380 (10) 0.0498 (11) 0.0452 (10) −0.0101 (8) −0.0022 (8) −0.0020 (8)
C7 0.0528 (12) 0.0388 (10) 0.0387 (10) −0.0024 (8) 0.0040 (8) −0.0046 (7)
C8 0.0592 (12) 0.0289 (8) 0.0330 (9) −0.0102 (8) −0.0031 (8) −0.0066 (7)
C9 0.0453 (10) 0.0281 (8) 0.0352 (9) −0.0111 (7) −0.0066 (7) −0.0064 (7)
C10 0.0641 (13) 0.0521 (12) 0.0382 (10) −0.0184 (10) −0.0010 (9) −0.0050 (8)
C11 0.0473 (11) 0.0292 (9) 0.0601 (12) −0.0079 (8) −0.0025 (9) −0.0032 (8)
N1 0.0405 (8) 0.0313 (7) 0.0386 (8) −0.0088 (6) −0.0016 (6) −0.0065 (6)
N2 0.0418 (8) 0.0245 (6) 0.0349 (7) −0.0102 (6) −0.0056 (6) −0.0071 (5)
N3 0.0482 (9) 0.0340 (7) 0.0401 (8) −0.0164 (7) −0.0093 (7) −0.0090 (6)
N4 0.0446 (9) 0.0438 (9) 0.0429 (8) −0.0166 (7) −0.0073 (7) −0.0092 (7)
O 0.0648 (9) 0.0330 (7) 0.0382 (7) −0.0126 (6) −0.0033 (6) −0.0111 (5)

(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide . Geometric parameters (Å, º)

C1—O 1.228 (2) C7—H6 0.9500
C1—N1 1.344 (2) C8—C9 1.364 (3)
C1—C2 1.513 (2) C8—H7 0.9500
C2—C3 1.515 (2) C9—H8 0.9500
C2—H2 0.9900 C10—N1 1.451 (2)
C2—H1 0.9900 C10—H10 0.9800
C3—N2 1.448 (2) C10—H9 0.9800
C3—H4 0.9900 C10—H11 0.9800
C3—H3 0.9900 C11—N1 1.455 (2)
C4—N2 1.361 (2) C11—H13A 0.9800
C4—C5 1.385 (3) C11—H14A 0.9800
C4—C9 1.401 (2) C11—H12A 0.9800
C5—N4 1.379 (2) C11—H12B 0.9800
C5—C6 1.399 (3) C11—H13B 0.9800
C6—C7 1.365 (3) C11—H14B 0.9800
C6—H5 0.9500 N2—N3 1.3535 (19)
C7—C8 1.404 (3) N3—N4 1.296 (2)
O—C1—N1 121.60 (14) N1—C10—H9 109.5
O—C1—C2 120.14 (15) H10—C10—H9 109.5
N1—C1—C2 118.25 (14) N1—C10—H11 109.5
C1—C2—C3 112.71 (13) H10—C10—H11 109.5
C1—C2—H2 109.1 H9—C10—H11 109.5
C3—C2—H2 109.1 N1—C11—H13A 109.5
C1—C2—H1 109.1 N1—C11—H14A 109.5
C3—C2—H1 109.1 H13A—C11—H14A 109.5
H2—C2—H1 107.8 N1—C11—H12A 109.5
N2—C3—C2 113.14 (14) H13A—C11—H12A 109.5
N2—C3—H4 109.0 H14A—C11—H12A 109.5
C2—C3—H4 109.0 N1—C11—H12B 109.5
N2—C3—H3 109.0 H13A—C11—H12B 141.1
C2—C3—H3 109.0 H14A—C11—H12B 56.3
H4—C3—H3 107.8 H12A—C11—H12B 56.3
N2—C4—C5 104.46 (14) N1—C11—H13B 109.5
N2—C4—C9 133.38 (16) H13A—C11—H13B 56.3
C5—C4—C9 122.15 (16) H14A—C11—H13B 141.1
N4—C5—C4 108.56 (16) H12A—C11—H13B 56.3
N4—C5—C6 130.69 (17) H12B—C11—H13B 109.5
C4—C5—C6 120.75 (16) N1—C11—H14B 109.5
C7—C6—C5 117.01 (17) H13A—C11—H14B 56.3
C7—C6—H5 121.5 H14A—C11—H14B 56.3
C5—C6—H5 121.5 H12A—C11—H14B 141.1
C6—C7—C8 121.86 (18) H12B—C11—H14B 109.5
C6—C7—H6 119.1 H13B—C11—H14B 109.5
C8—C7—H6 119.1 C1—N1—C10 125.72 (14)
C9—C8—C7 121.95 (16) C1—N1—C11 118.52 (14)
C9—C8—H7 119.0 C10—N1—C11 115.70 (15)
C7—C8—H7 119.0 N3—N2—C4 109.63 (14)
C8—C9—C4 116.25 (16) N3—N2—C3 119.52 (13)
C8—C9—H8 121.9 C4—N2—C3 130.85 (14)
C4—C9—H8 121.9 N4—N3—N2 109.52 (13)
N1—C10—H10 109.5 N3—N4—C5 107.81 (14)
O—C1—C2—C3 −16.2 (2) C2—C1—N1—C10 2.2 (3)
N1—C1—C2—C3 164.77 (15) O—C1—N1—C11 0.2 (3)
C1—C2—C3—N2 −72.24 (18) C2—C1—N1—C11 179.27 (15)
N2—C4—C5—N4 −0.66 (18) C5—C4—N2—N3 0.86 (18)
C9—C4—C5—N4 178.42 (14) C9—C4—N2—N3 −178.07 (17)
N2—C4—C5—C6 178.83 (15) C5—C4—N2—C3 −179.29 (15)
C9—C4—C5—C6 −2.1 (3) C9—C4—N2—C3 1.8 (3)
N4—C5—C6—C7 −179.73 (18) C2—C3—N2—N3 −78.81 (17)
C4—C5—C6—C7 0.9 (3) C2—C3—N2—C4 101.35 (19)
C5—C6—C7—C8 0.8 (3) C4—N2—N3—N4 −0.77 (19)
C6—C7—C8—C9 −1.4 (3) C3—N2—N3—N4 179.36 (14)
C7—C8—C9—C4 0.2 (2) N2—N3—N4—C5 0.32 (18)
N2—C4—C9—C8 −179.75 (17) C4—C5—N4—N3 0.23 (19)
C5—C4—C9—C8 1.5 (2) C6—C5—N4—N3 −179.20 (18)
O—C1—N1—C10 −176.82 (17)

References

  1. Agilent (2003). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bassanetti, I., Atzeri, C., Tinonin, D. A. & Marchiò, L. (2016). Cryst. Growth Des. 16, 3543–3552.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635–651. [DOI] [PubMed]
  6. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. D’Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19–28.
  8. Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267–273.
  9. Krieck, S., Koch, A., Hinze, K., Müller, C., Lange, J., Görls, H. & Westerhausen, M. (2016). Eur. J. Inorg. Chem. pp. 2332–2348.
  10. Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137–2160. [DOI] [PubMed]
  11. Mauret, P., Fayet, J. P., Fabre, M., Elguero, J. & De Mendoza, J. (1974). J. Chim. Phys. Chim. Biol. 71, 115–116.
  12. McGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458–15463. [DOI] [PubMed]
  13. Negri, F. & Caminati, W. (1996). Chem. Phys. Lett. 260, 119–124.
  14. Nesmeyanov, A. N., Babin, V. N., Fedorov, L. A., Rybinskaya, M. I. & Fedin, E. I. (1969). Tetrahedron, 25, 4667–4670.
  15. Otero, A., Fernández-Baeza, J., Lara-Sánchez, A. & Sánchez-Barba, L. F. (2013). Coord. Chem. Rev. 257, 1806–1868.
  16. Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. A. (2004). Polyhedron, 23, 331–360.
  17. Poznański, J., Najda, A., Bretner, M. & Shugar, D. (2007). J. Phys. Chem. A, 111, 6501–6509. [DOI] [PubMed]
  18. Semeniuc, R. F. & Reger, D. L. (2016). Eur. J. Inorg. Chem. pp. 2253–2271.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Smith, J. M. (2008). Comments Inorg. Chem. 29, 189–233.
  22. Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
  23. Trofimenko, S. (1993). Chem. Rev. 93, 943–980.
  24. Trofimenko, S. (2004). Polyhedron, 23, 197–203.
  25. Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Zhang, J. & Li, Q. (2012). Z. Anorg. Allg. Chem. 638, 2185–2188.
  26. Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989017007472/zl2702sup1.cif

e-73-00880-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989017007472/zl27021sup2.hkl

e-73-00880-1sup2.hkl (113KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007472/zl27021sup5.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989017007472/zl27022sup3.hkl

e-73-00880-2sup3.hkl (97.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007472/zl27022sup6.cml

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989017007472/zl27023sup4.hkl

e-73-00880-3sup4.hkl (104.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017007472/zl27023sup7.cml

CCDC references: 1550158, 1550157, 1550156

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES