The transition metal orthophosphate Ag1.655Co1.64Fe1.36(PO4)3 crystallizes in an alluaudite-type structure. The chains characterizing the alluaudite structure are built up from edge-sharing [CoO6] and [FeO6] octahedra linked together by PO4 tetrahedra. The Ag+ cations are located in two types of channels in the resulting framework.
Keywords: crystal structure, Ag1.655Co1.64Fe1.36(PO4)3, transition metal phosphate, solid-state reaction synthesis, alluaudite-like structure
Abstract
The new silver-, cobalt- and iron-based phosphate, silver cobalt iron tris(orthophosphate), Ag1.655Co1.64Fe1.36(PO4)3, was synthesized by solid-state reactions. Its structure is isotypic to that of Na2Co2Fe(PO4)3, and belongs to the alluaudite family, with a partial cationic disorder, the AgI atoms being located on an inversion centre and twofold rotation axis sites (Wyckoff positions 4a and 4e), with partial occupancies of 0.885 (2) and 0.7688 (19), respectively. One of the two P atoms in the asymmetric unit completely fills one 4e site while the Co and Fe atoms fill another 4e site, with partial occupancies of 0.86 (5) and 0.14 (5), respectively. The remaining Co2+ and Fe3+ cations are distributed on a general position, 8f, in a 0.39 (4):0.61 (4) ratio. All O atoms and the other P atoms are in general positions. The structure is built up from zigzag chains of edge-sharing [MO6] (M = Fe/Co) octahedra stacked parallel to [101]. These chains are linked together through PO4 tetrahedra, forming polyhedral sheets perpendicular to [010]. The resulting framework displays two types of channels running along [001], in which the AgI atoms (coordination number eight) are located.
Chemical context
Compounds belonging to the large alluaudite structural family (Moore, 1971 ▸; Moore & Ito, 1979 ▸; Hatert et al., 2000 ▸, 2004 ▸) have been of continuing interest owing to their open-framework architecture, with hexagonal-shaped channels, and their physical properties. This fact is amply justified by their practical applications, for example as corrosion inhibitors, passivators of metal surfaces, and catalysts (Korzenski et al., 1999 ▸). In addition, interest in alluaudite phosphates with monovalent cations has continued to grow in the electrochemical field, where they have applications as positive electrodes in lithium and sodium batteries (Trad et al., 2010 ▸). Accordingly, our attention is mostly focused on the elaboration and structural characterization of new alluaudite-type phosphates within the A 2O–MO–P2O5 systems (A = monovalent cation M = divalent cation). For instance, most recently, the hydrothermal investigation of the Na2O–MO–P2O5 pseudo-ternary system has allowed the isolation of the sodium- and magnesium-based alluaudite phosphate NaMg3(PO4)(HPO4)2 (Ould Saleck et al., 2015 ▸). On the other hand, within the Na2O–CoO–Fe2O3–P2O5 and Na2O–ZnO–Fe2O3–P2O5 pseudo-quaternary systems, solid-state synthesis has allowed Na2Co2Fe(PO4)3 (Bouraima et al., 2015 ▸) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015 ▸) to be obtained. With the same objective, a new silver-, cobalt- and iron-based alluaudite-type phosphate, namely Ag1.655Co1.64Fe1.36(PO4)3, has been synthesized by means of solid-state reactions and characterized by single crystal X-ray diffraction.
Structural commentary
In the new isolated compound, either cobalt or iron atoms are distributed in the two octahedral sites while the phosphorus atoms are tetrahedrally coordinated, as shown in Fig. 1 ▸. The structure is built up from two edge-sharing [(Co1/Fe1)O6] octahedra, leading to the formation of [(Co1/Fe1)2O10] dimers. Those dimers are connected by a common edge to [(Fe2/Co2)O6] octahedra, forming an infinite chain (Fig. 2 ▸). The junction between these chains is ensured by sharing vertices with the PO4 tetrahedra so as to form an open layer perpendicular to [010] (Fig. 3 ▸). The three-dimensional framework resulting from the stacking of the sheets along the b-axis direction delimits channels parallel to [001] in which the Ag+ cations are accommodated, as shown in Fig. 4 ▸.
Figure 1.
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z +
; (ii) −x + 1, y, −z +
; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 2, y, −z +
; (v) −x + 2, −y + 1, −z + 1; (vi) x +
, −y +
, z +
; (vii) −x +
, −y +
, −z + 1; (viii) x, −y + 1, z −
; (ix) −x +
, y −
, −z +
; (x) x +
, −y +
, z +
; (xi) −x +
, −y +
, −z + 1; (xii) −x +
, y +
, −z +
; (xiii) x +
, y +
, z + 1.]
Figure 2.
Edge-sharing [(Fe/Co)O6] octahedra forming a layer parallel to [101].
Figure 3.
A view along [010], showing a layer resulting from the connection of chains via vertices of PO4 tetrahedra and [FeO6] octahedra.
Figure 4.
Polyhedral representation of Ag1.655Co1.64Fe1.36(PO4)3, showing channels running along [001].
Comparison with a related structure
It is worth mentioning that the distribution of metallic cations observed in the case of the silver–cobalt–iron-based phosphate is not encountered in the sodium homologue. Hence, in the title silver-based phosphate, the octahedral M1 site (Wyckoff position 8f) is occupied to 60% by Fe1 and to 40% by Co1. The octahedrally surrounded M2 site (Wyckoff position 4e) is essentially occupied by Fe2 atoms (43%) along with a small amount of Co2 (7%). However, in the Na2Co2Fe(PO4)3 phosphate, the M1 and M2 sites are entirely occupied by Fe and Co atoms, respectively. For the mixed sites, the occupancy rate was refined without any constraint. The results of the refinements are in good agreement with the electrical neutrality of the compound and calculations of the bond-valence sums of the atoms in the structure (Brown & Altermatt, 1985 ▸). Accordingly, in the silver-based phosphate, the cations at the M1 site form double octahedra [(Fe1/Co1)2O10] alternating with [(Fe2/Co2)O6] octahedra, while in the sodium homologue phosphate, the obtained [Co2O10] double octahedra alternate with [FeO6] octahedra (Fig. 4 ▸). Moreover, both the Ag1 and Ag2 atoms are located in channels, surrounded by eight oxygen atoms with Ag1—O bond lengths between 2.3320 (13) Å and 2.9176 (13) Å, whereas Ag2—O bond lengths are in the range 2.4733 (13)–2.9035 (12) Å. The structure of the title phosphate is isotypic to that of Na2Co2Fe(PO4)3 (Bouraima et al., 2015 ▸) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015 ▸).
Synthesis and crystallization
The title compound was isolated from solid-state reactions in air by mixing nitrates of silver, cobalt and iron with phosphoric acid. The various precursors are taken in the molar ratio Ag:Co:Fe:P = 2:2:1:3. The mixture was stirred at room temperature overnight. After different heat treatments in a platinum crucible at up to 873 K, the reaction mixture was heated to the melting temperature of 1221 K. The molten product was then cooled to room temperature at a rate of 5 K h−1. Brown homogeneous crystals corresponding to the title compound of a suitable size for X-ray diffraction were obtained.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1 ▸. The maximum and minimum residual electron densities in the final Fourier map are 0.68 and 0.55 Å from Ag1 and Ag2, respectively.
Table 1. Experimental details.
| Crystal data | |
| Chemical formula | Ag1.655Co1.64Fe1.36(PO4)3 |
| M r | 2544.10 |
| Crystal system, space group | Monoclinic, C2/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 11.8680 (3), 12.5514 (3), 6.4386 (2) |
| β (°) | 114.012 (1) |
| V (Å3) | 876.09 (4) |
| Z | 1 |
| Radiation type | Mo Kα |
| μ (mm−1) | 9.51 |
| Crystal size (mm) | 0.31 × 0.26 × 0.22 |
| Data collection | |
| Diffractometer | Bruker X8 APEX |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.066, 0.124 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 13097, 2137, 2079 |
| R int | 0.030 |
| (sin θ/λ)max (Å−1) | 0.833 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.020, 0.047, 1.19 |
| No. of reflections | 2137 |
| No. of parameters | 99 |
| Δρmax, Δρmin (e Å−3) | 1.47, −0.92 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074Isup2.hkl
CCDC reference: 1551181
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
supplementary crystallographic information
Crystal data
| Ag1.655Co1.64Fe1.36(PO4)3 | F(000) = 1194 |
| Mr = 2544.10 | Dx = 4.822 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 11.8680 (3) Å | Cell parameters from 2137 reflections |
| b = 12.5514 (3) Å | θ = 3.3–36.3° |
| c = 6.4386 (2) Å | µ = 9.51 mm−1 |
| β = 114.012 (1)° | T = 296 K |
| V = 876.09 (4) Å3 | Block, brown |
| Z = 1 | 0.31 × 0.26 × 0.22 mm |
Data collection
| Bruker X8 APEX diffractometer | 2137 independent reflections |
| Radiation source: fine-focus sealed tube | 2079 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.030 |
| φ and ω scans | θmax = 36.3°, θmin = 3.3° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −19→19 |
| Tmin = 0.066, Tmax = 0.124 | k = −20→20 |
| 13097 measured reflections | l = −10→10 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0121P)2 + 3.2851P] where P = (Fo2 + 2Fc2)/3 |
| R[F2 > 2σ(F2)] = 0.020 | (Δ/σ)max = 0.001 |
| wR(F2) = 0.047 | Δρmax = 1.47 e Å−3 |
| S = 1.19 | Δρmin = −0.92 e Å−3 |
| 2137 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 99 parameters | Extinction coefficient: 0.00102 (10) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Ag1 | 0.5000 | 0.5000 | 0.5000 | 0.01952 (7) | 0.885 (2) |
| Ag2 | 1.0000 | 0.48916 (3) | 0.7500 | 0.02408 (10) | 0.7688 (19) |
| Fe1 | 0.78227 (2) | 0.34311 (2) | 0.37115 (3) | 0.00565 (6) | 0.61 (4) |
| Co1 | 0.78227 (2) | 0.34311 (2) | 0.37115 (3) | 0.00565 (6) | 0.39 (4) |
| Fe2 | 1.0000 | 0.76503 (2) | 0.7500 | 0.00714 (8) | 0.14 (5) |
| Co2 | 1.0000 | 0.76503 (2) | 0.7500 | 0.00714 (8) | 0.86 (5) |
| P1 | 0.76272 (3) | 0.61138 (3) | 0.37428 (6) | 0.00502 (8) | |
| P2 | 0.5000 | 0.28909 (4) | 0.2500 | 0.00535 (10) | |
| O1 | 0.77807 (11) | 0.67841 (10) | 0.18620 (19) | 0.00908 (19) | |
| O2 | 0.81856 (12) | 0.49999 (9) | 0.3820 (2) | 0.0112 (2) | |
| O3 | 0.62598 (11) | 0.60711 (11) | 0.3280 (2) | 0.0135 (2) | |
| O4 | 0.83676 (12) | 0.66524 (9) | 0.60788 (19) | 0.00917 (19) | |
| O5 | 0.45841 (10) | 0.21873 (10) | 0.03381 (18) | 0.00821 (19) | |
| O6 | 0.60284 (12) | 0.36401 (10) | 0.2530 (2) | 0.0122 (2) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ag1 | 0.02917 (14) | 0.00879 (9) | 0.01123 (10) | −0.00389 (7) | −0.00138 (8) | −0.00128 (6) |
| Ag2 | 0.01069 (12) | 0.02795 (16) | 0.02519 (15) | 0.000 | −0.00133 (10) | 0.000 |
| Fe1 | 0.00485 (9) | 0.00657 (9) | 0.00575 (9) | 0.00037 (6) | 0.00240 (6) | 0.00058 (6) |
| Co1 | 0.00485 (9) | 0.00657 (9) | 0.00575 (9) | 0.00037 (6) | 0.00240 (6) | 0.00058 (6) |
| Fe2 | 0.00620 (12) | 0.00833 (13) | 0.00796 (13) | 0.000 | 0.00398 (10) | 0.000 |
| Co2 | 0.00620 (12) | 0.00833 (13) | 0.00796 (13) | 0.000 | 0.00398 (10) | 0.000 |
| P1 | 0.00488 (15) | 0.00490 (15) | 0.00521 (15) | 0.00006 (11) | 0.00198 (11) | 0.00022 (10) |
| P2 | 0.00397 (19) | 0.0071 (2) | 0.00466 (19) | 0.000 | 0.00138 (16) | 0.000 |
| O1 | 0.0101 (5) | 0.0112 (5) | 0.0062 (4) | −0.0001 (4) | 0.0036 (4) | 0.0020 (3) |
| O2 | 0.0118 (5) | 0.0070 (4) | 0.0144 (5) | 0.0024 (4) | 0.0048 (4) | −0.0013 (4) |
| O3 | 0.0067 (4) | 0.0125 (5) | 0.0221 (6) | 0.0007 (4) | 0.0066 (4) | 0.0031 (4) |
| O4 | 0.0127 (5) | 0.0083 (4) | 0.0062 (4) | −0.0011 (4) | 0.0034 (4) | −0.0013 (3) |
| O5 | 0.0064 (4) | 0.0124 (5) | 0.0053 (4) | −0.0011 (4) | 0.0018 (3) | −0.0017 (3) |
| O6 | 0.0085 (5) | 0.0119 (5) | 0.0166 (5) | −0.0036 (4) | 0.0054 (4) | 0.0007 (4) |
Geometric parameters (Å, º)
| Ag1—O6i | 2.3320 (13) | Fe1—O4viii | 2.0481 (12) |
| Ag1—O6ii | 2.3320 (13) | Fe1—O1i | 2.0669 (11) |
| Ag1—O3i | 2.4356 (14) | Fe1—O5vi | 2.0705 (12) |
| Ag1—O3ii | 2.4356 (14) | Fe1—O1ix | 2.1695 (12) |
| Ag1—O3iii | 2.5724 (13) | Fe2—O3x | 2.1099 (13) |
| Ag1—O3 | 2.5725 (13) | Fe2—O3xi | 2.1099 (13) |
| Ag1—O6iii | 2.9176 (13) | Fe2—O5xii | 2.1575 (11) |
| Ag1—O6 | 2.9176 (13) | Fe2—O5xiii | 2.1575 (11) |
| Ag2—O2iv | 2.4733 (13) | Fe2—O4iv | 2.1717 (12) |
| Ag2—O2 | 2.4733 (13) | Fe2—O4 | 2.1717 (12) |
| Ag2—O2i | 2.6204 (13) | P1—O3 | 1.5270 (13) |
| Ag2—O2v | 2.6204 (13) | P1—O2 | 1.5393 (12) |
| Ag2—O4 | 2.8341 (12) | P1—O1 | 1.5451 (12) |
| Ag2—O4iv | 2.8341 (12) | P1—O4 | 1.5543 (12) |
| Ag2—O5vi | 2.9035 (13) | P2—O6ii | 1.5346 (13) |
| Ag2—O5vii | 2.9035 (12) | P2—O6 | 1.5346 (13) |
| Fe1—O6 | 1.9656 (13) | P2—O5ii | 1.5498 (12) |
| Fe1—O2 | 2.0108 (12) | P2—O5 | 1.5498 (12) |
| O6i—Ag1—O6ii | 180.00 (4) | O2—Ag2—O1i | 64.62 (4) |
| O6i—Ag1—O3i | 80.58 (4) | O2i—Ag2—O1i | 49.21 (3) |
| O6ii—Ag1—O3i | 99.42 (4) | O2v—Ag2—O1i | 136.08 (3) |
| O6i—Ag1—O3ii | 99.42 (4) | O4—Ag2—O1i | 92.94 (3) |
| O6ii—Ag1—O3ii | 80.58 (4) | O4iv—Ag2—O1i | 162.54 (3) |
| O3i—Ag1—O3ii | 180.0 | O5vi—Ag2—O1i | 52.36 (3) |
| O6i—Ag1—O3iii | 108.21 (5) | O5vii—Ag2—O1i | 56.78 (3) |
| O6ii—Ag1—O3iii | 71.79 (5) | O2iv—Ag2—O1v | 64.62 (4) |
| O3i—Ag1—O3iii | 66.27 (5) | O2—Ag2—O1v | 119.96 (4) |
| O3ii—Ag1—O3iii | 113.73 (5) | O2i—Ag2—O1v | 136.08 (3) |
| O6i—Ag1—O3 | 71.79 (5) | O2v—Ag2—O1v | 49.21 (3) |
| O6ii—Ag1—O3 | 108.21 (5) | O4—Ag2—O1v | 162.54 (3) |
| O3i—Ag1—O3 | 113.73 (5) | O4iv—Ag2—O1v | 92.94 (3) |
| O3ii—Ag1—O3 | 66.27 (5) | O5vi—Ag2—O1v | 56.78 (3) |
| O3iii—Ag1—O3 | 180.0 | O5vii—Ag2—O1v | 52.36 (3) |
| O6i—Ag1—O6iii | 53.64 (5) | O6—Fe1—O2 | 93.77 (5) |
| O6ii—Ag1—O6iii | 126.36 (5) | O6—Fe1—O4viii | 110.10 (5) |
| O3i—Ag1—O6iii | 95.49 (4) | O2—Fe1—O4viii | 86.76 (5) |
| O3ii—Ag1—O6iii | 84.51 (4) | O6—Fe1—O1i | 86.70 (5) |
| O3iii—Ag1—O6iii | 68.02 (4) | O2—Fe1—O1i | 100.62 (5) |
| O3—Ag1—O6iii | 111.98 (4) | O4viii—Fe1—O1i | 161.33 (5) |
| O6i—Ag1—O6 | 126.36 (5) | O6—Fe1—O5vi | 163.25 (5) |
| O6ii—Ag1—O6 | 53.64 (5) | O2—Fe1—O5vi | 101.04 (5) |
| O3i—Ag1—O6 | 84.51 (4) | O4viii—Fe1—O5vi | 78.79 (5) |
| O3ii—Ag1—O6 | 95.49 (4) | O1i—Fe1—O5vi | 82.95 (5) |
| O3iii—Ag1—O6 | 111.98 (4) | O6—Fe1—O1ix | 80.26 (5) |
| O3—Ag1—O6 | 68.02 (4) | O2—Fe1—O1ix | 171.95 (5) |
| O6iii—Ag1—O6 | 180.0 | O4viii—Fe1—O1ix | 90.22 (4) |
| O2iv—Ag2—O2 | 173.70 (6) | O1i—Fe1—O1ix | 84.52 (5) |
| O2iv—Ag2—O2i | 101.33 (4) | O5vi—Fe1—O1ix | 85.66 (5) |
| O2—Ag2—O2i | 78.34 (4) | O3x—Fe2—O3xi | 80.97 (7) |
| O2iv—Ag2—O2v | 78.34 (4) | O3x—Fe2—O5xii | 91.27 (5) |
| O2—Ag2—O2v | 101.33 (4) | O3xi—Fe2—O5xii | 112.81 (5) |
| O2i—Ag2—O2v | 174.04 (5) | O3x—Fe2—O5xiii | 112.81 (5) |
| O2iv—Ag2—O4 | 118.73 (4) | O3xi—Fe2—O5xiii | 91.27 (5) |
| O2—Ag2—O4 | 55.50 (4) | O5xii—Fe2—O5xiii | 148.74 (7) |
| O2i—Ag2—O4 | 61.33 (4) | O3x—Fe2—O4iv | 85.08 (5) |
| O2v—Ag2—O4 | 113.50 (4) | O3xi—Fe2—O4iv | 164.39 (5) |
| O2iv—Ag2—O4iv | 55.50 (4) | O5xii—Fe2—O4iv | 74.29 (4) |
| O2—Ag2—O4iv | 118.73 (4) | O5xiii—Fe2—O4iv | 87.71 (4) |
| O2i—Ag2—O4iv | 113.50 (4) | O3x—Fe2—O4 | 164.39 (5) |
| O2v—Ag2—O4iv | 61.33 (4) | O3xi—Fe2—O4 | 85.08 (5) |
| O4—Ag2—O4iv | 77.51 (5) | O5xii—Fe2—O4 | 87.71 (4) |
| O2iv—Ag2—O5vi | 114.87 (4) | O5xiii—Fe2—O4 | 74.29 (4) |
| O2—Ag2—O5vi | 71.23 (4) | O4iv—Fe2—O4 | 109.56 (7) |
| O2i—Ag2—O5vi | 101.56 (4) | O3—P1—O2 | 112.57 (7) |
| O2v—Ag2—O5vi | 83.86 (4) | O3—P1—O1 | 108.72 (7) |
| O4—Ag2—O5vi | 125.84 (3) | O2—P1—O1 | 109.47 (7) |
| O4iv—Ag2—O5vi | 144.70 (3) | O3—P1—O4 | 109.98 (7) |
| O2iv—Ag2—O5vii | 71.23 (4) | O2—P1—O4 | 107.31 (7) |
| O2—Ag2—O5vii | 114.87 (4) | O1—P1—O4 | 108.73 (7) |
| O2i—Ag2—O5vii | 83.86 (4) | O6ii—P2—O6 | 104.43 (10) |
| O2v—Ag2—O5vii | 101.56 (4) | O6ii—P2—O5ii | 108.75 (7) |
| O4—Ag2—O5vii | 144.70 (3) | O6—P2—O5ii | 112.14 (7) |
| O4iv—Ag2—O5vii | 125.84 (3) | O6ii—P2—O5 | 112.14 (7) |
| O5vi—Ag2—O5vii | 52.03 (4) | O6—P2—O5 | 108.75 (7) |
| O2iv—Ag2—O1i | 119.96 (4) | O5ii—P2—O5 | 110.52 (9) |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+2, y, −z+3/2; (v) −x+2, −y+1, −z+1; (vi) x+1/2, −y+1/2, z+1/2; (vii) −x+3/2, −y+1/2, −z+1; (viii) x, −y+1, z−1/2; (ix) −x+3/2, y−1/2, −z+1/2; (x) x+1/2, −y+3/2, z+1/2; (xi) −x+3/2, −y+3/2, −z+1; (xii) −x+3/2, y+1/2, −z+1/2; (xiii) x+1/2, y+1/2, z+1.
References
- Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. [DOI] [PMC free article] [PubMed]
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A.-M. (2000). Eur. J. Mineral. 12, 847–857.
- Hatert, F., Long, G. J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.
- Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. [DOI] [PMC free article] [PubMed]
- Korzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390–398.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
- Moore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227–235.
- Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074Isup2.hkl
CCDC reference: 1551181
Additional supporting information: crystallographic information; 3D view; checkCIF report




