Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 26;73(Pt 6):890–892. doi: 10.1107/S205698901700740X

Crystal structure of a silver-, cobalt- and iron-based phosphate with an alluaudite-like structure: Ag1.655Co1.64Fe1.36(PO4)3

Adam Bouraima a,b,*, Thomas Makani b, Abderrazzak Assani a, Mohamed Saadi a, Lahcen El Ammari a
PMCID: PMC5458317  PMID: 28638652

The transition metal orthophosphate Ag1.655Co1.64Fe1.36(PO4)3 crystallizes in an alluaudite-type structure. The chains characterizing the alluaudite structure are built up from edge-sharing [CoO6] and [FeO6] octa­hedra linked together by PO4 tetra­hedra. The Ag+ cations are located in two types of channels in the resulting framework.

Keywords: crystal structure, Ag1.655Co1.64Fe1.36(PO4)3, transition metal phosphate, solid-state reaction synthesis, alluaudite-like structure

Abstract

The new silver-, cobalt- and iron-based phosphate, silver cobalt iron tris(ortho­phosphate), Ag1.655Co1.64Fe1.36(PO4)3, was synthesized by solid-state reactions. Its structure is isotypic to that of Na2Co2Fe(PO4)3, and belongs to the alluaudite family, with a partial cationic disorder, the AgI atoms being located on an inversion centre and twofold rotation axis sites (Wyckoff positions 4a and 4e), with partial occupancies of 0.885 (2) and 0.7688 (19), respectively. One of the two P atoms in the asymmetric unit completely fills one 4e site while the Co and Fe atoms fill another 4e site, with partial occupancies of 0.86 (5) and 0.14 (5), respectively. The remaining Co2+ and Fe3+ cations are distributed on a general position, 8f, in a 0.39 (4):0.61 (4) ratio. All O atoms and the other P atoms are in general positions. The structure is built up from zigzag chains of edge-sharing [MO6] (M = Fe/Co) octa­hedra stacked parallel to [101]. These chains are linked together through PO4 tetra­hedra, forming polyhedral sheets perpendicular to [010]. The resulting framework displays two types of channels running along [001], in which the AgI atoms (coordination number eight) are located.

Chemical context  

Compounds belonging to the large alluaudite structural family (Moore, 1971; Moore & Ito, 1979; Hatert et al., 2000, 2004) have been of continuing inter­est owing to their open-framework architecture, with hexa­gonal-shaped channels, and their physical properties. This fact is amply justified by their practical applications, for example as corrosion inhibitors, passivators of metal surfaces, and catalysts (Korzenski et al., 1999). In addition, inter­est in alluaudite phosphates with monovalent cations has continued to grow in the electrochemical field, where they have applications as positive electrodes in lithium and sodium batteries (Trad et al., 2010). Accordingly, our attention is mostly focused on the elaboration and structural characterization of new alluaudite-type phosphates within the A 2O–MO–P2O5 systems (A = monovalent cation M = divalent cation). For instance, most recently, the hydro­thermal investigation of the Na2O–MO–P2O5 pseudo-ternary system has allowed the isolation of the sodium- and magnesium-based alluaudite phosphate NaMg3(PO4)(HPO4)2 (Ould Saleck et al., 2015). On the other hand, within the Na2O–CoO–Fe2O3–P2O5 and Na2O–ZnO–Fe2O3–P2O5 pseudo-quaternary systems, solid-state synthesis has allowed Na2Co2Fe(PO4)3 (Bouraima et al., 2015) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015) to be obtained. With the same objective, a new silver-, cobalt- and iron-based alluaudite-type phosphate, namely Ag1.655Co1.64Fe1.36(PO4)3, has been synthesized by means of solid-state reactions and characterized by single crystal X-ray diffraction.

Structural commentary  

In the new isolated compound, either cobalt or iron atoms are distributed in the two octa­hedral sites while the phosphorus atoms are tetra­hedrally coordinated, as shown in Fig. 1. The structure is built up from two edge-sharing [(Co1/Fe1)O6] octa­hedra, leading to the formation of [(Co1/Fe1)2O10] dimers. Those dimers are connected by a common edge to [(Fe2/Co2)O6] octa­hedra, forming an infinite chain (Fig. 2). The junction between these chains is ensured by sharing vertices with the PO4 tetra­hedra so as to form an open layer perpendicular to [010] (Fig. 3). The three-dimensional framework resulting from the stacking of the sheets along the b-axis direction delimits channels parallel to [001] in which the Ag+ cations are accommodated, as shown in Fig. 4.

Figure 1.

Figure 1

The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + Inline graphic; (ii) −x + 1, y, −z + Inline graphic; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 2, y, −z + Inline graphic; (v) −x + 2, −y + 1, −z + 1; (vi) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (vii) −x + Inline graphic, −y + Inline graphic, −z + 1; (viii) x, −y + 1, z − Inline graphic; (ix) −x + Inline graphic, y − Inline graphic, −z + Inline graphic; (x) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (xi) −x + Inline graphic, −y + Inline graphic, −z + 1; (xii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (xiii) x + Inline graphic, y + Inline graphic, z + 1.]

Figure 2.

Figure 2

Edge-sharing [(Fe/Co)O6] octa­hedra forming a layer parallel to [101].

Figure 3.

Figure 3

A view along [010], showing a layer resulting from the connection of chains via vertices of PO4 tetra­hedra and [FeO6] octa­hedra.

Figure 4.

Figure 4

Polyhedral representation of Ag1.655Co1.64Fe1.36(PO4)3, showing channels running along [001].

Comparison with a related structure  

It is worth mentioning that the distribution of metallic cations observed in the case of the silver–cobalt–iron-based phosphate is not encountered in the sodium homologue. Hence, in the title silver-based phosphate, the octa­hedral M1 site (Wyckoff position 8f) is occupied to 60% by Fe1 and to 40% by Co1. The octa­hedrally surrounded M2 site (Wyckoff position 4e) is essentially occupied by Fe2 atoms (43%) along with a small amount of Co2 (7%). However, in the Na2Co2Fe(PO4)3 phosphate, the M1 and M2 sites are entirely occupied by Fe and Co atoms, respectively. For the mixed sites, the occupancy rate was refined without any constraint. The results of the refinements are in good agreement with the electrical neutrality of the compound and calculations of the bond-valence sums of the atoms in the structure (Brown & Altermatt, 1985). Accordingly, in the silver-based phosphate, the cations at the M1 site form double octahedra [(Fe1/Co1)2O10] alternating with [(Fe2/Co2)O6] octa­hedra, while in the sodium homologue phosphate, the obtained [Co2O10] double octahedra alternate with [FeO6] octa­hedra (Fig. 4). Moreover, both the Ag1 and Ag2 atoms are located in channels, surrounded by eight oxygen atoms with Ag1—O bond lengths between 2.3320 (13) Å and 2.9176 (13) Å, whereas Ag2—O bond lengths are in the range 2.4733 (13)–2.9035 (12) Å. The structure of the title phosphate is isotypic to that of Na2Co2Fe(PO4)3 (Bouraima et al., 2015) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015).

Synthesis and crystallization  

The title compound was isolated from solid-state reactions in air by mixing nitrates of silver, cobalt and iron with phospho­ric acid. The various precursors are taken in the molar ratio Ag:Co:Fe:P = 2:2:1:3. The mixture was stirred at room temperature overnight. After different heat treatments in a platinum crucible at up to 873 K, the reaction mixture was heated to the melting temperature of 1221 K. The molten product was then cooled to room temperature at a rate of 5 K h−1. Brown homogeneous crystals corresponding to the title compound of a suitable size for X-ray diffraction were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The maximum and minimum residual electron densities in the final Fourier map are 0.68 and 0.55 Å from Ag1 and Ag2, respectively.

Table 1. Experimental details.

Crystal data
Chemical formula Ag1.655Co1.64Fe1.36(PO4)3
M r 2544.10
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 11.8680 (3), 12.5514 (3), 6.4386 (2)
β (°) 114.012 (1)
V3) 876.09 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 9.51
Crystal size (mm) 0.31 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.066, 0.124
No. of measured, independent and observed [I > 2σ(I)] reflections 13097, 2137, 2079
R int 0.030
(sin θ/λ)max−1) 0.833
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.020, 0.047, 1.19
No. of reflections 2137
No. of parameters 99
Δρmax, Δρmin (e Å−3) 1.47, −0.92

Computer programs: APEX2 aand SAINT (Bruker, 2009), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074sup1.cif

e-73-00890-sup1.cif (403.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074Isup2.hkl

e-73-00890-Isup2.hkl (171.9KB, hkl)

CCDC reference: 1551181

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Crystal data

Ag1.655Co1.64Fe1.36(PO4)3 F(000) = 1194
Mr = 2544.10 Dx = 4.822 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 11.8680 (3) Å Cell parameters from 2137 reflections
b = 12.5514 (3) Å θ = 3.3–36.3°
c = 6.4386 (2) Å µ = 9.51 mm1
β = 114.012 (1)° T = 296 K
V = 876.09 (4) Å3 Block, brown
Z = 1 0.31 × 0.26 × 0.22 mm

Data collection

Bruker X8 APEX diffractometer 2137 independent reflections
Radiation source: fine-focus sealed tube 2079 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 36.3°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −19→19
Tmin = 0.066, Tmax = 0.124 k = −20→20
13097 measured reflections l = −10→10

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0121P)2 + 3.2851P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020 (Δ/σ)max = 0.001
wR(F2) = 0.047 Δρmax = 1.47 e Å3
S = 1.19 Δρmin = −0.92 e Å3
2137 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
99 parameters Extinction coefficient: 0.00102 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 0.5000 0.5000 0.5000 0.01952 (7) 0.885 (2)
Ag2 1.0000 0.48916 (3) 0.7500 0.02408 (10) 0.7688 (19)
Fe1 0.78227 (2) 0.34311 (2) 0.37115 (3) 0.00565 (6) 0.61 (4)
Co1 0.78227 (2) 0.34311 (2) 0.37115 (3) 0.00565 (6) 0.39 (4)
Fe2 1.0000 0.76503 (2) 0.7500 0.00714 (8) 0.14 (5)
Co2 1.0000 0.76503 (2) 0.7500 0.00714 (8) 0.86 (5)
P1 0.76272 (3) 0.61138 (3) 0.37428 (6) 0.00502 (8)
P2 0.5000 0.28909 (4) 0.2500 0.00535 (10)
O1 0.77807 (11) 0.67841 (10) 0.18620 (19) 0.00908 (19)
O2 0.81856 (12) 0.49999 (9) 0.3820 (2) 0.0112 (2)
O3 0.62598 (11) 0.60711 (11) 0.3280 (2) 0.0135 (2)
O4 0.83676 (12) 0.66524 (9) 0.60788 (19) 0.00917 (19)
O5 0.45841 (10) 0.21873 (10) 0.03381 (18) 0.00821 (19)
O6 0.60284 (12) 0.36401 (10) 0.2530 (2) 0.0122 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.02917 (14) 0.00879 (9) 0.01123 (10) −0.00389 (7) −0.00138 (8) −0.00128 (6)
Ag2 0.01069 (12) 0.02795 (16) 0.02519 (15) 0.000 −0.00133 (10) 0.000
Fe1 0.00485 (9) 0.00657 (9) 0.00575 (9) 0.00037 (6) 0.00240 (6) 0.00058 (6)
Co1 0.00485 (9) 0.00657 (9) 0.00575 (9) 0.00037 (6) 0.00240 (6) 0.00058 (6)
Fe2 0.00620 (12) 0.00833 (13) 0.00796 (13) 0.000 0.00398 (10) 0.000
Co2 0.00620 (12) 0.00833 (13) 0.00796 (13) 0.000 0.00398 (10) 0.000
P1 0.00488 (15) 0.00490 (15) 0.00521 (15) 0.00006 (11) 0.00198 (11) 0.00022 (10)
P2 0.00397 (19) 0.0071 (2) 0.00466 (19) 0.000 0.00138 (16) 0.000
O1 0.0101 (5) 0.0112 (5) 0.0062 (4) −0.0001 (4) 0.0036 (4) 0.0020 (3)
O2 0.0118 (5) 0.0070 (4) 0.0144 (5) 0.0024 (4) 0.0048 (4) −0.0013 (4)
O3 0.0067 (4) 0.0125 (5) 0.0221 (6) 0.0007 (4) 0.0066 (4) 0.0031 (4)
O4 0.0127 (5) 0.0083 (4) 0.0062 (4) −0.0011 (4) 0.0034 (4) −0.0013 (3)
O5 0.0064 (4) 0.0124 (5) 0.0053 (4) −0.0011 (4) 0.0018 (3) −0.0017 (3)
O6 0.0085 (5) 0.0119 (5) 0.0166 (5) −0.0036 (4) 0.0054 (4) 0.0007 (4)

Geometric parameters (Å, º)

Ag1—O6i 2.3320 (13) Fe1—O4viii 2.0481 (12)
Ag1—O6ii 2.3320 (13) Fe1—O1i 2.0669 (11)
Ag1—O3i 2.4356 (14) Fe1—O5vi 2.0705 (12)
Ag1—O3ii 2.4356 (14) Fe1—O1ix 2.1695 (12)
Ag1—O3iii 2.5724 (13) Fe2—O3x 2.1099 (13)
Ag1—O3 2.5725 (13) Fe2—O3xi 2.1099 (13)
Ag1—O6iii 2.9176 (13) Fe2—O5xii 2.1575 (11)
Ag1—O6 2.9176 (13) Fe2—O5xiii 2.1575 (11)
Ag2—O2iv 2.4733 (13) Fe2—O4iv 2.1717 (12)
Ag2—O2 2.4733 (13) Fe2—O4 2.1717 (12)
Ag2—O2i 2.6204 (13) P1—O3 1.5270 (13)
Ag2—O2v 2.6204 (13) P1—O2 1.5393 (12)
Ag2—O4 2.8341 (12) P1—O1 1.5451 (12)
Ag2—O4iv 2.8341 (12) P1—O4 1.5543 (12)
Ag2—O5vi 2.9035 (13) P2—O6ii 1.5346 (13)
Ag2—O5vii 2.9035 (12) P2—O6 1.5346 (13)
Fe1—O6 1.9656 (13) P2—O5ii 1.5498 (12)
Fe1—O2 2.0108 (12) P2—O5 1.5498 (12)
O6i—Ag1—O6ii 180.00 (4) O2—Ag2—O1i 64.62 (4)
O6i—Ag1—O3i 80.58 (4) O2i—Ag2—O1i 49.21 (3)
O6ii—Ag1—O3i 99.42 (4) O2v—Ag2—O1i 136.08 (3)
O6i—Ag1—O3ii 99.42 (4) O4—Ag2—O1i 92.94 (3)
O6ii—Ag1—O3ii 80.58 (4) O4iv—Ag2—O1i 162.54 (3)
O3i—Ag1—O3ii 180.0 O5vi—Ag2—O1i 52.36 (3)
O6i—Ag1—O3iii 108.21 (5) O5vii—Ag2—O1i 56.78 (3)
O6ii—Ag1—O3iii 71.79 (5) O2iv—Ag2—O1v 64.62 (4)
O3i—Ag1—O3iii 66.27 (5) O2—Ag2—O1v 119.96 (4)
O3ii—Ag1—O3iii 113.73 (5) O2i—Ag2—O1v 136.08 (3)
O6i—Ag1—O3 71.79 (5) O2v—Ag2—O1v 49.21 (3)
O6ii—Ag1—O3 108.21 (5) O4—Ag2—O1v 162.54 (3)
O3i—Ag1—O3 113.73 (5) O4iv—Ag2—O1v 92.94 (3)
O3ii—Ag1—O3 66.27 (5) O5vi—Ag2—O1v 56.78 (3)
O3iii—Ag1—O3 180.0 O5vii—Ag2—O1v 52.36 (3)
O6i—Ag1—O6iii 53.64 (5) O6—Fe1—O2 93.77 (5)
O6ii—Ag1—O6iii 126.36 (5) O6—Fe1—O4viii 110.10 (5)
O3i—Ag1—O6iii 95.49 (4) O2—Fe1—O4viii 86.76 (5)
O3ii—Ag1—O6iii 84.51 (4) O6—Fe1—O1i 86.70 (5)
O3iii—Ag1—O6iii 68.02 (4) O2—Fe1—O1i 100.62 (5)
O3—Ag1—O6iii 111.98 (4) O4viii—Fe1—O1i 161.33 (5)
O6i—Ag1—O6 126.36 (5) O6—Fe1—O5vi 163.25 (5)
O6ii—Ag1—O6 53.64 (5) O2—Fe1—O5vi 101.04 (5)
O3i—Ag1—O6 84.51 (4) O4viii—Fe1—O5vi 78.79 (5)
O3ii—Ag1—O6 95.49 (4) O1i—Fe1—O5vi 82.95 (5)
O3iii—Ag1—O6 111.98 (4) O6—Fe1—O1ix 80.26 (5)
O3—Ag1—O6 68.02 (4) O2—Fe1—O1ix 171.95 (5)
O6iii—Ag1—O6 180.0 O4viii—Fe1—O1ix 90.22 (4)
O2iv—Ag2—O2 173.70 (6) O1i—Fe1—O1ix 84.52 (5)
O2iv—Ag2—O2i 101.33 (4) O5vi—Fe1—O1ix 85.66 (5)
O2—Ag2—O2i 78.34 (4) O3x—Fe2—O3xi 80.97 (7)
O2iv—Ag2—O2v 78.34 (4) O3x—Fe2—O5xii 91.27 (5)
O2—Ag2—O2v 101.33 (4) O3xi—Fe2—O5xii 112.81 (5)
O2i—Ag2—O2v 174.04 (5) O3x—Fe2—O5xiii 112.81 (5)
O2iv—Ag2—O4 118.73 (4) O3xi—Fe2—O5xiii 91.27 (5)
O2—Ag2—O4 55.50 (4) O5xii—Fe2—O5xiii 148.74 (7)
O2i—Ag2—O4 61.33 (4) O3x—Fe2—O4iv 85.08 (5)
O2v—Ag2—O4 113.50 (4) O3xi—Fe2—O4iv 164.39 (5)
O2iv—Ag2—O4iv 55.50 (4) O5xii—Fe2—O4iv 74.29 (4)
O2—Ag2—O4iv 118.73 (4) O5xiii—Fe2—O4iv 87.71 (4)
O2i—Ag2—O4iv 113.50 (4) O3x—Fe2—O4 164.39 (5)
O2v—Ag2—O4iv 61.33 (4) O3xi—Fe2—O4 85.08 (5)
O4—Ag2—O4iv 77.51 (5) O5xii—Fe2—O4 87.71 (4)
O2iv—Ag2—O5vi 114.87 (4) O5xiii—Fe2—O4 74.29 (4)
O2—Ag2—O5vi 71.23 (4) O4iv—Fe2—O4 109.56 (7)
O2i—Ag2—O5vi 101.56 (4) O3—P1—O2 112.57 (7)
O2v—Ag2—O5vi 83.86 (4) O3—P1—O1 108.72 (7)
O4—Ag2—O5vi 125.84 (3) O2—P1—O1 109.47 (7)
O4iv—Ag2—O5vi 144.70 (3) O3—P1—O4 109.98 (7)
O2iv—Ag2—O5vii 71.23 (4) O2—P1—O4 107.31 (7)
O2—Ag2—O5vii 114.87 (4) O1—P1—O4 108.73 (7)
O2i—Ag2—O5vii 83.86 (4) O6ii—P2—O6 104.43 (10)
O2v—Ag2—O5vii 101.56 (4) O6ii—P2—O5ii 108.75 (7)
O4—Ag2—O5vii 144.70 (3) O6—P2—O5ii 112.14 (7)
O4iv—Ag2—O5vii 125.84 (3) O6ii—P2—O5 112.14 (7)
O5vi—Ag2—O5vii 52.03 (4) O6—P2—O5 108.75 (7)
O2iv—Ag2—O1i 119.96 (4) O5ii—P2—O5 110.52 (9)

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+2, y, −z+3/2; (v) −x+2, −y+1, −z+1; (vi) x+1/2, −y+1/2, z+1/2; (vii) −x+3/2, −y+1/2, −z+1; (viii) x, −y+1, z−1/2; (ix) −x+3/2, y−1/2, −z+1/2; (x) x+1/2, −y+3/2, z+1/2; (xi) −x+3/2, −y+3/2, −z+1; (xii) −x+3/2, y+1/2, −z+1/2; (xiii) x+1/2, y+1/2, z+1.

References

  1. Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  4. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A.-M. (2000). Eur. J. Mineral. 12, 847–857.
  7. Hatert, F., Long, G. J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.
  8. Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. [DOI] [PMC free article] [PubMed]
  9. Korzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390–398.
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
  12. Moore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227–235.
  13. Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074sup1.cif

e-73-00890-sup1.cif (403.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901700740X/hp2074Isup2.hkl

e-73-00890-Isup2.hkl (171.9KB, hkl)

CCDC reference: 1551181

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES