Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 May 26;73(Pt 6):893–895. doi: 10.1107/S2056989017007411

Crystal structure of calcium dinickel(II) iron(III) tris­(orthophosphate): CaNi2Fe(PO4)3

Said Ouaatta a,*, Abderrazzak Assani a, Mohamed Saadi a, Lahcen El Ammari a
PMCID: PMC5458318  PMID: 28638653

The transition metal orthophosphate CaNi2Fe(PO4)3 adopts the α-CrPO4 structure type. The structure is built up from two types of sheets, resulting in an open three-dimensional framework that delimits two types of channels in which the CaII cations are located.

Keywords: crystal structure, CaNi2Fe(PO4)3, transition metal phosphate, solid-state reactions, α-CrPO4 structure type

Abstract

The title compound, CaNi2Fe(PO4)3, was synthesized by solid-state reactions. Its structure is closely related to that of α-CrPO4 in the space group Imma. Except for two O atoms in general positions, all atoms are located in special positions. The three-dimensional framework is built up from two types of sheets extending parallel to (100). The first sheet is made up from two edge-sharing [NiO6] octa­hedra, leading to the formation of [Ni2O10] double octa­hedra that are connected to two PO4 tetra­hedra through a common edge and corners. The second sheet results from rows of corner-sharing [FeO6] octa­hedra and PO4 tetra­hedra forming an infinite linear chain. These layers are linked together through common corners of PO4 tetra­hedra and [FeO6] octa­hedra, resulting in an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] in which the eightfold-coordinated CaII cations are located.

Chemical context  

Phosphates belonging to the alluaudite (Moore, 1971) or to the α-CrPO4 (Attfield et al., 1988) structure type exhibit inter­esting physical and chemical properties. Consequently, these compounds have many promising applications such as use as positive electrodes in lithium and sodium batteries (Kim et al., 2014; Huang et al., 2015) or as catalysts (Kacimi et al., 2005). Over the last few years, phosphate-based compounds crystallizing in the α-CrPO4 or alluaudite structure types have been investigated by us. In this context, new phosphates adopting the alluaudite or α-CrPO4 structure type have been synthesized and structurally characterized. For example, the mixed-valence manganese phosphates PbMnII 2MnIII(PO4)3 (Alhakmi et al., 2013) and PbMnII 2MnIII(PO4)3 (Assani et al., 2013), the magnesium phosphate NaMg3(PO4)(HPO4)2 (Ould Saleck et al., 2015) and silver nickel phosphate Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011) were synthesized by hydro­thermal methods, while solid-state reactions were applied to synthesize SrNi2Fe(PO4)3 (Ouaatta et al., 2015) and Na2Co2Fe(PO4)3 (Bouraima et al., 2015). In a continuation of the latter preparation route, we have investigated pseudo-quaternary systems MO–NiO–Fe2O3–P2O5 (M represents a divalent cation) and report here on the synthesis and crystal structure of the title compound, CaNi2Fe(PO4)3.

Structural commentary  

CaNi2Fe(PO4)3 crystallizes in the α-CrPO4 structure type. The principal building units of the crystal structure are one [CaO8] polyhedron, [FeO6] and [NiO6] octa­hedra and PO4 tetra­hedra, as shown in Fig. 1.The octa­hedral coordination sphere of the iron(III) cation is more distorted than that of nickel(II), with Fe—O bond lengths in the range 1.9504 (7)–2.0822 (11) Å and Ni—O bond lengths in the range 2.0498 (8)–2.0841 (8) Å. In the title structure, all atoms are on special positions, except for the two oxygen atoms O1 and O2, which are on general positions. The structure can be described by the stacking of two types of sheets extending parallel to (100). The first sheet is formed by alternating [FeO6] octa­hedra and PO4 tetra­hedra sharing corners to build a linear infinite chain surrounding a zigzag chain of CaII+ cations (Fig. 2). The second sheet is built up from two edge-sharing [NiO6] octa­hedra leading to the formation of [Ni2O10] double octa­hedra, which are connected to two PO4 tetra­hedra by a common edge and a common corner, as shown in Fig. 3. The linkage of both layers, through vertices of PO4 tetra­hedra and [FeO6] octa­hedra, gives rise to the formation of an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] in which the CaII cations are located with eight neighbouring O atoms, as shown in Fig. 4. The title compound has a stoichiometric composition like that of the related strontium homologue SrNi2Fe(PO4)3.

Figure 1.

Figure 1

The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 2, −y + Inline graphic, z + 1; (ii) x, y, z + 1; (iii) −x + 2, −y + Inline graphic, z; (iv) −x + Inline graphic, −y + 1, z + Inline graphic; (v) x + Inline graphic, y + Inline graphic, z + Inline graphic; (vi) −x + Inline graphic, y + Inline graphic, z + Inline graphic; (vii) x + Inline graphic, −y + 1, z + Inline graphic; (viii) −x + Inline graphic, −y + Inline graphic, −z + Inline graphic; (ix) −x + Inline graphic, y, −z + Inline graphic; (x) x, −y + 1, −z; (xi) −x + 1, y, z; (xii) x, −y + 1, −z + 1; (xiii) −x + 1, −y + 1, −z + 1; (xiv) x − Inline graphic, y, −z + Inline graphic.]

Figure 2.

Figure 2

A chain formed by sharing corners of PO4 tetra­hedra and [FeO6] octa­hedra, alternating with a zigzag chain of calcium cations.

Figure 3.

Figure 3

Edge-sharing [NiO6] octa­hedra linked by PO4 tetra­hedra, forming a sheet parallel to (100).

Figure 4.

Figure 4

Polyhedral representation of CaNiO2Fe(PO4)3, showing channels running parallel to [100].

Synthesis and crystallization  

CaNi2Fe(PO4)3 was prepared by solid-state reactions in air. Stoichiometric mixtures of calcium, nickel and iron precursors were dissolved in water to which 85%wt phospho­ric acid was added. The obtained mixture was stirred without heating for 24 h and was subsequently evaporated to dryness at 343 K. The resulting dry residue was ground in an agate mortar until homogeneity, progressively heated in a platinum crucible up to 873 K to remove the volatile decomposition products, and then melted at 1433 K. The molten product was cooled down slowly with a 5 K h−1 rate and then to room temperature. The crystals obtained after washing with water were orange with parallelepipedal forms.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The maximum and minimum remaining electron densities are 0.68 and 0.41 Å, respectively, away from the Ni1 site.

Table 1. Experimental details.

Crystal data
Chemical formula CaNi2Fe(PO4)3
M r 498.26
Crystal system, space group Orthorhombic, I m m a
Temperature (K) 296
a, b, c (Å) 10.3126 (3), 13.1138 (3), 6.4405 (2)
V3) 871.00 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.14
Crystal size (mm) 0.30 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.596, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 8446, 1171, 1153
R int 0.020
(sin θ/λ)max−1) 0.840
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.017, 0.044, 1.17
No. of reflections 1171
No. of parameters 54
Δρmax, Δρmin (e Å−3) 0.76, −0.63

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007411/wm5390sup1.cif

e-73-00893-sup1.cif (266.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007411/wm5390Isup2.hkl

e-73-00893-Isup2.hkl (96.1KB, hkl)

CCDC reference: 1551182

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Crystal data

CaNi2Fe(PO4)3 Dx = 3.800 Mg m3
Mr = 498.26 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Imma Cell parameters from 1171 reflections
a = 10.3126 (3) Å θ = 3.1–36.6°
b = 13.1138 (3) Å µ = 7.14 mm1
c = 6.4405 (2) Å T = 296 K
V = 871.00 (4) Å3 Parallelepiped, orange
Z = 4 0.30 × 0.27 × 0.21 mm
F(000) = 972

Data collection

Bruker X8 APEX diffractometer 1171 independent reflections
Radiation source: fine-focus sealed tube 1153 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 36.6°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −16→17
Tmin = 0.596, Tmax = 0.748 k = −20→22
8446 measured reflections l = −10→10

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0216P)2 + 1.467P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017 (Δ/σ)max = 0.001
wR(F2) = 0.044 Δρmax = 0.76 e Å3
S = 1.17 Δρmin = −0.63 e Å3
1171 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
54 parameters Extinction coefficient: 0.0033 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.7500 0.36655 (2) 0.7500 0.00475 (5)
Fe1 0.5000 0.0000 0.5000 0.00372 (6)
Ca1 0.5000 0.2500 0.08981 (7) 0.01187 (8)
P1 0.7500 0.57298 (3) 0.7500 0.00385 (7)
P2 0.5000 0.2500 0.58291 (8) 0.00327 (8)
O1 0.86146 (7) 0.49415 (6) 0.79418 (13) 0.00590 (12)
O4 0.61754 (11) 0.2500 0.73284 (17) 0.00587 (16)
O3 0.5000 0.15625 (8) 0.44256 (18) 0.00672 (17)
O2 0.70724 (8) 0.63786 (6) 0.93385 (12) 0.00762 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.00486 (9) 0.00326 (8) 0.00613 (9) 0.000 −0.00056 (5) 0.000
Fe1 0.00264 (10) 0.00397 (11) 0.00455 (11) 0.000 0.000 −0.00016 (8)
Ca1 0.01508 (18) 0.01319 (18) 0.00735 (16) 0.000 0.000 0.000
P1 0.00450 (14) 0.00307 (14) 0.00398 (14) 0.000 −0.00041 (9) 0.000
P2 0.00320 (17) 0.00246 (17) 0.00414 (18) 0.000 0.000 0.000
O1 0.0045 (3) 0.0054 (3) 0.0079 (3) 0.0006 (2) −0.0021 (2) −0.0004 (2)
O4 0.0049 (4) 0.0057 (4) 0.0070 (4) 0.000 −0.0023 (3) 0.000
O3 0.0082 (4) 0.0045 (4) 0.0075 (4) 0.000 0.000 −0.0024 (3)
O2 0.0102 (3) 0.0069 (3) 0.0057 (3) 0.0018 (2) 0.0001 (2) −0.0020 (2)

Geometric parameters (Å, º)

Ni1—O1 2.0498 (8) Ca1—O2xi 2.5987 (8)
Ni1—O1i 2.0499 (8) Ca1—O2xii 2.5987 (8)
Ni1—O4 2.0529 (8) Ca1—O2xiii 2.5987 (8)
Ni1—O4ii 2.0529 (8) Ca1—O4xiv 2.5990 (12)
Ni1—O2iii 2.0841 (8) Ca1—O4xv 2.5990 (12)
Ni1—O2iv 2.0841 (8) Ca1—P2 3.1758 (7)
Fe1—O1ii 1.9504 (7) Ca1—P2xv 3.2647 (7)
Fe1—O1v 1.9504 (7) P1—O2i 1.5233 (8)
Fe1—O1vi 1.9504 (7) P1—O2 1.5233 (8)
Fe1—O1vii 1.9504 (7) P1—O1i 1.5719 (8)
Fe1—O3viii 2.0822 (11) P1—O1 1.5719 (8)
Fe1—O3 2.0822 (11) P2—O3 1.5259 (11)
Ca1—O3 2.5832 (12) P2—O3ix 1.5259 (11)
Ca1—O3ix 2.5832 (12) P2—O4ix 1.5498 (11)
Ca1—O2x 2.5987 (8) P2—O4 1.5498 (11)
O1—Ni1—O1i 70.58 (4) O2x—Ca1—O2xi 173.27 (4)
O1—Ni1—O4 171.24 (3) O3—Ca1—O2xii 77.42 (2)
O1i—Ni1—O4 103.13 (3) O3ix—Ca1—O2xii 108.72 (2)
O1—Ni1—O4ii 103.13 (3) O2x—Ca1—O2xii 110.65 (3)
O1i—Ni1—O4ii 171.24 (3) O2xi—Ca1—O2xii 68.92 (3)
O4—Ni1—O4ii 83.76 (5) O3—Ca1—O2xiii 108.72 (2)
O1—Ni1—O2iii 90.33 (3) O3ix—Ca1—O2xiii 77.42 (2)
O1i—Ni1—O2iii 92.27 (3) O2x—Ca1—O2xiii 68.92 (3)
O4—Ni1—O2iii 83.75 (4) O2xi—Ca1—O2xiii 110.65 (3)
O4ii—Ni1—O2iii 93.87 (4) O2xii—Ca1—O2xiii 173.27 (4)
O1—Ni1—O2iv 92.27 (3) O3—Ca1—O4xiv 141.08 (2)
O1i—Ni1—O2iv 90.33 (3) O3ix—Ca1—O4xiv 141.08 (2)
O4—Ni1—O2iv 93.87 (4) O2x—Ca1—O4xiv 64.19 (3)
O4ii—Ni1—O2iv 83.75 (4) O2xi—Ca1—O4xiv 109.37 (3)
O2iii—Ni1—O2iv 176.81 (4) O2xii—Ca1—O4xiv 109.37 (3)
O1ii—Fe1—O1v 180.0 O2xiii—Ca1—O4xiv 64.19 (3)
O1ii—Fe1—O1vi 85.81 (5) O3—Ca1—O4xv 141.08 (2)
O1v—Fe1—O1vi 94.19 (5) O3ix—Ca1—O4xv 141.08 (2)
O1ii—Fe1—O1vii 94.19 (5) O2x—Ca1—O4xv 109.37 (3)
O1v—Fe1—O1vii 85.81 (5) O2xi—Ca1—O4xv 64.19 (3)
O1vi—Fe1—O1vii 180.0 O2xii—Ca1—O4xv 64.19 (3)
O1ii—Fe1—O3viii 85.29 (3) O2xiii—Ca1—O4xv 109.37 (3)
O1v—Fe1—O3viii 94.71 (3) O4xiv—Ca1—O4xv 55.60 (5)
O1vi—Fe1—O3viii 94.71 (3) O2i—P1—O2 112.08 (6)
O1vii—Fe1—O3viii 85.29 (3) O2i—P1—O1i 116.00 (4)
O1ii—Fe1—O3 94.71 (3) O2—P1—O1i 107.24 (4)
O1v—Fe1—O3 85.29 (3) O2i—P1—O1 107.24 (4)
O1vi—Fe1—O3 85.29 (3) O2—P1—O1 116.00 (4)
O1vii—Fe1—O3 94.71 (3) O1i—P1—O1 97.76 (6)
O3viii—Fe1—O3 180.000 (10) O3—P2—O3ix 107.35 (9)
O3—Ca1—O3ix 56.84 (5) O3—P2—O4ix 111.66 (3)
O3—Ca1—O2x 77.42 (2) O3ix—P2—O4ix 111.66 (3)
O3ix—Ca1—O2x 108.72 (2) O3—P2—O4 111.66 (3)
O3—Ca1—O2xi 108.72 (2) O3ix—P2—O4 111.66 (3)
O3ix—Ca1—O2xi 77.42 (2) O4ix—P2—O4 102.91 (9)

Symmetry codes: (i) −x+3/2, y, −z+3/2; (ii) −x+3/2, −y+1/2, −z+3/2; (iii) x, −y+1, −z+2; (iv) −x+3/2, −y+1, z−1/2; (v) x−1/2, y−1/2, z−1/2; (vi) −x+3/2, y−1/2, z−1/2; (vii) x−1/2, −y+1/2, −z+3/2; (viii) −x+1, −y, −z+1; (ix) −x+1, −y+1/2, z; (x) −x+1, y−1/2, −z+1; (xi) x, −y+1, −z+1; (xii) x, y−1/2, −z+1; (xiii) −x+1, −y+1, −z+1; (xiv) −x+1, −y+1/2, z−1; (xv) x, y, z−1.

References

  1. Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i40. [DOI] [PMC free article] [PubMed]
  2. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011). Acta Cryst. E67, i40. [DOI] [PMC free article] [PubMed]
  3. Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60. [DOI] [PMC free article] [PubMed]
  4. Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452–457.
  5. Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. [DOI] [PMC free article] [PubMed]
  6. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860. [DOI] [PubMed]
  10. Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.
  11. Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632–8636.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
  14. Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258. [DOI] [PMC free article] [PubMed]
  15. Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017007411/wm5390sup1.cif

e-73-00893-sup1.cif (266.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017007411/wm5390Isup2.hkl

e-73-00893-Isup2.hkl (96.1KB, hkl)

CCDC reference: 1551182

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES